Elliptic Curves

Elliptic curves have equations of the form $w^{2}=z^{3}+a z+b$. For concreteness, we look at

$$
\mathbb{E}=\left\{(z, w) \in \mathbb{C}^{2} \mid w^{2}=z^{3}-z\right\}
$$

Let

$$
\begin{array}{rlrl}
\zeta: & \mathbb{E} & \rightarrow \mathbb{C} & \omega: \\
(z, w) & \mapsto z & & \rightarrow \mathbb{C} \\
(z, w) & \mapsto w
\end{array}
$$

be the projections from \mathbb{E} onto the z and w axes, respectively. We shall often rewrite $z^{3}-z=$ $z^{2}\left(z-\frac{1}{z}\right)$ and use

Lemma.

$$
\begin{array}{rllr}
z-\frac{1}{z} \leq 0 & \Longleftrightarrow & z \leq-1 & \text { or }
\end{array} \quad 0 \leq z \leq 1, ~ 子 \quad z \geq 1 \quad \text { or } \quad-1 \leq z \leq 0
$$

The inequality $z \leq 0$ means that z is real and the real part of z is less than or equal to zero.

Proof: Write $z=r e^{i \theta}$. Then $\operatorname{Im} z=r \sin \theta$ and $\operatorname{Im} \frac{1}{z}=-\frac{1}{r} \sin \theta$. Hence the $\operatorname{Im}\left(z-\frac{1}{z}\right)=$ $\left(r+\frac{1}{r}\right) \sin \theta$ and this vanishes if and only if $\sin \theta=0$, or equivalently, if and only if z is real. Now walk allong the real axis, starting form $-\infty$. Then $z-\frac{1}{z}=\frac{1}{z}(z-1)(z+1)$ starts negative and changes sign first at $z=-1$, then at $z=0$ and finally at $z=1$.

Define

$$
\begin{aligned}
D_{R} & =\mathbb{C} \backslash\{z \in \mathbb{C} \mid z \leq-1 \text { or } 0 \leq z \leq 1\} \\
D_{I} & =\mathbb{C} \backslash\{z \in \mathbb{C} \mid z \geq 1 \text { or }-1 \leq z \leq 0\}
\end{aligned}
$$

By the lemma $z-\frac{1}{z}$ maps D_{R} into $\mathbb{C} \backslash\{z \in \mathbb{C} \mid z \leq 0\}$, which is the domain of the unique analytic square root function that always takes values with strictly positive real parts. Similarly $z-\frac{1}{z}$ maps D_{I} into $\mathbb{C} \backslash\{z \in \mathbb{C} \mid z \geq 0\}$, which is the domain of the unique analytic square root function that always takes values with strictly positive imaginary parts. Thus there are unique analytic functions

$$
\begin{array}{cll}
S_{R}: D_{R} \rightarrow \mathbb{C} & \text { with } S_{R}(z)^{2}=z-\frac{1}{z} & \operatorname{Re} S_{R}(z)>0 \\
S_{I}: D_{I} \rightarrow \mathbb{C} & \text { with } S_{I}(z)^{2}=z-\frac{1}{z} & \operatorname{Im} S_{I}(z)>0
\end{array}
$$

Define

$$
\begin{aligned}
& \mathbb{E}_{R}^{+}=\left\{(z, w) \in \mathbb{C}^{2} \mid z \in D_{R}, w=z S_{R}(z)\right\} \\
& \mathbb{E}_{R}^{-}=\left\{(z, w) \in \mathbb{C}^{2} \mid z \in D_{R}, w=-z S_{R}(z)\right\} \\
& \mathbb{E}_{I}^{+}=\left\{(z, w) \in \mathbb{C}^{2} \mid z \in D_{I}, w=z S_{I}(z)\right\} \\
& \mathbb{E}_{I}^{-}=\left\{(z, w) \in \mathbb{C}^{2} \mid z \in D_{I}, w=-z S_{I}(z)\right\}
\end{aligned}
$$

Then $\left\{\mathbb{E}_{R}^{+}, \zeta\right\}$ and $\left\{\mathbb{E}_{R}^{-}, \zeta\right\}$ are disjoint patches that cover all (z, w) 's except those with $z \leq-1$ or $0 \leq z \leq 1$. Similarly, $\left\{\mathbb{E}_{I}^{+}, \zeta\right\}$ and $\left\{\mathbb{E}_{I}^{-}, \zeta\right\}$ are disjoint patches that cover all (z, w) 's except those with $z \geq 1$ or $-1 \leq z \leq 0$. So far all of \mathbb{E} is covered except for $(0,0),(1,0)$ and $(-1,0)$. So far, compatibility is trivial, since $\zeta \circ \zeta^{-1}$ is the identity map.

Let $f(z)=z^{3}-z, z_{0}=0, z_{1}=1$ and $z_{2}=2$. Then for $i=0,1,2, f\left(z_{i}\right)=0$ and $f^{\prime}\left(z_{i}\right)=3 z_{i}^{2}-1 \neq 0$. Consequently, there is a small neighbourhood B_{i} of z_{i} such that $f(z)$ is $1-1$ on B_{i} with analytic inverse, $f_{i}^{-1}(w)$ on $f\left(B_{i}\right)$. Note that $0 \in f\left(B_{i}\right)$ and $f_{i}^{-1}(0)=z_{i}$. Define

$$
\mathbb{E}_{i}=\left\{(z, w) \in \mathbb{C}^{2} \mid w^{2} \in f\left(B_{i}\right), z=f_{i}^{-1}\left(w^{2}\right)\right\}
$$

Note that $\left(z_{i}, 0\right) \in \mathbb{E}_{i}$ and that $\mathbb{E}_{i} \subset \mathbb{E}$ since, if $(z, w) \in \mathbb{E}_{i}, f(z)=f\left(f_{i}^{-1}\left(w^{2}\right)\right)=w^{2}$. Then the four previously defined patches, together with $\left\{\mathbb{E}_{i}, \omega\right\}, i=0,1,2$ provide an atlas for \mathbb{E}. To check the compatibility of $\left\{\mathbb{E}_{i}, \omega\right\}$ and, for example, $\left\{\mathbb{E}_{R}^{+}, \zeta\right\}$, it suffices to observe that

$$
\begin{aligned}
\zeta \circ \omega^{-1}(w) & =\zeta\left(\left(f_{i}^{-1}\left(w^{2}\right), w\right)\right)=f_{i}^{-1}\left(w^{2}\right) \\
\omega \circ \zeta^{-1}(z) & =\omega\left(\left(z, z S_{R}(z)\right)\right)=z S_{R}(z)
\end{aligned}
$$

are analytic.

