## **Elliptic Curves**

Elliptic curves have equations of the form  $w^2 = z^3 + az + b$ . For concreteness, we look at

$$\mathbb{E} = \left\{ \left( z, w \right) \in \mathbb{C}^2 \mid w^2 = z^3 - z \right\}$$

Let

$$\begin{aligned} \zeta : & \mathbb{E} \to \mathbb{C} & \omega : & \mathbb{E} \to \mathbb{C} \\ & (z, w) \mapsto z & (z, w) \mapsto w \end{aligned}$$

be the projections from  $\mathbb{E}$  onto the z and w axes, respectively. We shall often rewrite  $z^3 - z = z^2 \left(z - \frac{1}{z}\right)$  and use

## Lemma.

$$z - \frac{1}{z} \le 0 \quad \iff \quad z \le -1 \quad or \quad 0 \le z \le 1$$
$$z - \frac{1}{z} \ge 0 \quad \iff \quad z \ge 1 \quad or \quad -1 \le z \le 0$$

The inequality  $z \leq 0$  means that z is real and the real part of z is less than or equal to zero.

**Proof:** Write  $z = re^{i\theta}$ . Then  $\operatorname{Im} z = r\sin\theta$  and  $\operatorname{Im} \frac{1}{z} = -\frac{1}{r}\sin\theta$ . Hence the  $\operatorname{Im} \left(z - \frac{1}{z}\right) = \left(r + \frac{1}{r}\right)\sin\theta$  and this vanishes if and only if  $\sin\theta = 0$ , or equivalently, if and only if z is real. Now walk allong the real axis, starting form  $-\infty$ . Then  $z - \frac{1}{z} = \frac{1}{z}(z-1)(z+1)$  starts negative and changes sign first at z = -1, then at z = 0 and finally at z = 1.

Define

$$D_R = \mathbb{C} \setminus \left\{ z \in \mathbb{C} \mid z \le -1 \text{ or } 0 \le z \le 1 \right\}$$
$$D_I = \mathbb{C} \setminus \left\{ z \in \mathbb{C} \mid z \ge 1 \text{ or } -1 \le z \le 0 \right\}$$

By the lemma  $z - \frac{1}{z}$  maps  $D_R$  into  $\mathbb{C} \setminus \{ z \in \mathbb{C} \mid z \leq 0 \}$ , which is the domain of the unique analytic square root function that always takes values with strictly positive real parts. Similarly  $z - \frac{1}{z}$  maps  $D_I$  into  $\mathbb{C} \setminus \{ z \in \mathbb{C} \mid z \geq 0 \}$ , which is the domain of the unique analytic square root function that always takes values with strictly positive imaginary parts. Thus there are unique analytic functions

$$S_R : D_R \to \mathbb{C} \quad \text{with } S_R(z)^2 = z - \frac{1}{z} \quad \operatorname{Re} S_R(z) > 0$$
  
$$S_I : D_I \to \mathbb{C} \quad \text{with } S_I(z)^2 = z - \frac{1}{z} \quad \operatorname{Im} S_I(z) > 0$$

(c) Joel Feldman. 2002. All rights reserved.

Define

$$\mathbb{E}_{R}^{+} = \left\{ (z, w) \in \mathbb{C}^{2} \mid z \in D_{R}, w = zS_{R}(z) \right\}$$
  
$$\mathbb{E}_{R}^{-} = \left\{ (z, w) \in \mathbb{C}^{2} \mid z \in D_{R}, w = -zS_{R}(z) \right\}$$
  
$$\mathbb{E}_{I}^{+} = \left\{ (z, w) \in \mathbb{C}^{2} \mid z \in D_{I}, w = zS_{I}(z) \right\}$$
  
$$\mathbb{E}_{I}^{-} = \left\{ (z, w) \in \mathbb{C}^{2} \mid z \in D_{I}, w = -zS_{I}(z) \right\}$$

Then  $\{\mathbb{E}_R^+, \zeta\}$  and  $\{\mathbb{E}_R^-, \zeta\}$  are disjoint patches that cover all (z, w)'s except those with  $z \leq -1$ or  $0 \leq z \leq 1$ . Similarly,  $\{\mathbb{E}_I^+, \zeta\}$  and  $\{\mathbb{E}_I^-, \zeta\}$  are disjoint patches that cover all (z, w)'s except those with  $z \geq 1$  or  $-1 \leq z \leq 0$ . So far all of  $\mathbb{E}$  is covered except for (0, 0), (1, 0) and (-1, 0). So far, compatibility is trivial, since  $\zeta \circ \zeta^{-1}$  is the identity map.

Let  $f(z) = z^3 - z$ ,  $z_0 = 0$ ,  $z_1 = 1$  and  $z_2 = 2$ . Then for i = 0, 1, 2,  $f(z_i) = 0$  and  $f'(z_i) = 3z_i^2 - 1 \neq 0$ . Consequently, there is a small neighbourhood  $B_i$  of  $z_i$  such that f(z) is 1–1 on  $B_i$  with analytic inverse,  $f_i^{-1}(w)$  on  $f(B_i)$ . Note that  $0 \in f(B_i)$  and  $f_i^{-1}(0) = z_i$ . Define

$$\mathbb{E}_{i} = \left\{ (z, w) \in \mathbb{C}^{2} \mid w^{2} \in f(B_{i}), \ z = f_{i}^{-1}(w^{2}) \right\}$$

Note that  $(z_i, 0) \in \mathbb{E}_i$  and that  $\mathbb{E}_i \subset \mathbb{E}$  since, if  $(z, w) \in \mathbb{E}_i$ ,  $f(z) = f(f_i^{-1}(w^2)) = w^2$ . Then the four previously defined patches, together with  $\{\mathbb{E}_i, \omega\}$ , i = 0, 1, 2 provide an atlas for  $\mathbb{E}$ . To check the compatibility of  $\{\mathbb{E}_i, \omega\}$  and, for example,  $\{\mathbb{E}_R^+, \zeta\}$ , it suffices to observe that

$$\zeta \circ \omega^{-1}(w) = \zeta \left( (f_i^{-1}(w^2), w) \right) = f_i^{-1}(w^2)$$
$$\omega \circ \zeta^{-1}(z) = \omega \left( (z, zS_R(z)) \right) = zS_R(z)$$

are analytic.

