The Spectrum of Periodic Schrodinger Operators

¢I The Main Idea

Let T be a lattice of static ions in IR?. Suppose that the ions generate an electric
potential V' (x) that is periodic with respect to I'. Then the Hamiltonian for a single electron

moving in this lattice is
H=32(iV)’+V(x)

This Hamiltonian commutes with all of the translation operators

(Ty9) (%) = ¢(x +17) vel

Problem S.1 Prove that
i) T, is a unitary operator on L?(IR%) for all v € R".
ii) T, Ty = Tyyop for all 7,7 € RY

Problem S.2 Prove that

i) T,Yg—;’; = 88T;f for all differentiable functions ¢ on ]Rd, 1<i<dandye R?

ii) T,V = VT, for all y € T, all functions V that are periodic with respect to I" and

all functions ¢ on RY.

Pretend, for the rest of §I, that H and the T.,’s are matrices. We’ll give a rigorous
version of this argument later. We know that for each family of commuting normal matrices,
like {H, T,, v € I'}, there is an orthonormal basis of simultaneous eigenvectors. These
eigenvectors obey

Hoo = €ada
T’y¢oz = )‘Oz,7¢a V’)’ el
for some numbers e, and A, .
As T, is unitary, all its eigenvalues must be complex numbers of modulus one. So

there must exist real numbers f3,  such that A, , = e??=7. By Problem S.1.ii,

Iy oo = Tyiy Pa = eParir g,

f T,yei,Ba,‘y/ SOOZ — eiIBa,‘YeiBa,,y/ (pa — ei(ﬁa"y—i—ﬁav’w)gpa
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which forces

Ba,'y + 604,’1’ = Ba,’y—l—’y’ mod 27 v’)’,'yl el

Thus, for each «, all B, ,, 7 € I' are determined, mod 27, by B4, 1 <i < d. Given any d

numbers [y, -, B4 the system of linear equations (with unknowns k1, - - -, kq)
d
that is Z ")’ij'j = 61 1 S 1 S d
j=1

(where ; ; is the 7™ component of 7;) has a unique solution because the linear independence

of v4,---,7,4 implies that the matrix [’Yi,j] is invertible. So, for each «, there exists a

1<4,5<d
k, € R? such that k, Y = Ba,y, for all 1 <4 < d and hence

Ba~y = kq -y mod 27 Vyerl

Notice that, for each o, k, is not uniquely determined. Indeed

Bay =Ko -ymod2r and B, =k, -y mod2n Vyel
— (ko — k) -y€2rZ Vyel
— k, -k, er#

Now relabel the eigenvalues and eigenvectors, replacing the index o by the corre-
sponding value of k € R4 /T# and another index n. The index n is needed because many ks
with different values of @ can be equal. Under the new labelling the eigenvalue/eigenvector
equations are

Honx = e5(k)dn k

. S.1
Tynix = €7, VyeTl (5:1)

The H-eigenvalue is denoted e, (k) rather than e,, x because, while k runs over the continuous
set IR?/T#, n will turn out to run over a countable set. Now fix any k and observe that
“Tydnx = X7,y for all ¥ € I'” means that

¢n,k(x +9) = eik.’y(ﬁn,k(x)

for all x € R and o € T. If the e’ were not there, this would just say that ®n x is periodic

with respect to I'. We can make a simple change of variables that eliminates the e??. Define

wn,k<x) = e_ik.xd)n,k (X)

@ Joel Feldman. 2000. All rights reserved. 2



Then subbing ¢, k(x) = X1, (x) into (S.1) gives

So (V= X)W ke + Vb i = en (K, V)t e

S.2
Vn k(X +7) = VYn k(%) 52

Problem S.3 Prove that, for all ¢)(x) in the obvious domains
i) (iV) (™%, k(%)) = XV — k)b k(x)
) (iV)? (™™ k(x)) = e (IV — k)* 1y, 1 (%)
iii) V(x)(e™ > 1(x)) = eV (x)¢hn,1(x)
) T.

I Y (€ Xy k(x)) = e XTIy, (%)

ii
iv
Denote by INy the set of values of n that appear in pairs o = (k,n) and define
Hy :span{ Dn k ‘ n € INy }
Then, formally, and in particular ignoring that k runs over an uncountable set,
L}*(RY) = span{ bn.x ‘ k € RY/T#, ne Ny } = Brerd,/r# Hk

Set
i :Span{ Un k ‘ n € Nk }

As multiplication by e~ ig a unitary operator, Hy is unitarily equivalent to Hy and LQ(IRd)

is unitarily equivalent to @ycra/r# Hy. The restriction of the Schrodinger operator H to Hi
is -1 (iV — k)2 + V applied to functions that are periodic with respect to I'.

2m

So what have we gained? At least formally, we now know that to find the spectrum of
H= ;- (iV)2+V(x), acting on L? (]Rd), it suffices to find, for each k € IR?/T'#, the spectrum
of Hy = 5 (iV — k)2 + V(x) acting on L? (]Rd/F). We shall shortly prove that, unlike H,
Hy has compact resolvent. So, unlike H (which we shall see has continuous spectrum), the
spectrum of Hy necessarily consists of a sequence of eigenvalues e, (k) converging to co. We
shall also prove that the functions e, (k) are continuous in k and periodic with respect to I'#
and that the spectrum of H is precisely { e,(k) | n € N, k € R?/T# }.

Our next steps are to really prove that the spectrum of H is determined by the

spectra of the Hy’s and then that the Hy’s have compact resolvent.
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¢II The Reduction from H to the H.’s

We now rigorously express H as a “sum” (technically a direct integral) of Hy’s.
Because we are working in a rather concrete setting, we will never have to define what a
direct integral is. We shall make “L?(IR%) is unitarily equivalent to Srerd/r# Hy” rigorous
by constructing a unitary operator U from the space of L? functions f(x),x € R? to the
space of L? functions ¢ (k,x), k € IRd/F#, X € IRd/F with the property that

(UHU*W <k7 X) = ka(k7 X)
Define

S(RY/T# x RY/T) = { § € C(R* x RY) ’ bk, x+9) = vk x) VyeTl

e® X (k + b, x) = (k,x) Vb e I# }

Define an inner product on S(IRd/F# X IRd/F) by

<¢ ¢1"_ F#|/1Rd/1ﬂ# Agﬁ‘ ¢kX (k,X)

With this inner product & (]Rd/ I'# x IRY /F) is almost a Hilbert space. The only missing
axiom is completeness. Call the completion L? (IRd JT# x RY/ I).

Remark S.1 The condition ¢ (k,x + ) = (k,x) Vy € T just says that v is periodic
with respect to I' in the argument x. The condition e?*¢(k + b, x) = ¥(k,x) Vb € I'#, or
equivalently e'(¥tP)*q)(k 4+ b, x) = e *¢(k,x) Vb € T'#, says that e®*¢(k,x) is periodic
with respect to I'# in the argument k. The extra factor e’* means that 1 (k, x) itself need
not be periodic with respect to I'# in the argument k. So v (k, x) need not be continuous on
the torus IR? /T# x IR?/T" and my notation S (IRd JT# xR%/ F) is not very technically correct.
There is a fancy way of formulating the second condition as a continuity condition which leads
to the statement “(k,x) is a smooth section of the line bundle ... over R?/T# x R?/T.

Remark S.2 On the other hand, if both ¥ (k,x) and ¢(k,x) are in S(]Rd/F# X ]Rd/F),
then the integrand v (k,x) ¢(k,x) is periodic with respect to I'* in k and is periodic with
respect to I' in x. Hence if D is any fundamental domain for I" and D# is any fundamental

domain for T'#

(.0 = i [ i fix TR ofiex
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The value of the integral is independent of the choice of D and D#. Thus, you can always
realize L> (]Rd/F# X ]Rd/F) as the conventional L? (D# X D).

Also define

(1—|—x2”)< ﬁ 8% f(x))‘ < 0 Vn, i1, iq GIN}

=
j=1 0z

Sm?) ={ yec=(m) | sup

This is called “Schwartz space”. A function f(x) is in Schwartz space if and only all of

its derivatives are continuous and decay, for large |x|, faster than one over any polynomial.
Think of S(IRd) as a subset of LQ(IRd). Set

(o) = 7 | o P TI)

(if)(k,x) = Y e ™0 f(x 4 )

yer
Proposition S.3

i) u: S(RY/T# x RY/T) — S(RY)

i) i S(R?) — S(RY/T# x RY/T)

iii) aup = ¢ for all p € S(RY/T# x RY/T)

w) uif = f for all f € S(RY)

v) (@f,ag)p = (f,g) for all f,g € S(R?)
vi) (u), up) = (Y, d)p for all ¢, ¢ € S(IRd/F# X IRd/F)
vii) (f,ug) = (if, ¢)p for all f € S(R?Y), ¢ € S(R?/T# x RY/T)

Proof:

i) This is Problem S.4 . It is the usual integration by parts game. Note that the integrand
e *q)(k,x) is periodic with respect to I'# in the integration variable k.

ii) Fix f € S(IRd) and set
wik,x) =) e WO f(x 4 )
yel’
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As f(x) and all of its derivatives are bounded by =225+ the series

T[T

d ) )
}: ol 9t _ik-(x+
o dxyf oKIE eIV f(x 4 )
=1 ¥4 £
yel

converges absolutely and uniformly in k and x (on any compact set) for all i1, -, ig, j1, "+ ja-

Consequently 1 (k, x) exists and is C*°. We now verify the periodicity conditions. If y € T,

Ykex+q) =D e MO f(x oy 4y
v er

=Y e O f(x £ 9")  wherey” =y +7/
’Y”EF

=1 (k, x)
and, if b € I'#,

GH0HD) X (1 4 x) = Z ei(ktb) x o —ilktb) (x4 f(x 4 o) = Z e 71 AB)Y (x4 o)

Y€l v€eT
= DRI k) = XY e ()
yel el
= eik~x,¢(k’ X)
iii) Let
F0 = )() =gy [ ke (i)
RY/T#
(k,x) = (@f)(k,x) = 3 eI f (x4 9)
yel
Then

W) = Sty [t P upx k)
yel' R /T'#

so that, by the periodicity of 1 in -y,

ik-x _ —iky 1 d ip-(x+7)
Xk, x) = Y eI L d'p ™V (p, x)
7; T S

Fix any x and recall that h(p) = e’P*4(p, x) is periodic in p with respect to I'#. Hence by
Theorem L.10, (all labels “L.*” refer to the notes “Lattices and Periodic Functions”) with

I - T# b — —v, f = h, x — p in the integral and x — k in the sum

(CRESPITAY I, Badle

yel
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Subbing in h(p) = eP X (p, X)

(e x) = gy Soe Tk [ dlp TP ey (p,x

el R /T#

so that e**¥(k,x) = e**y(k, x) and ¥(k,x) = 1(k, x), as desired.

iv) Let
Yk, x) = (if)(k,x) = Y e ™ f(x + )
yerl'
F(x) = (w)(x) = 05 d'k ™y (k,x)
R /T#
Then
F N d% tkey d%%k e~k
(x) p#/]Rd/F# ;e f(x+1) ;f X+ ) r#/IRd/F# e
1 ify=0
:Zf<x+'7){0 ;fz#o
yel
= f(x)
v) Let

d
i val = { thm}osqglforaulsj'g}
]:

be the parallelepiped with the 7;’s as edges.

it o) = iy [ [ dx TR (ig)

= e [ [ xR ()
‘F | /IRd/F# /[Wlil?fn] Ze_ik.(XJﬂ)f(x—i_'Y) } [Z e_ik‘(XJm)g(X'f"Y/)

yel y'el
= [ax S Tor gl ) iy [ dk el
[vival 4 qer R4 /T#
/ Z fx+7)g(x+7)
[vival qer

- [ ax o)

vi) Set f = w1 and g = u¢. Then, by part (iii), af = ¥ and ug = ¢ so that, by part (v),
(uh, ug) = (f, g) = (uf, ug)r = (¥, d)r
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vii) Set g = u¢. Then, by part (iii), 4g = ¢ so that, by part (v),
<f7 u¢> = <f7 g> = <ﬁ’f7 ﬂg>1“ = <ﬁ’f7 ¢>F

The mass m plays no role, so we set it to % from now on.

Proposition S.4 Let V be a C*° function that is periodic with respect to I' and set
H = (iV)* + V(x)
Hy = (iVx — k) + V(x)
with domains S(]Rd) and S(]Rd/F# X ]Rd/F), respectively. Then,
(@Hw ) (k,x) = (Hicth)(k, X)
for all ¢ € S(R?/T# x R%/T)

Proof: Observe that
(iVy) [eik‘X¢(k, x)] = —ke™ (K, x) + X% (iVy1)) (k, x) = e ([iVy — K]) (k, )
As (uy)(x) = ﬁ fIRd/l"# d%k e *y)(k,x) , we have

(Huy)(x) = [(iV)* + V(x)] T / d%k e > (k, x)
R /T#

— i /}R . d’k eik'X(([z‘vx — kJ*¢) (k,x) + V(x)1p(k, x))

= (uHxy)(x)
Now apply @ to both sides and use Proposition S.3.iii. [ |

Theorem S.5

i) The operators u and @ have unique bounded extensions U : L? (]Rd/F# x]Rd/F) — L? (]Rd)
and U : L*(R?) — L*(RY/T# x RY/T) and

UU =1 UU =1

L2 (R4/T# xR4T 2 (R4)

it) The operators H (defined on S(]Rd)) and Hy (defined on S(]Rd/F# X ]Rd/F)) have unique
self-adjoint extensions to L? (]Rd) and L? (]Rd/F# X ]Rd/F). We also call the extensions H
and Hy. They obey

U*HU = Hy

@ Joel Feldman. 2000. All rights reserved. 8



Proof: i) @ and u are bounded by Proposition S.3 parts (v) and (vi) respectively. As
S(]Rd/F# X ]Rd/F) is dense in L2 (]Rd/F# X ]Rd/F) and S(]Rd) is dense in L? (]Rd), @ and u
have unique bounded extensions U and U. The remaining claims now follow from Proposition

S.3 parts (iii), (iv), (vii) and (vii) respectively, by continuity.

ii) Step 1: (Z'V)2 1s essentially self-adjoint on the domain S(IRd)

The Fourier transform is a unitary map from L2(IR?) to L2(IR%), that maps S(IR?)
onto S (]Rd). Under this unitary map —A, with domain S(]Rd), becomes the multiplication
operator Myz : S(R?) ¢ L?(R%) — L*(IR%) defined by M,2p(x) = x%¢(x). So it suffices to
prove that the operator My is essentially self-adjoint on S(IR?). But if ¢(x) € S(IR?), then
:2(1)1 € S(IR?). Hence the range of My2 + i contains all of S(IR?) and consequently is dense
in L?(IR%). Now just apply the Corollary of [Reed and Simon, volume I, Theorem VIIL3].

ii) Step 2: Prove Lemma S.6, below.

ii) Step 3: Finish off the proof.

In step 1, we saw that (2V) % is essentially self-adjoint on & (]Rd). The multiplication
operator V(x) is bounded and self-adjoint on L2 (]Rd). Consequently, by step 2, their sum,
H is essentially self-adjoint on S(IRd) and has a unique self-adjoint extension in L? (IRd).

The unitary operator U provides a unitary equivalence with
L*(RY/T# x RYT) « L*(RY)
S(RY/T# x RY/T) « S(RY)
Hy | S(RY/T# x RYT) < H | S(RY)
So Hy is essentially self-adjoint on S (]Rd JT# x R / F), has a unique self-adjoint extension
in L2(R?/T# x R?/T) and the extensions obey U*HU = Hy. ]

Lemma S.6 Let H be a Hilbert space and D a dense subspace of H. Let T : D — H be
essentially self-adjoint, with unique self-adjoint extension T, and V : H — H be bounded
and self-adjoint. Then T +V : D — H 1is essentially self-adjoint and the unique self-adjoint
extension of T +V is T + V.

Proof: As V is bounded,
p= lim @,, ¥v= lim Ty, = o= lim @,, v+ Vo= lim (T +V)p,
n—oo n—oo n—oo n—oo

for any sequence ¢1, @2, -+ € D. The left hand side defines “p € D7, Ty = 1" and the
right hand side defines “p € D77, T+ Vo =9 + V", s0 T + V is closeable with closure
T+V=T+V.
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To prove that T + V is self-adjoint, it suffices to prove that, for any densely define
operator A and any bounded operator V, (A4 V)* = A* + V*. But, as V is bounded and

Dayv = Da,
fE€ Dy — sup ‘(Ag,f)}<oo

g€Da,|lgll=1
= sup [ ((A+V)g, f)] <
g€Da,|lgll=1

<~ f € Dty
and, for all g € Dy = Dayv, f € Dar = Diaqvy»

(9, (A+ V) f) ={(A+V)g, [) =(Ag, /) + Vg, [) = (g, A"[) + (9, V") = (9, (A" + V") [)

¢§IITI Compactness of the Resolvent of H,, for each fixed k

In this section we fix a lattice I' in IR, a vector k € IR? and a smooth, real-valued,
function V(x) € C=(IR?/T) and study the operator

Hy = (iV —k)* + V(%)
acting on L?(IR?/T).
We denote by
F / dx e7Px f(x
1) ﬁ » 9
ib- x
(Flo)) = 75 2 e

bel'#

(S.3)

the Fourier transform and its inverse, normalized so that they are unitary maps from
L? (IRd/F) to £2(I'#) and from ¢?(I'*#) to L? (IRd/F) respectively.

Lemma S.7
a) The operator (iV — k)2 is self-adjoint on the domain
D={F ¢ | ¢b), bPp(b) e 2(I7) }
and essentially self-adjoint on the domain
Do = { Fly ‘ @(b) =0 for all but finitely many b € T'# }
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b) The spectrum of (iV — k)2 — A s

{(b—k?—A|bel#}

c) If 0 is not in { (b —k)2 -\ } b c I'* } [(ZV — k)2 — /\]1}_1 exists and s a compact
operator with norm

|[6v = 10" =3 7| = [ min (b~ k)2 = A ]

bel'#

For d < 4, it is Hilbert-Schmidt.

Proof: a) Let

D=1{ pel?(I'*) | bp(b) € 2(T%) }
Dy = {pe (2(T#) | ¢(b) = 0 for all but finitely many b € r# }
M = the operator of multiplication by (b — k)2 on D

m = the operator of multiplication by (b — k)2 on Dy

If p € Dy then % is also in 1:?0 so that ¢ = (m + i)m is in the range of m =+ 1.
Thus the range of m i is all of Dy and hence is dense in ¢?(I'#). This proves that m is
essentially self-adjoint.

Recall that, since (a — 3)? > 0, we have 2a3 < o + 82 for all real a and 3. Hence

b2=(b—k+k)?=(b-k)?+2b-k)-k+k><(b—k)?+2|b—-Kk||k|+ k>
<(b-k)?+|b-k|*+|k|*+k*=2(b—k)*+ 2k’

Consequently, if ¢ € £2(T'#), then % € D so that ¢ = (M + i)m is in the range

of M + 4. Thus the range of M =+ i is all of 2(I'#). This proves that M is self-adjoint and
hence is the unique self-adjoint extension of m.

The operator F (iV —k) ?F~lis the operator of multiplication by (b—k)? on ¢2(I'#).
Hence (iV — k)2 is self-adjoint on F~1D = D and essentially self-adjoint on F~1Dy = Dy .

b) The operator (iV — k)2 — A1 is unitarily equivalent to the operator of multiplication by
(b—k)?—X on £2(I'#). The function (b—k)? — X takes the values { (b—k)?—X|beT# }.
Each of these values is taken on a set of nonzero measure (with respect to the counting measure
on I'#). So the spectrum of (b — k)? — X contains { (b—k)2 -\ |beT# } .

In part c, below, we shall show that, if 0 is not in { (b—k)? -\ } b ecI'# } then

m is bounded uniformly in b. That is, 0 is not in the spectrum of multiplication by
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(b —k)? — X. This is all we need, because if y is not in { (b —k)? =X | b € T# }, then 0
is not in { (b — k)2 — X ‘ b e I'*# }, with A = X\ + pu, so that 0 is not in the spectrum of
multiplication by (b —k)?— )\ and p is not in the spectrum of multiplication by (b —k)% — \.

¢) Fix any k and any A € C such that (b —k)? — X is nonzero for all b € T'#. Set
C.=inf{|(b—k)?>-)|bel?# |b|>r}

Since (b —k)? > 1b% - k2, C, > %rz —k? — X so that lim,_,., C, = oo and

1
2

-1
| = [ nf, (b =12 = || = max{
iﬂhm@hw [ int, 106 =10° = A = max bltr

m ’, CLT} < 00
Let R and R, be the operators on ¢£2(I'#) of multiplication by m and

BRPX ) 0 if [b| > r

respectively. Then R is a bounded operator, with norm [minbep# |(b—k)% — )\\] _1, R, is a
finite rank operator and |R — R,.|| = C% converges to zero as r tends to infinity. This proves
that R is compact. As (iV — k)2 — Al is unitarily equivalent to the multiplication operator
(b—k)? — A, its inverse [(iV — k)2 — 1] s unitarily equivalent to R and is also compact,
with the same operator norm as R.

Now restrict to d < 4. The spectrum of R is { m ‘ b cI'# } and its set
of singular values is { m } b e I'# } To prove that R is Hilbert-Schmidt, we must

> |

bel'#

prove that

2
‘<oo

Choose any b1, - --, by such that

F#:{nlbl-l-"'-l-ndbd‘nl,---,ndGZ}

Let B be the d x d matrix whose (7, j) matrix element is b; - b;. For every nonzero x =
(21, -+, 2q) € C
X Bx = |z1b; 4+ ---24bg|* > 0

since the b;, 1 < i < d are independent. Consequently, all of the eigenvalues of B are strictly

larger than zero. Let 8 be the smallest eigenvalue of B. Then

|z1by + - - - x4bg|* = x - Bx > B|x|?
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Hence if b = niby 4+ - 4+ ngbg and n* = ‘<n17"'7nd)‘2 > %(kz +[A])
|(b—k)? =\ >1b>—k?— |\ >Zn? —k? — |\ > En? - Zn? > Op?
so that
2 2
1 _ 1
Z ‘(b_k)2_>\‘ - Z (n1b1+~”+ndbd—k)2—)\}
bel# nezZd
1 2 4 2
< Z (n1b1+~'~+ndbd—k)2—>\‘ + Z Bn2
neczd nczd
n2 < Z (k24|A]) n2> 24 (k2+|A])

1
(n1b1+-~~—|—ndbd—k)2—>\

§#{n€Zd‘n2§%(k2+|)\|)} max
nEZd
nZ <% (k2+|A])

:

This is finite because d < 4 and we have assumed that (b — k)2 — X does not vanish for any
b € I'*#. |

Lemma S.8 The following hold for all k € IR?.

a) The operator Hy is self-adjoint on the domain
D={ F ¢ | pD), b’p(b) € 2(T'7) }
and essentially self-adjoint on the domain
Dy = { Fly ‘ @(b) =0 for all but finitely many b € T'# }

b) If X is not in the spectrum of Hy, the resolvent [Hk — )\]l}_l is compact. If d < 4 it is
Hilbert-Schmidt. If Im X # 0 or A < —supy |V (X)|, then A is not in the spectrum of Hy.

c¢) Let R > 0. There is a constant C such that

H (Hx — He ) < H < Clk - K|

for all k, kX' € R with |k|,|k’| < R. The constant C' depends on V and R, but is otherwise
independent of k and K’.

d) Let R > 0 and A\ < —sup, |V (x)|. There is a constant C' such that

| [ = A1) ™ = [ = A1) 7| < ¢k - K
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for allk, k' € R? with k|, |k'| < R. The constant C' depends on V, X and R, but is otherwise
independent of k and K’.

e) Let ¢ € T# and define U, to be the multiplication operator ¢’ on L*(R®/T"). Then Uy
18 unitary and
U:HkU - Hk+c

Proof: a) (iV — k)2 is self-adjoint on D and essentially self-adjoint on Dy and V(x) is a
bounded operator on L? (IRd / I‘). Apply Lemma S.6.

b) If A is not in the spectrum of Hy, the resolvent [Hk — )\]l} -1 exists and is bounded. This is

just the definition of “spectrum”. As Hy is self-adjoint, its spectrum is a subset of IR. Now

consider A < —sup, |V (x)|. As [(iV — k)2 — A1 s unitarily equivalent to multiplication
1

by (b—1<)+—/\11 < ﬁ, it is a bounded operator with norm at most - As A < —supy [V (x)],

[(iV — k)2 — A 'V has operator norm at most sup, |V (x)|/|A] < 1 and

[l = = Tl S T~
Hy — A1 1+ mv (iV—k)2—)\]l B l—ww |A] = supy [V (x)]

Hence the spectrum of Hy is a subset of [—sup, |V (x)|, 00).
By the resolvent identity

1 1

[Hi — M7 = [((V=%)° + 1] = [H = A 7'V = (L 4+ 0] [V — k) + 1]

= {1 [ 2] 7'V - @+ NV - k)T 1)

The left factor {]l — [Hyx — A1 - V—(1+\) ]l)]} is a bounded operator and, by Lemma S.7,

the right factor [(ZV — k)2 + ]1] s compact (Hilbert-Schmidt for d < 4), so the product is
compact (Hilbert-Schmidt for d < 4).

c) First observe that, by Problem S.6 below, = maps all of L*(R%/T") into D so that
Hkﬁ and Hk/ﬁ are both defined on all of L? (]Rd/F). Expanding gives

(Hx — Hi) 5 = [((V—K)* = (iV—K)] 5 = [ - 2i(k —K) - V+ K> — K] 1

Hence f(Hk — Hk/) 1_1A F~!is the multiplication operator

2(k—k’)-b+k?—k'? 1\ . 2b+k+k’
1+b? =(k-k)- 1+b?

The claim then follows from

‘ 2b+ktk’

2|b|+2 2
-l | < |b|+2R < 1+1lir;r22R <142R

= 1+b2
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d) By the resolvent identity
1 (|
He— M Hg -1 He— 21

1
T He — M [Hie — Hy]

1
[Hie — Hy] Hy — M

1 1-A 1
1-AGV-K)2Z-AT+V

T
GV—K)2-x1
By part ¢ and the bound on the resolvent in part b,

Al
OERE MIH\/\I Supy [V X)]

1 1 1 /
HHk—)\]l B Hk/—)\]lH < |)\\—supx|V(x)|O|k k |

As m is unitarily equivalent to multiplication by =

bounded uniformly on |k’| < R.

Lk, ‘(iV k')2 ,\nH is

k)2’

e) Since multiplication operators commute, Ui VU, = UiU.V = V and the claim follows

immediately from Problem S.5, below.

Problem S.5 Let ¢ € I'# and U, be the multiplication operator e’** on L?(IR%/I). Let F
be the Fourier transform operator of (S.3).
a) Fill in the formulae
(FUF ") (b) = pb )
(FUSF ) (b) = pb )
b) Prove that U, and U} both leave the domain D invariant.
c¢) Prove that
Uz (iV - k) U = (iV—k—c)

Problem S.6 Prove that 1 maps all of L%(IRY/T) into D.

IV The spectrum of H

We have just proven that the spectrum of the operator Hy (acting on L*(IR%/T"))
is contained in the half of the real line to the right of —sup, |V (x)|. We have also just
proven that the resolvent of Hy is compact. Hence the spectrum of [Hk — )\]l} ! (for any
fixed suitable \) is a sequence of eigenvalues converging to zero, so that the spectrum of Hy

consists of a sequence of eigenvalues converging to +o00. Denote the eigenvalues of Hy by
e1(k) < ex(k) <es(k) <---
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Proposition S.9
a) For each n, e, (k) is continuous in k and periodic with respect to T'#,
b) lim,, o e, (k) = 0o, with the limit uniform in k.

¢) Denote by Vg the volume of a sphere of radius one in R®. Let by,---, by be any set of
generators for T'#* and B = { Z;l:l t;b; } —% <t < %for alll < 5 < d } be the
parallelepiped, centered on the origin, with the b;’s as edges. Denote by D the diameter of
B. For each k € R? and each R > 0

#{nelN|e (k) <R}< |¥—%( R+ ||V||+%D)d: |¥$|Rd/2+O(R%)

For each k € R? and each R > 1D? +||V||

#{neN|e(k)<R}>pH(VR-V]- %D)d: lg/%le/erO(R%)

This more detailed result concerning the rate at which e, (k) tends to infinity with n is not

used in these notes and so may be safely skipped.

Proof: b) Denote, in increasing order, the eigenvalues of (iV — k)2
ei1(k) < éx(k) <ésk) <---

Each é,(k) is (b — k)2, for some b € I'#. Furthermore, by Lemma S.7, the spectrum of

(iV — k)2 is periodic in k, so that each é, (k) is periodic in k. We have already observed that

(b —k)? > 1b? — k?, so that, as n tends to infinity, é,(k) tends to infinity, uniformly in k.
By the min-max principle

e”(k>:@1 o pentih oy (O Hict)
P n—1 YL@l Pm_1
_ . L2
= (k) + V)

I Y

. _ . 12
PlO= P L e W (b=k)

For any unit vector ¢, | (1, Vi) | < sup, |V (x)], so
e () — (k)| < sup V()
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and, as n tends to infinity, e, (k) tends to infinity, uniformly in k.
a) Fix any A < —sup, [V (x)|. Denote, in increasing order, the eigenvalues of —[Hjy — A1]~*

e1(k) < éa(k) <eéz(k) <---

(0, [Hi — Mg) = (i, (iV — k) ¢) + (0, [V — Alg)
| W6 - Aletol” dx
RY/T

= [N =sw V)] (¢ )

v

for all ¢ € D, é,(k) < 0 and
_ 1
en(k) = = T A

for all n. Pick any R > 0. By Lemma S.8.d, for all unit vectors ¢ and all k,k’ with
k|, |[kK'| < R,

‘ <<P, b i Hk,l—,\]l]‘P> ‘ < Ok — K|

Consequently, by the min-max principle, applied to A = —ﬁ and B = L

— 7T
|én(k) — &,(K')| < C'k — K|

Hence, each €, (k), and consequently each e, (k), is continuous.

¢) By Lemma S.7, the spectrum of (iV — k)2 is { (b—k)?|beTI# } . Label these

eigenvalues, in order, fi(k) < fao(k) < fz(k) < ---. Observe that Hy and (iV — k)2 both
have domain D and that, for every ¢ € D,

| (e, [Hic~ (19 = K)%Je) | = [ (e, Vi | < IV gl

Hence, by the min-max principle,
len(k) — fu(k)| < V]|
for all n and k so that, for all R > 0,
#{nelN|e(k)<R}<#{nelN| fu(k)<R+|V]} (5.4
#{neN|fuk)<R}<#{neN|e k) <R+ |V} '

Let b + B be the half open parallelepiped, centered on b, with edges parallel to the b;’s.
Then { b+ B | b € I'# } is a paving of IR?. This means that (b+ B) N (b’ + B) = ) unless
b = b’ and every point in R? is in some b + B. So, for each r > 0

#{neN| fuk)<r}=#{bel# || b-kl<Vr}

S.5
— ‘F—l#l\/olume< Upes, b+ B) (5:5)
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where S, = { beT# | |b—k| < /T }.

Every point of b + B lies within distance of %D of b, so every point of Upes, b+ B
lies within a distance /r + %D of k. On the other hand, if p € IR lies within a distance
N %D of k, then p lies in precisely one b + B and that b obeys |p — b| < %D and hence
b—k| <r—iD+1iD < /r. Thus

Va(vr = §D)" < Volume( Uses, b+ B) < Va(vr + 3D)" (S.6)
Subbing (S.6) in (S.5) gives
Ya (V- iD) < #{neN| fulk) <r } < 24 (v + D)

and subbing this into (S.4) gives the desired bounds.

Problem S.7 Let by, ---, by be any set of generators for I'# and
d
B={ Ytjbj| —3<t;<gforalll<j<d}
j=1
Prove that { b+ B } b ecI'# } is a paving of IRY.

Theorem S.10 Let V be a C™ function of R that is periodic with respect to the lattice T
and H = (iV)2 + V(x) the self-adjoint operator of Theorem S.5. The spectrum of H is

{ en(k) | ke RYI'* nelN}

Proof: Denote by Xy the spectrum of H and by
S ={enlk) } k € R%/T#, nelN }
the set of all eigenvalues of all the Hy’s.

Proof that S C Xy: Fix any p € IR? and any n € IN. We shall construct, for each £ > 0,
a vector . € S(IRd/F# X IF{d/F) obeying

[(@Hu — e, (p)1) ¢ || < e
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This will prove that [aHu — en(p)]l]_1 and hence [H — en(p)]l}_1 cannot be a bounded
operator with norm at most %, for any € > 0; hence that [H — en(p)]l]_1 cannot be a
bounded operator and hence that e,(p) € Xg.

By hypothesis, e, (p) is an eigenvalue of Hp. So there is a nonzero vector ¢(x) € D
such that [Hp — en(p)}gé = 0. As Hp, is essentially self-adjoint on Dy, there is a sequence of
functions ¢,,(x) € Dy obeying

lim ¢, =¢ lim Hp‘Pm = p(ﬁ

m— 00 m—0o0

— g [leul =@ £0  lm [[(Hp — ea(p)T) ] = 0
Hence there is a member of that sequence, call it . (x), for which

| (Hp — en(P)D) e || < 5l

Let f(k) be any nonnegative C* function that is supported in { k € R? | k[ <1}

and whose square has integral one. Define, for each > 0,

fs(k) = 52 f(5)

Observe that f5(k) is a nonnegative C™ function that is supported in { k € R? } k| <é }

and whose square has integral one. Set

Ye(k,x) = Y e f5 (k- p+c)p.(x)
cel'#
We shall choose 0. later. The function . (k,x) is in S(IRd/F# X IRd/F) because

e the term fs5_(k — p + ¢)p-(x) vanishes unless k is within a distance 6. of p — c.
Hence 1. vanishes unless k € B;_(p — c¢), the ball of radius d. centered on p — c,
for some ¢ € I'#. There is a nonzero lower bound on the distance between points of
I'#. We will choose d. to be strictly smaller than half that lower bound. Then the
balls Bs.(p — c), ¢ € I'# are disjoint. For k outside their union 1. (k,x) vanishes.
For k in Bs_(p — ¢o) the only term in the sum that does not vanish is that with
c = ¢g. Consequently ¥, (k,x) is C°.

k
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e 1.(k,x) is periodic in x with respect to I' because ¢, (x) is.

Ye(k+b,x) = > € fy (k+b—p+c)p.(x)

cel'#

= > PR (k—p+ e (x)

c'el#
= e_ib‘x'@bs(ka X)
so ¢ (k, x) has the required “twisted” periodicity in k.

The square of the norm
- 2
(@t~ ene)e]* = iy [ d [ dx|(@Hu— calp) ) (o)
R</T# IRd/r
By Problem L.4 of the notes “Lattices and Periodic Functions”, we may choose
d
p—l—B:p—i—{ > tib; ‘ —%Stj<%f0ra111§j§d}
j=1

as the domain of integration in k. This domain contains the ball B;s_(p — ¢) with ¢ = 0 and
does not intersect Bs_(p —c) for any ¢ € I'# \ {0} (again assuming that §. has been chosen
A

sufficiently small). On p+ B, ¥.(k,x) = fs5.(k — p)p-(x) and
((@Hu — en(P)1)¢e) (k, %) = fs5.(k — ) (Hi — en(p) 1)) (x)

so that
|(@Hu — en(p)1) 0|’ = _/dkégﬁ f5.(k = D) | (Hic — e (p) D)) ()|
|1“#‘ /dk f5 (k p H(Hk - en(p)]l)gpéiHiz(IRd/FJX)
The norm

I(Hi = en(P)De|| < |(Hp — en(p)De|| + [|(Hx — Hp) g ||
< Slle|| + 1 (Hx — Hp) =5 || (T — A)ge||
< Sllpe|| + Clk = p| (1= A)epc]|
< 5l + O (1 — A |
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for k in the support of fs_(k — p). Now choose

6 — & HSDEH
€ 2C max{1,[[(I-A)pc|}

With this choice of J., || (Hk —en(p)1 ngH so that

L2(RY/T,dx) = 5”905HL2(IRd/1“ dx)

| (@~ en(@)1)e]|” < I

dk f5.(k —p)® H906HL2(IRd/1“ dx) — = &2||¢pe

as desired.

Proof that ¥y C S: Fix any A ¢ S. We must show that A ¢ Xy. As, for each fixed n,

n k

By Lemma S.9.b,

lim infe,(k) = oo

n—oo k
Hence
D = inf ‘en )\‘ >0
keRd
nelN
By the spectral theorem
| (Hx — ‘PHL2(IRd/1“ dx) = DH‘)”HL?(]Rd/F dx)

for all ¢ in the domain, D, of Hyx and in particular for all ¢ € C'*® (IRd / F). Consequently, for
all ¥(k,x) € S(R?/T# x RY/TI)

}}(aHu—An)¢}}2: T |/1Rd/r# /}Rd/F }((aHu—An)¢)(k,x)}2

— |/Iad/r# /}Rd/F [((Hhe — A1) (K, )|

= |F#| / dk H (Hx — A)ep(k, ')Hiz(md/r,dx)

R4 /T#

2
> [ i otk g
R /T#
= D?[|y*
Recall that u is a unitary map from S(]Rd/F# X ]Rd/F) onto S(IR?). Hence
I = An)f]| > DIf] (5.7)

for all f € S(IRY). By Theorem S.5, H is essentially self-adjoint on S(IR?), so (S.7) applies
for all f in the domain of H and [H — )\]1} ~!is a bounded operator with norm at most %.

Hence A is not in the spectrum of H. [ |
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§V A Nontrivial Example — the Lamé Equation

Fix two real numbers 3,y > 0. The Weierstrass function with primitive periods -y
and i is the function p: € — C defined by

1 1 1
D=t D ap
WE’Z,Z7§%’LBZ

It is an elliptic function, which means that it is a meromorphic function that is doubly
periodic. It is analytic everywhere except for a double pole at each point of YZ & i5Z and
it has periods v and i3. The Weierstrass function is discussed in the notes “An Elliptic
Function — The Weierstrass Function”. The labels “W.*” refer to those notes. Two functions

closely related to p are

wENZDiBZ
w#0
_ o _1 1 1
C<Z)_O’(Z)_E+ Z Z—w+5+§
WENZDIBZ
w#0
As ('(z) = —p(z), € is an antiderivative of —p and consequently is, except for some constants

of integration, periodic too. Similarly, o is the exponential of an antiderivative of ( and it is

not hard to determine how o(z + ) and o(z + i/3) are related to o(z).

Lemma W.4 There are constants n1 € R and no € iR satisfying
mif —n2y = 2mi
such that

C(z+7)=¢(2) +m C(z+1iB) = ((2) +n2

o(z+7) = —o(z) ent2) o(z+if) = —o(2) o2 (+i5)

Now set, for z € C\ ('yZ & iBZ),

B
Z,x) = QC(Z).TJ O-(Z_ZL'—ZE)
¢(z,z) "
M) = —p(2)
(z) = —i(c(2) - 22)
§(Z> = éﬁk(z) — e’YC(Z)—znl
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Lemma S.11

a)
olz,z+7) = &(2) v(z,1)
b)
—Loo(z,x) + 20(z+i8)p(z,2) = Az)p(z )
c)

§(z+7) = &£(2) §(z+1if) = £(2)

Proof: a) By Problem W.3.d and Lemma W .4

_ @)+ o(z—x—y—il)

oz +v+i2)
_ @) ) o(—z+z+y+if)
0'(.’13 +9+ Zg)
( —z4x+ ig)enl(—z+m+i§+%)
U(.’L‘ + ig)em(x‘“'ng%)

a(z —x — zg)
a(x -l—zg)

— C(2)y—m= o(z, )

o(z,x+7)

@)

_ L@ty gz

b) First observe that, since

d_a(z—x—ig) :_[0’(z—x—ig) +U'(x+ig)]a(z—x—ig)
dx J(.CC—l—ig) a(z—x—ig) J(x—l—ig) a(x—l—ig)
) a(z x—iﬁ)
= —[¢le—w—if) + (e +if)) :

we have
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Differentiate again

Eoole) = (¢ =0 —i8) = ¢ (e +13) )o(ara)

Lemma W.5 says that

[Cu+v) = C(u) = ¢)]” = plu+v) + p(u) + p(v)

for all u,v € C such that none of u, v, u + v are in yZ ® ifZ (basically because, for each
fixed v € C\ (Z @ ifZ), both the left and right hand sides are periodic and have double
poles, with the same singular part, at each u € yZ ®i5Z and each u € —v +~vyZ G iSZ). By

this Lemma,
Z;gp(z x) = (p(z - —zg) — p(az-l—zg))(p(z,x)
+ (p( )—f—p(z—x—z )+ p(z+i ﬁ))(p(z,x)

- (Q(z) +2p(x + z‘%))s@(z, x)

c) By Lemma W .4,

E(z+7) = ¢z ) =(z+7)m E(z+if) = V¢ (z+iB) = (2+iB)m
— ¥€(z)—zm — Y2=iBm ¥C(2)—2m
=¢&(2) =¢&(2)
|
Set I' = yZ and

Vix ) 2@(33—1—1 )

By Problem W.1, parts (b), (¢) and (f), V € C’OO(IR/F) and is real valued. The Lamé equation
1s

dm2¢+2p(33+2 Yo = Ao ie. Hp=M\o (S.8)
A solution ¢(k,x) of (S.8) that satisfies

d(k,z+7) = "ok, ) (S.9)
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is called a Bloch solution with energy A and quasimomentum k.
Lemma S.11 says that, for each z € C\ (vz & iﬁZ), ©(z,x) is a Bloch solution of
the Lamé equation with energy A = A(z) and quasimomentum k = k(z). I claim that the

energy A and multiplier & = Y% are fully parameterized by
M) = —pls) ) = e

That is, the boundary value problem (S.8), (S.9) has a nontrivial solution if and only if
(A, e7%) = (A(2),&(2)), for some z € C\ (yZ @ iSZ). The only if implication follows
from the observation, which is an immediate consequence of Lemma S.12 below, that unless
2z € vZ @ iSZ the functions ¢(z,z) and ¢(—z, x) are linearly independent solutions of (S.8)
for A\(z) = A(—z). As a second order ordinary differential equation, (S.8) only has two linearly
independent solutions for each fixed value of \. For z € vZ @ ifZ, \(z) is not finite. For
2z € YZ @ ifZ with z ¢ vZ & ifZ, N (z) = 0, by Corollary W.3, and the second linearly

independent solution is %(p(z,x).

Lemma S.12

a) Let 21,20 € C\ (YZ®IBZ). If 21 — 20 ¢ YZ D iBZ, then p(z1, ) and p(z2, ) are linearly

independent (as functions of x).

b) If z € €\ (YZ ®iBZ), then ¢(z,z) and I-p(z,x) are linearly independent (as functions
of z).

Proof: a) If ¢(z1,z) and (29, x) were linearly dependent, there would exist a,b € C, not
both zero, such that ap(z1,x) + bp(z2,2) = 0 for all z € R. But

0(21 —x — zg)

U(x -i-zg)

(2= i)

U(x -i-zg)

o
o(z1,x) = Sz and o(z9,x) = eC(z2)7
have analytic continuations to z € C '\ ( — zg +vZ G iBZ). These analytic continuations
must obey ap(z1, ) + bp(z2,z) =0 for all z € C\ ( — zg +~Z & iSZ). In particular, the
zero set of p(z1,x), which is z; — zg +YZ @ ifZ, must coincide with the zero set of ¢(z2, x),
which is zo — Zg +~Z & 1BZ. This is the case if and only if 21 — 20 € vZ B 18Z.

b) Fix any z € C\ (YZ ®iSZ). As

Dy , (e Oz -z —i5)
— =x((x)p(z,x) + 5"
and o has only simple zeroes, the zero set of g—f cannot coincide with that of ¢. [ |
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Theorem S.13 Set
Ar=—p(3) Ay = —p(3 +i5) Ay = —p(i)

Then A1, Ao, As are real, A1 < Ao < Az and the spectrum of H is [A1, Ao] U [As3, 00).

Proof: If, for given values of A and k, the boundary value problem (S.8), (S.9) has a
nontrivial solution and if k£ is real then ) is in the spectrum of H. We know that all such
A’s are also real.

Imagine walking along the path in the z—plane that follows the four line segments
from 0 to 3 to 4 + zg to zg and back to 0. As p(z) = p(2), p(—2) = p(z) and p(z — ) =
o(z —if) = p(z) (this is part of Problem W.1.f), A(z) = —p(z) remains real throughout the

Y

entire excursion. Near z = 0,

>
—
P
I
|
=
I
~—
Q
|
Nm| —_

so A starts out near —oo at the beginning of the walk and moves continuously to +oo at the

end of the walk. Furthermore, by Corollary W.3, which states, in part,
p(z) =) if and only if z — 2/ EYZ B iPZ or z+ 2’ e yZ © ifZ.

A never takes the same value twice on the walk, because no two distinct points z, 2’ on the
walk obey z+ 2 € yZ B ifZ or z — 2/ e yvZ & ifZ.

e On the first quarter of the walk, from z = 0 to z = 3, A(z) increases from —oo to
Ay = —p(3). But we cannot put these \’s into the spectrum of H because, by Problem
W.5.e, k(z) is pure imaginary on this part of the walk. You might worry that k(z) might
happen to be exactly zero at some points of this first quarter of the walk. This could only
happen at isolated points, because k(z) is a nonconstant analytic function. If this were
to happen, the Lamé Schrodinger operator would have an isolated eigenvalue of finite
multiplicity. We have already seen that no periodic Schrodinger operator can have such

eigenvalues.
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e On the second quarter of the walk, from z = 3 to z = 3 + z'g, A(z) increases from A; to
Ay = —p(F+ 2%) By Problem W.5.d, k(z) is pure real on this part of the walk, so these
A’s are in the spectrum of H.

e On the third quarter of the walk, from z = 3 + zg to z = ig, A(z) increases from Aj to
A = —p(zg) By Problem W.5.e, these A\’s do not go into the spectrum of H.

e On the last quarter of the walk, from z = 2% back to zero, A(z) increases from A3 to 400.
By Problem W.5.d, these \’s are in the spectrum of H.

For more information on the Lame equation, see
Edward Lindsay Ince, Ordinary Differential Equations, Dover Publications,
1956, section 15.62.

Edmund Taylor Whittaker and George Neville Watson, A Course of Modern
Analysis, chapter XXIII.
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