
The Spectrum of Periodic Schrödinger Operators

§I The Main Idea

Let Γ be a lattice of static ions in IRd. Suppose that the ions generate an electric

potential V (x) that is periodic with respect to Γ. Then the Hamiltonian for a single electron

moving in this lattice is

H = 1
2m

(

i∇∇∇
)2

+ V (x)

This Hamiltonian commutes with all of the translation operators

(Tγγγφ
)

(x) = φ(x+ γγγ) γγγ ∈ Γ

Problem S.1 Prove that

i) Tγγγ is a unitary operator on L2(IRd) for all γγγ ∈ IRd.

ii) TγγγTγγγ′ = Tγγγ+γγγ′ for all γγγ, γγγ′ ∈ IRd

Problem S.2 Prove that

i) Tγγγ
∂ϕ
∂xi

=
∂Tγγγϕ
∂xi

for all differentiable functions ϕ on IRd, 1 ≤ i ≤ d and γγγ ∈ IRd

ii) TγγγV ϕ = V Tγγγϕ for all γγγ ∈ Γ, all functions V that are periodic with respect to Γ and

all functions ϕ on IRd.

Pretend, for the rest of §I, that H and the Tγγγ ’s are matrices. We’ll give a rigorous

version of this argument later. We know that for each family of commuting normal matrices,

like {H, Tγγγ , γγγ ∈ Γ}, there is an orthonormal basis of simultaneous eigenvectors. These

eigenvectors obey
Hφα = eαφα

Tγγγφα = λα,γγγφα ∀γγγ ∈ Γ

for some numbers eα and λα,γγγ .

As Tγγγ is unitary, all its eigenvalues must be complex numbers of modulus one. So

there must exist real numbers βα,γγγ such that λα,γγγ = eiβα,γγγ . By Problem S.1.ii,

TγγγTγγγ′ϕα = Tγγγ+γγγ′ϕα = eiβα,γγγ+γγγ′ϕα

= Tγγγe
iβα,γγγ′ϕα = eiβα,γγγ eiβα,γγγ′ϕα = ei(βα,γγγ+βα,γγγ′ )ϕα
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which forces

βα,γγγ + βα,γγγ′ = βα,γγγ+γγγ′ mod 2π ∀γγγ, γγγ′ ∈ Γ

Thus, for each α, all βα,γγγ , γγγ ∈ Γ are determined, mod 2π, by βα,γγγi , 1 ≤ i ≤ d. Given any d

numbers β1, · · · , βd the system of linear equations (with unknowns k1, · · · , kd)

γγγi · k = βi 1 ≤ i ≤ d

that is
d
∑

j=1
γi,jkj = βi 1 ≤ i ≤ d

(where γi,j is the j
th component of γγγi) has a unique solution because the linear independence

of γγγ1, · · · , γγγd implies that the matrix
[

γi,j
]

1≤i,j≤d
is invertible. So, for each α, there exists a

kα ∈ IRd such that kα · γγγi = βα,γγγi for all 1 ≤ i ≤ d and hence

βα,γγγ = kα · γγγ mod 2π ∀γγγ ∈ Γ

Notice that, for each α, kα is not uniquely determined. Indeed

βα,γγγ = kα · γγγ mod 2π and βα,γγγ = k′
α · γγγ mod2π ∀γγγ ∈ Γ

⇐⇒ (kα − k′
α) · γγγ ∈ 2πZZ ∀γγγ ∈ Γ

⇐⇒ kα − k′
α ∈ Γ#

Now relabel the eigenvalues and eigenvectors, replacing the index α by the corre-

sponding value of k ∈ IRd/Γ# and another index n. The index n is needed because many kα’s

with different values of α can be equal. Under the new labelling the eigenvalue/eigenvector

equations are

Hφn,k = en(k)φn,k

Tγγγφn,k = eik·γγγφn,k ∀γγγ ∈ Γ
(S.1)

The H–eigenvalue is denoted en(k) rather than en,k because, while k runs over the continuous

set IRd/Γ#, n will turn out to run over a countable set. Now fix any k and observe that

“Tγγγφn,k = eik·γγγφn,k for all γγγ ∈ Γ” means that

φn,k(x+ γγγ) = eik·γγγφn,k(x)

for all x ∈ IRd and γγγ ∈ Γ. If the eik·γγγ were not there, this would just say that φn,k is periodic

with respect to Γ. We can make a simple change of variables that eliminates the eik·γγγ . Define

ψn,k(x) = e−ik·xφn,k(x)
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Then subbing φn,k(x) = eik·xψn,k(x) into (S.1) gives

1
2m

(

i∇∇∇− k
)2
ψn,k + V ψn,k = en(k, V )ψn,k

ψn,k(x+ γγγ) = ψn,k(x)
(S.2)

Problem S.3 Prove that, for all ψ(x) in the obvious domains

i) (i∇∇∇)
(

eik·xψn,k(x)
)

= eik·x(i∇∇∇− k)ψn,k(x)

ii) (i∇∇∇)2
(

eik·xψn,k(x)
)

= eik·x(i∇∇∇− k)2ψn,k(x)

iii) V (x)
(

eik·xψn,k(x)
)

= eik·xV (x)ψn,k(x)

iv) Tγγγ
(

eik·xψn,k(x)
)

= eik·xeik·γγγTγγγψn,k(x)

Denote by INk the set of values of n that appear in pairs α = (k, n) and define

Hk = span
{

φn,k
∣

∣ n ∈ INk

}

Then, formally, and in particular ignoring that k runs over an uncountable set,

L2(IRd) = span
{

φn,k
∣

∣ k ∈ IRd/Γ#, n ∈ INk

}

= ⊕k∈IRd/Γ#Hk

Set

H̃k = span
{

ψn,k

∣

∣ n ∈ INk

}

As multiplication by e−ik·x is a unitary operator, Hk is unitarily equivalent to H̃k and L2(IRd)

is unitarily equivalent to ⊕k∈IRd/Γ#H̃k. The restriction of the Schrödinger operator H to H̃k

is 1
2m

(

i∇∇∇− k
)2

+ V applied to functions that are periodic with respect to Γ.

So what have we gained? At least formally, we now know that to find the spectrum of

H = 1
2m

(

i∇∇∇
)2
+V (x), acting on L2

(

IRd
)

, it suffices to find, for each k ∈ IRd/Γ#, the spectrum

of Hk = 1
2m

(

i∇∇∇− k
)2

+ V (x) acting on L2
(

IRd/Γ
)

. We shall shortly prove that, unlike H,

Hk has compact resolvent. So, unlike H (which we shall see has continuous spectrum), the

spectrum of Hk necessarily consists of a sequence of eigenvalues en(k) converging to ∞. We

shall also prove that the functions en(k) are continuous in k and periodic with respect to Γ#

and that the spectrum of H is precisely
{

en(k)
∣

∣ n ∈ IN, k ∈ IRd/Γ#
}

.

Our next steps are to really prove that the spectrum of H is determined by the

spectra of the Hk’s and then that the Hk’s have compact resolvent.
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§II The Reduction from H to the Hk’s

We now rigorously express H as a “sum” (technically a direct integral) of Hk’s.

Because we are working in a rather concrete setting, we will never have to define what a

direct integral is. We shall make “L2(IRd) is unitarily equivalent to ⊕k∈IRd/Γ#H̃k” rigorous

by constructing a unitary operator U from the space of L2 functions f(x),x ∈ IRd to the

space of L2 functions ψ(k,x), k ∈ IRd/Γ#, x ∈ IRd/Γ with the property that

(UHU∗ψ)(k,x) = Hkψ(k,x)

Define

S
(

IRd/Γ# × IRd/Γ
)

=
{

ψ ∈ C∞
(

IRd × IRd
)

∣

∣

∣
ψ(k,x+ γγγ) = ψ(k,x) ∀γγγ ∈ Γ

eib·xψ(k+ b,x) = ψ(k,x) ∀b ∈ Γ#
}

Define an inner product on S
(

IRd/Γ# × IRd/Γ
)

by

〈ψ, φ〉Γ = 1
|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx ψ(k,x) φ(k,x)

With this inner product S
(

IRd/Γ# × IRd/Γ
)

is almost a Hilbert space. The only missing

axiom is completeness. Call the completion L2
(

IRd/Γ# × IRd/Γ
)

.

Remark S.1 The condition ψ(k,x + γγγ) = ψ(k,x) ∀γγγ ∈ Γ just says that ψ is periodic

with respect to Γ in the argument x. The condition eib·xψ(k+ b,x) = ψ(k,x) ∀b ∈ Γ#, or

equivalently ei(k+b)·xψ(k + b,x) = eik·xψ(k,x) ∀b ∈ Γ#, says that eik·xψ(k,x) is periodic

with respect to Γ# in the argument k. The extra factor eik·x means that ψ(k,x) itself need

not be periodic with respect to Γ# in the argument k. So ψ(k,x) need not be continuous on

the torus IRd/Γ#×IRd/Γ and my notation S
(

IRd/Γ#×IRd/Γ
)

is not very technically correct.

There is a fancy way of formulating the second condition as a continuity condition which leads

to the statement “ψ(k,x) is a smooth section of the line bundle . . . over IRd/Γ# × IRd/Γ”.

Remark S.2 On the other hand, if both ψ(k,x) and φ(k,x) are in S
(

IRd/Γ# × IRd/Γ
)

,

then the integrand ψ(k,x) φ(k,x) is periodic with respect to Γ# in k and is periodic with

respect to Γ in x. Hence if D is any fundamental domain for Γ and D# is any fundamental

domain for Γ#

〈ψ, φ〉Γ = 1
|Γ#|

∫

D#

dk

∫

D

dx ψ(k,x) φ(k,x)
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The value of the integral is independent of the choice of D and D#. Thus, you can always

realize L2
(

IRd/Γ# × IRd/Γ
)

as the conventional L2
(

D# ×D
)

.

Also define

S
(

IRd
)

=
{

f ∈ C∞
(

IRd
)

∣

∣

∣
sup
x

∣

∣

∣
(1 + x2n)

( d
∏

j=1

∂ij

∂x
ij
j

f(x)
)
∣

∣

∣
<∞ ∀n, i1, · · · id ∈ IN

}

This is called “Schwartz space”. A function f(x) is in Schwartz space if and only all of

its derivatives are continuous and decay, for large |x|, faster than one over any polynomial.

Think of S
(

IRd
)

as a subset of L2(IRd
)

. Set

(uψ)(x) = 1
|Γ#|

∫

IRd/Γ#

ddk eik·xψ(k,x)

(ũf)(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

Proposition S.3

i) u : S
(

IRd/Γ# × IRd/Γ
)

→ S
(

IRd
)

ii) ũ : S
(

IRd
)

→ S
(

IRd/Γ# × IRd/Γ
)

iii) ũuψ = ψ for all ψ ∈ S
(

IRd/Γ# × IRd/Γ
)

iv) uũf = f for all f ∈ S
(

IRd
)

v) 〈ũf, ũg〉Γ = 〈f, g〉 for all f, g ∈ S
(

IRd
)

vi) 〈uψ, uφ〉 = 〈ψ, φ〉Γ for all ψ, φ ∈ S
(

IRd/Γ# × IRd/Γ
)

vii) 〈f, uφ〉 = 〈ũf, φ〉Γ for all f ∈ S
(

IRd
)

, φ ∈ S
(

IRd/Γ# × IRd/Γ
)

Proof:

i) This is Problem S.4 . It is the usual integration by parts game. Note that the integrand

eik·xψ(k,x) is periodic with respect to Γ# in the integration variable k.

ii) Fix f ∈ S
(

IRd
)

and set

ψ(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)
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As f(x) and all of its derivatives are bounded by const
1+|x|d+1 the series

∑

γγγ∈Γ

d
∏

ℓ=1

∂iℓ

∂x
iℓ
ℓ

∂jℓ

∂k
jℓ
ℓ

e−ik·(x+γγγ)f(x+ γγγ)

converges absolutely and uniformly in k and x (on any compact set) for all i1, · · · , id, j1, · · · jd.
Consequently ψ(k,x) exists and is C∞. We now verify the periodicity conditions. If γγγ ∈ Γ,

ψ(k,x+ γγγ) =
∑

γγγ′∈Γ

e−ik·(x+γγγ+γγγ′)f(x+ γγγ + γγγ′)

=
∑

γγγ′′∈Γ

e−ik·(x+γγγ′′)f(x+ γγγ′′) where γγγ′′ = γγγ + γγγ′

= ψ(k,x)

and, if b ∈ Γ#,

ei(k+b)·xψ(k+ b,x) =
∑

γγγ∈Γ

ei(k+b)·xe−i(k+b)·(x+γγγ)f(x+ γγγ) =
∑

γγγ∈Γ

e−i(k+b)·γγγf(x+ γγγ)

=
∑

γγγ∈Γ

e−ik·γγγf(x+ γγγ) = eik·x
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

= eik·xψ(k,x)

iii) Let

f(x) = (uψ)(x) = 1
|Γ#|

∫

IRd/Γ#

ddk eik·xψ(k,x)

Ψ(k,x) = (ũf)(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

Then

Ψ(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ) 1
|Γ#|

∫

IRd/Γ#

ddp eip·(x+γγγ)ψ(p,x+ γγγ)

so that, by the periodicity of ψ in γγγ,

eik·xΨ(k,x) =
∑

γγγ∈Γ

e−ik·γγγ 1
|Γ#|

∫

IRd/Γ#

ddp eip·(x+γγγ)ψ(p,x)

Fix any x and recall that h(p) = eip·xψ(p,x) is periodic in p with respect to Γ#. Hence by

Theorem L.10, (all labels “L.*” refer to the notes “Lattices and Periodic Functions”) with

Γ → Γ#, b → −γγγ, f → h, x → p in the integral and x → k in the sum

h(k) = 1
|Γ#|

∑

γγγ∈Γ

e−iγγγ·k

∫

IRd/Γ#

ddp eiγγγ·p h(p)
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Subbing in h(p) = eip·xψ(p,x)

eik·xψ(k,x) = 1
|Γ#|

∑

γγγ∈Γ

e−iγγγ·k

∫

IRd/Γ#

ddp eiγγγ·p eip·xψ(p,x)

so that eik·xΨ(k,x) = eik·xψ(k,x) and Ψ(k,x) = ψ(k,x), as desired.

iv) Let

ψ(k,x) = (ũf)(k,x) =
∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)

F (x) = (uψ)(x) = 1
|Γ#|

∫

IRd/Γ#

ddk eik·xψ(k,x)

Then

F (x) = 1
|Γ#|

∫

IRd/Γ#

ddk
∑

γγγ∈Γ

e−ik·γγγf(x+ γγγ) =
∑

γγγ∈Γ

f(x+ γγγ) 1
|Γ#|

∫

IRd/Γ#

ddk e−ik·γγγ

=
∑

γγγ∈Γ

f(x+ γγγ)

{

1 if γ = 0
0 if γ 6= 0

= f(x)

v) Let

[γγγ1, · · ·γγγd] =
{ d

∑

j=1

tjγγγj

∣

∣

∣
0 ≤ tj ≤ 1 for all 1 ≤ j ≤ d

}

be the parallelepiped with the γγγj ’s as edges.

〈ũf, ũg〉Γ = 1
|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx (ũf)(k,x) (ũg)(k,x)

= 1
|Γ#|

∫

IRd/Γ#

dk

∫

[γγγ1,···,γγγd]

dx (ũf)(k,x) (ũg)(k,x)

= 1
|Γ#|

∫

IRd/Γ#

dk

∫

[γγγ1,···,γγγd]

dx
[

∑

γγγ∈Γ

e−ik·(x+γγγ)f(x+ γγγ)
] [

∑

γγγ′∈Γ

e−ik·(x+γγγ′)g(x+ γγγ′)
]

=

∫

[γγγ1,···,γγγd]

dx
∑

γγγ,γγγ′∈Γ

f(x+ γγγ)g(x+ γγγ′) 1
|Γ#|

∫

IRd/Γ#

dk eik·(γγγ−γγγ′)

=

∫

[γγγ1,···,γγγd]

dx
∑

γγγ∈Γ

f(x+ γγγ) g(x+ γγγ)

=

∫

IRd
dx f(x) g(x)

vi) Set f = uψ and g = uφ. Then, by part (iii), ũf = ψ and ũg = φ so that, by part (v),

〈uψ, uφ〉 = 〈f, g〉 = 〈ũf, ũg〉Γ = 〈ψ, φ〉Γ
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vii) Set g = uφ. Then, by part (iii), ũg = φ so that, by part (v),

〈f, uφ〉 = 〈f, g〉 = 〈ũf, ũg〉Γ = 〈ũf, φ〉Γ

The mass m plays no role, so we set it to 1
2 from now on.

Proposition S.4 Let V be a C∞ function that is periodic with respect to Γ and set

H =
(

i∇∇∇
)2

+ V (x)

Hk =
(

i∇∇∇x − k
)2

+ V (x)

with domains S
(

IRd
)

and S
(

IRd/Γ# × IRd/Γ
)

, respectively. Then,

(ũHuψ)(k,x) = (Hkψ)(k,x)

for all ψ ∈ S
(

IRd/Γ# × IRd/Γ
)

Proof: Observe that
(

i∇∇∇x

)

[

eik·xψ(k,x)
]

= −keik·xψ(k,x) + eik·x
(

i∇∇∇xψ
)

(k,x) = eik·x
(

[i∇∇∇x − k]ψ
)

(k,x)

As (uψ)(x) = 1
|Γ#|

∫

IRd/Γ# d
dk eik·xψ(k,x) , we have

(Huψ)(x) =
[(

i∇∇∇
)2

+ V (x)
]

1
|Γ#|

∫

IRd/Γ#

ddk eik·xψ(k,x)

= 1
|Γ#|

∫

IRd/Γ#

ddk eik·x
(

(

[i∇∇∇x − k]2ψ
)

(k,x) + V (x)ψ(k,x)
)

= (uHkψ)(x)

Now apply ũ to both sides and use Proposition S.3.iii.

Theorem S.5

i) The operators u and ũ have unique bounded extensions U : L2
(

IRd/Γ#×IRd/Γ
)

→ L2
(

IRd
)

and Ũ : L2
(

IRd
)

→ L2
(

IRd/Γ# × IRd/Γ
)

and

ŨU = 1l
L2
(

IRd/Γ#×IRd/Γ
) UŨ = 1l

L2
(

IRd
) Ũ = U∗ U = Ũ∗

ii) The operators H (defined on S
(

IRd
)

) and Hk (defined on S
(

IRd/Γ#×IRd/Γ
)

) have unique

self–adjoint extensions to L2
(

IRd
)

and L2
(

IRd/Γ# × IRd/Γ
)

. We also call the extensions H

and Hk. They obey

U∗HU = Hk
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Proof: i) ũ and u are bounded by Proposition S.3 parts (v) and (vi) respectively. As

S
(

IRd/Γ# × IRd/Γ
)

is dense in L2
(

IRd/Γ# × IRd/Γ
)

and S
(

IRd
)

is dense in L2
(

IRd
)

, ũ and u

have unique bounded extensions Ũ and U . The remaining claims now follow from Proposition

S.3 parts (iii), (iv), (vii) and (vii) respectively, by continuity.

ii) Step 1:
(

i∇∇∇
)2

is essentially self–adjoint on the domain S
(

IRd
)

The Fourier transform is a unitary map from L2(IRd) to L2(IRd), that maps S(IRd)

onto S(IRd). Under this unitary map −∆, with domain S
(

IRd
)

, becomes the multiplication

operator Mx2 : S(IRd) ⊂ L2(IRd) → L2(IRd) defined by Mx2ϕ(x) = x2ϕ(x). So it suffices to

prove that the operator Mx2 is essentially self–adjoint on S(IRd). But if ϕ(x) ∈ S(IRd), then
ϕ(x)
x2±i ∈ S(IRd). Hence the range of Mx2 ± i contains all of S(IRd) and consequently is dense

in L2(IRd). Now just apply the Corollary of [Reed and Simon, volume I, Theorem VIII.3].

ii) Step 2: Prove Lemma S.6, below.

ii) Step 3: Finish off the proof.

In step 1, we saw that
(

i∇∇∇
)2

is essentially self–adjoint on S
(

IRd
)

. The multiplication

operator V (x) is bounded and self–adjoint on L2
(

IRd
)

. Consequently, by step 2, their sum,

H is essentially self–adjoint on S
(

IRd
)

and has a unique self–adjoint extension in L2
(

IRd
)

.

The unitary operator U provides a unitary equivalence with

L2
(

IRd/Γ# × IRd/Γ
)

↔ L2
(

IRd
)

S
(

IRd/Γ# × IRd/Γ
)

↔ S
(

IRd
)

Hk ↾ S
(

IRd/Γ# × IRd/Γ
)

↔ H ↾ S
(

IRd
)

So Hk is essentially self–adjoint on S
(

IRd/Γ# × IRd/Γ
)

, has a unique self–adjoint extension

in L2
(

IRd/Γ# × IRd/Γ
)

and the extensions obey U∗HU = Hk.

Lemma S.6 Let H be a Hilbert space and D a dense subspace of H. Let T : D → H be

essentially self-adjoint, with unique self–adjoint extension T̄ , and V : H → H be bounded

and self–adjoint. Then T + V : D → H is essentially self–adjoint and the unique self–adjoint

extension of T + V is T̄ + V .

Proof: As V is bounded,

ϕ = lim
n→∞

ϕn, ψ = lim
n→∞

Tϕn ⇐⇒ ϕ = lim
n→∞

ϕn, ψ + V ϕ = lim
n→∞

(T + V )ϕn

for any sequence ϕ1, ϕ2, · · · ∈ D. The left hand side defines “ϕ ∈ DT , Tϕ = ψ” and the

right hand side defines “ϕ ∈ DT+V , T + V ϕ = ψ + V ϕ”, so T + V is closeable with closure

T + V = T + V .
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To prove that T + V is self–adjoint, it suffices to prove that, for any densely define

operator A and any bounded operator V , (A + V )∗ = A∗ + V ∗. But, as V is bounded and

DA+V = DA,
f ∈ DA∗ ⇐⇒ sup

g∈DA,‖g‖=1

∣

∣ 〈Ag, f〉
∣

∣ <∞

⇐⇒ sup
g∈DA,‖g‖=1

∣

∣ 〈(A+ V )g, f〉
∣

∣ <∞

⇐⇒ f ∈ D(A+V )∗

and, for all g ∈ DA = DA+V , f ∈ DA∗ = D(A+V )∗

〈g, (A+ V )∗f〉 = 〈(A+ V )g, f〉 = 〈Ag, f〉+ 〈V g, f〉 = 〈g, A∗f〉+ 〈g, V ∗f〉 = 〈g, (A∗ + V ∗)f〉

§III Compactness of the Resolvent of Hk, for each fixed k

In this section we fix a lattice Γ in IRd, a vector k ∈ IRd and a smooth, real–valued,

function V (x) ∈ C∞(IRd/Γ) and study the operator

Hk =
(

i∇∇∇− k
)2

+ V (x)

acting on L2
(

IRd/Γ
)

.

We denote by

(Ff
)

(b) = 1√
|Γ|

∫

IRd/Γ

ddx e−ib·xf(x)

(F−1ϕ
)

(x) = 1√
|Γ|

∑

b∈Γ#

eib·xϕ(b)
(S.3)

the Fourier transform and its inverse, normalized so that they are unitary maps from

L2
(

IRd/Γ
)

to ℓ2(Γ#) and from ℓ2(Γ#) to L2
(

IRd/Γ
)

respectively.

Lemma S.7

a) The operator
(

i∇∇∇− k
)2

is self–adjoint on the domain

D =
{

F−1ϕ
∣

∣ ϕ(b), b2ϕ(b) ∈ ℓ2(Γ#)
}

and essentially self–adjoint on the domain

D0 =
{

F−1ϕ
∣

∣ ϕ(b) = 0 for all but finitely many b ∈ Γ#
}
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b) The spectrum of
(

i∇∇∇− k
)2 − λ1l is

{

(b− k)2 − λ
∣

∣ b ∈ Γ#
}

c) If 0 is not in
{

(b − k)2 − λ
∣

∣ b ∈ Γ#
}

,
[(

i∇∇∇ − k
)2 − λ1l

]−1
exists and is a compact

operator with norm

∥

∥

∥

[(

i∇∇∇− k
)2 − λ1l

]−1
∥

∥

∥
=

[

min
b∈Γ#

|(b− k)2 − λ|
]−1

For d < 4, it is Hilbert-Schmidt.

Proof: a) Let

D̃ =
{

ϕ ∈ ℓ2(Γ#)
∣

∣ b2ϕ(b) ∈ ℓ2(Γ#)
}

D̃0 =
{

ϕ ∈ ℓ2(Γ#)
∣

∣ ϕ(b) = 0 for all but finitely many b ∈ Γ#
}

M = the operator of multiplication by (b− k)2 on D̃
m = the operator of multiplication by (b− k)2 on D̃0

If ϕ ∈ D̃0 then ϕ(b)
(b−k)2±i

is also in D̃0 so that ϕ = (m ± i) ϕ
(b−k)2±i

is in the range of m ± i.

Thus the range of m ± i is all of D̃0 and hence is dense in ℓ2(Γ#). This proves that m is

essentially self–adjoint.

Recall that, since (α− β)2 ≥ 0, we have 2αβ ≤ α2 + β2 for all real α and β. Hence

b2 = (b− k+ k)2 = (b− k)2 + 2(b− k) · k+ k2 ≤ (b− k)2 + 2‖b− k‖ ‖k‖+ k2

≤ (b− k)2 + ‖b− k‖2 + ‖k‖2 + k2 = 2(b− k)2 + 2k2

Consequently, if ϕ ∈ ℓ2(Γ#), then ϕ(b)
(b−k)2±i ∈ D̃ so that ϕ = (M ± i) ϕ

(b−k)2±i is in the range

of M ± i. Thus the range of M ± i is all of ℓ2(Γ#). This proves that M is self–adjoint and

hence is the unique self–adjoint extension of m.

The operator F
(

i∇∇∇−k
)2F−1 is the operator of multiplication by (b−k)2 on ℓ2(Γ#).

Hence
(

i∇∇∇− k
)2

is self–adjoint on F−1D̃ = D and essentially self–adjoint on F−1D̃0 = D0 .

b) The operator
(

i∇∇∇− k
)2 − λ1l is unitarily equivalent to the operator of multiplication by

(b−k)2−λ on ℓ2(Γ#). The function (b−k)2−λ takes the values
{

(b−k)2−λ
∣

∣ b ∈ Γ#
}

.

Each of these values is taken on a set of nonzero measure (with respect to the counting measure

on Γ#). So the spectrum of (b− k)2 − λ contains
{

(b− k)2 − λ
∣

∣ b ∈ Γ#
}

.

In part c, below, we shall show that, if 0 is not in
{

(b− k)2 − λ
∣

∣ b ∈ Γ#
}

, then
1

(b−k)2−λ is bounded uniformly in b. That is, 0 is not in the spectrum of multiplication by
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(b − k)2 − λ. This is all we need, because if µ is not in
{

(b − k)2 − λ
∣

∣ b ∈ Γ#
}

, then 0

is not in
{

(b − k)2 − λ′
∣

∣ b ∈ Γ#
}

, with λ′ = λ + µ, so that 0 is not in the spectrum of

multiplication by (b−k)2−λ′ and µ is not in the spectrum of multiplication by (b−k)2−λ.

c) Fix any k and any λ ∈ C such that (b− k)2 − λ is nonzero for all b ∈ Γ#. Set

Cr = inf
{
∣

∣(b− k)2 − λ
∣

∣

∣

∣ b ∈ Γ#, |b| ≥ r
}

Since (b− k)2 ≥ 1
2
b2 − k2, Cr ≥ 1

2
r2 − k2 − λ so that limr→∞ Cr = ∞ and

sup
b∈Γ#

∣

∣

∣

1
(b−k)2−λ

∣

∣

∣
=

[

inf
b∈Γ#

|(b− k)2 − λ|
]−1

= max
{

max
|b|<r

∣

∣

∣

1
(b−k)2−λ

∣

∣

∣
, 1
Cr

}

<∞

Let R and Rr be the operators on ℓ2(Γ#) of multiplication by 1
(b−k)2−λ

and

1
(b−k)2−λ

{

1 if |b| ≤ r
0 if |b| > r

respectively. Then R is a bounded operator, with norm
[

minb∈Γ# |(b− k)2 − λ|
]−1

, Rr is a

finite rank operator and ‖R−Rr‖ = 1
Cr

converges to zero as r tends to infinity. This proves

that R is compact. As
(

i∇∇∇− k
)2 − λ1l is unitarily equivalent to the multiplication operator

(b− k)2 − λ, its inverse
[

(i∇∇∇− k)2 − λ1l
]−1

is unitarily equivalent to R and is also compact,

with the same operator norm as R.

Now restrict to d < 4. The spectrum of R is
{

1
(b−k)2−λ

∣

∣ b ∈ Γ#
}

and its set

of singular values is
{

1
|(b−k)2−λ|

∣

∣ b ∈ Γ#
}

. To prove that R is Hilbert-Schmidt, we must

prove that
∑

b∈Γ#

∣

∣

∣

1
(b−k)2−λ

∣

∣

∣

2

<∞

Choose any b1, · · · ,bd such that

Γ# =
{

n1b1 + · · ·+ ndbd

∣

∣ n1, · · · , nd ∈ ZZ
}

Let B be the d × d matrix whose (i, j) matrix element is bi · bj. For every nonzero x =

(x1, · · · , xd) ∈ Cd

x ·Bx = |x1b1 + · · ·xdbd|2 > 0

since the bi, 1 ≤ i ≤ d are independent. Consequently, all of the eigenvalues of B are strictly

larger than zero. Let β be the smallest eigenvalue of B. Then

|x1b1 + · · ·xdbd|2 = x ·Bx ≥ β|x|2
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Hence if b = n1b1 + · · ·+ ndbd and n2 =
∣

∣(n1, · · · , nd)
∣

∣

2 ≥ 4
β

(

k2 + |λ|
)

∣

∣(b− k)2 − λ
∣

∣ ≥ 1
2
b2 − k2 − |λ| ≥ β

2
n2 − k2 − |λ| ≥ β

2
n2 − β

4
n2 ≥ β

4
n2

so that

∑

b∈Γ#

∣

∣

∣

1
(b−k)2−λ

∣

∣

∣

2

=
∑

n∈ZZd

∣

∣

∣

1
(n1b1+···+ndbd−k)2−λ

∣

∣

∣

2

≤
∑

n∈ZZd

n2≤ 4
β

(k2+|λ|)

∣

∣

∣

1
(n1b1+···+ndbd−k)2−λ

∣

∣

∣

2

+
∑

n∈ZZd

n2> 4
β

(k2+|λ|)

∣

∣

∣

4
βn2

∣

∣

∣

2

≤ #
{

n ∈ ZZ
d
∣

∣ n2 ≤ 4
β (k

2 + |λ|)
}

max
n∈ZZd

n2≤ 4
β

(k2+|λ|)

∣

∣

∣

1
(n1b1+···+ndbd−k)2−λ

∣

∣

∣

2

+ 16
β2

∑

n∈ZZd

n 6=0

1
|n|4

This is finite because d < 4 and we have assumed that (b− k)2 − λ does not vanish for any

b ∈ Γ#.

Lemma S.8 The following hold for all k ∈ IRd.

a) The operator Hk is self–adjoint on the domain

D =
{

F−1ϕ
∣

∣ ϕ(b), b2ϕ(b) ∈ ℓ2(Γ#)
}

and essentially self–adjoint on the domain

D0 =
{

F−1ϕ
∣

∣ ϕ(b) = 0 for all but finitely many b ∈ Γ#
}

b) If λ is not in the spectrum of Hk, the resolvent
[

Hk − λ1l
]−1

is compact. If d < 4 it is

Hilbert-Schmidt. If Imλ 6= 0 or λ < − supx |V (x)|, then λ is not in the spectrum of Hk.

c) Let R > 0. There is a constant C such that
∥

∥

∥

(

Hk −Hk′

)

1
1−∆

∥

∥

∥
≤ C|k− k′|

for all k,k′ ∈ IRd with |k|, |k′| ≤ R. The constant C depends on V and R, but is otherwise

independent of k and k′.

d) Let R > 0 and λ < − supx |V (x)|. There is a constant C′ such that
∥

∥

∥

[

Hk − λ1l
]−1 −

[

Hk′ − λ1l
]−1

∥

∥

∥
≤ C′|k− k′|
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for all k,k′ ∈ IRd with |k|, |k′| ≤ R. The constant C′ depends on V , λ and R, but is otherwise

independent of k and k′.

e) Let c ∈ Γ# and define Uc to be the multiplication operator eic·x on L2(IRd/Γ). Then Ub

is unitary and

U∗
cHkUc = Hk+c

Proof: a)
(

i∇∇∇− k
)2

is self–adjoint on D and essentially self–adjoint on D0 and V (x) is a

bounded operator on L2
(

IRd/Γ
)

. Apply Lemma S.6.

b) If λ is not in the spectrum of Hk, the resolvent
[

Hk−λ1l
]−1

exists and is bounded. This is

just the definition of “spectrum”. As Hk is self–adjoint, its spectrum is a subset of IR. Now

consider λ < − supx |V (x)|. As
[(

i∇∇∇− k
)2 − λ1l

]−1
is unitarily equivalent to multiplication

by 1
(b−k)2−λ1l ≤ 1

|λ| , it is a bounded operator with norm at most 1
|λ| . As λ < − supx |V (x)|,

[(

i∇∇∇− k
)2 − λ1l

]−1
V has operator norm at most supx |V (x)|/|λ| < 1 and

∥

∥

∥

1

Hk − λ1l

∥

∥

∥
=

∥

∥

∥

1

1l + 1
(i∇∇∇−k)2−λ1lV

1
(

i∇∇∇− k
)2 − λ1l

∥

∥

∥
≤ 1

1− sup
x
|V (x)|
|λ|

1

|λ| =
1

|λ| − supx |V (x)|

Hence the spectrum of Hk is a subset of [− supx |V (x)|,∞).

By the resolvent identity

[

Hk − λ1l
]−1

=
[(

i∇∇∇− k
)2

+ 1l
]−1 −

[

Hk − λ1l
]−1

[V − (1 + λ)1l)]
[(

i∇∇∇− k
)2

+ 1l
]−1

=
{

1l−
[

Hk − λ1l
]−1

[V − (1 + λ)1l)]
}

[(

i∇∇∇− k
)2

+ 1l
]−1

The left factor
{

1l−
[

Hk −λ1l
]−1

[V − (1+λ)1l)]
}

is a bounded operator and, by Lemma S.7,

the right factor
[(

i∇∇∇− k
)2

+ 1l
]−1

is compact (Hilbert-Schmidt for d < 4), so the product is

compact (Hilbert-Schmidt for d < 4).

c) First observe that, by Problem S.6 below, 1
1l−∆

maps all of L2(IRd/Γ) into D so that

Hk
1

1−∆ and Hk′
1

1−∆ are both defined on all of L2
(

IRd/Γ
)

. Expanding gives

(

Hk −Hk′

)

1
1−∆ =

[(

i∇∇∇− k
)2 −

(

i∇∇∇− k′
)2] 1

1−∆ =
[

− 2i(k− k′) · ∇∇∇+ k2 − k′2
]

1
1−∆

Hence F
(

Hk −Hk′

)

1
1−∆F−1 is the multiplication operator

2(k−k′)·b+k2−k′2

1+b2 = (k− k′) · 2b+k+k′

1+b2

The claim then follows from
∣

∣

∣

2b+k+k′

1+b2

∣

∣

∣
≤ 2|b|+2R

1+b2 ≤ 1+b2+2R
1+b2 ≤ 1 + 2R
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d) By the resolvent identity

1

Hk − λ1l
− 1

Hk′ − λ1l
=

1

Hk − λ1l

[

Hk′ −Hk

] 1

Hk′ − λ1l

=
1

Hk − λ1l

[

Hk′ −Hk

] 1

1−∆

1−∆

(i∇∇∇− k′)2 − λ1l

1

1l + V 1
(i∇∇∇−k′)2−λ1l

By part c and the bound on the resolvent in part b,
∥

∥

∥

1
Hk−λ1l − 1

H
k′−λ1l

∥

∥

∥
≤ 1

|λ|−sup
x
|V (x)|C|k− k′|

∥

∥

∥

1−∆
(i∇∇∇−k′)2−λ1l

∥

∥

∥

|λ|
|λ|−sup

x
|V (x)|

As 1−∆
(i∇∇∇−k′)2−λ1l

is unitarily equivalent to multiplication by 1+b2

(b−k′)2−λ
,
∥

∥

1−∆
(i∇∇∇−k′)2−λ1l

∥

∥ is

bounded uniformly on |k′| < R.

e) Since multiplication operators commute, U∗
cV Uc = U∗

cUcV = V and the claim follows

immediately from Problem S.5, below.

Problem S.5 Let c ∈ Γ# and Uc be the multiplication operator eic·x on L2(IRd/Γ). Let F
be the Fourier transform operator of (S.3).

a) Fill in the formulae
(

FUcF−1ϕ
)

(b) = ϕ(b )
(

FU∗
cF−1ϕ

)

(b) = ϕ(b )

b) Prove that Uc and U∗
c both leave the domain D invariant.

c) Prove that

U∗
c

(

i∇∇∇− k
)2
Uc =

(

i∇∇∇− k− c
)2

Problem S.6 Prove that 1
1l−∆ maps all of L2(IRd/Γ) into D.

§IV The spectrum of H

We have just proven that the spectrum of the operator Hk (acting on L2(IRd/Γ))

is contained in the half of the real line to the right of − supx |V (x)|. We have also just

proven that the resolvent of Hk is compact. Hence the spectrum of
[

Hk − λ1l
]−1

(for any

fixed suitable λ) is a sequence of eigenvalues converging to zero, so that the spectrum of Hk

consists of a sequence of eigenvalues converging to +∞. Denote the eigenvalues of Hk by

e1(k) ≤ e2(k) ≤ e3(k) ≤ · · ·
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Proposition S.9

a) For each n, en(k) is continuous in k and periodic with respect to Γ#.

b) limn→∞ en(k) = ∞, with the limit uniform in k.

c) Denote by Vd the volume of a sphere of radius one in IRd. Let b1, · · · ,bd be any set of

generators for Γ# and B =
{

∑d
j=1 tjbj

∣

∣ − 1
2
≤ tj <

1
2
for all 1 ≤ j ≤ d

}

be the

parallelepiped, centered on the origin, with the bj’s as edges. Denote by D the diameter of

B. For each k ∈ IRd and each R > 0

#
{

n ∈ IN
∣

∣ en(k) < R
}

≤ Vd
|Γ#|

(
√

R+ ‖V ‖+ 1
2D

)d
= Vd

|Γ#|
Rd/2 +O

(

R
d−1
2

)

For each k ∈ IRd and each R > 1
4D

2 + ‖V ‖

#
{

n ∈ IN
∣

∣ en(k) < R
}

≥ Vd
|Γ#|

(

√

R− ‖V ‖ − 1
2D

)d
= Vd

|Γ#|
Rd/2 +O

(

R
d−1
2

)

This more detailed result concerning the rate at which en(k) tends to infinity with n is not

used in these notes and so may be safely skipped.

Proof: b) Denote, in increasing order, the eigenvalues of
(

i∇∇∇− k
)2

ê1(k) ≤ ê2(k) ≤ ê3(k) ≤ · · ·

Each ên(k) is (b − k)2, for some b ∈ Γ#. Furthermore, by Lemma S.7, the spectrum of
(

i∇∇∇−k
)2

is periodic in k, so that each ên(k) is periodic in k. We have already observed that

(b− k)2 ≥ 1
2b

2 − k2, so that, as n tends to infinity, ên(k) tends to infinity, uniformly in k.

By the min-max principle

en(k) = sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈ψ,Hkψ〉

= sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

(

〈

ψ, (b− k)2ψ
〉

+ 〈ψ, V ψ〉
)

ên(k) = sup
ϕ1,···,ϕn−1

inf
ψ∈D, ‖ψ‖=1
ψ⊥ϕ1,···,ϕn−1

〈

ψ, (b− k)2ψ
〉

For any unit vector ψ,
∣

∣ 〈ψ, V ψ〉
∣

∣ ≤ supx |V (x)|, so
∣

∣en(k)− ên(k)
∣

∣ ≤ sup
x

|V (x)|
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and, as n tends to infinity, en(k) tends to infinity, uniformly in k.

a) Fix any λ < − supx |V (x)|. Denote, in increasing order, the eigenvalues of −[Hk − λ1l]−1

ẽ1(k) ≤ ẽ2(k) ≤ ẽ3(k) ≤ · · ·

As
(

ϕ, [Hk − λ1l]ϕ
)

=
(

ϕ,
(

i∇∇∇− k
)2
ϕ
)

+
(

ϕ, [V − λ1l]ϕ
)

≥
∫

IRd/Γ

[V (x)− λ]
∣

∣ϕ(x)
∣

∣

2
dx

≥
[

|λ| − sup
x

|V (x)|
](

ϕ, ϕ
)

for all ϕ ∈ D, ẽn(k) < 0 and

en(k) = − 1
ẽn(k)

+ λ

for all n. Pick any R > 0. By Lemma S.8.d, for all unit vectors ϕ and all k,k′ with

|k|, |k′| < R,
∣

∣

∣

〈

ϕ,
[

1
Hk−λ1l − 1

H
k′−λ1l

]

ϕ
〉
∣

∣

∣
≤ C′|k− k′|

Consequently, by the min-max principle, applied to A = − 1
Hk−λ1l and B = − 1

H
k′−λ1l

∣

∣ẽn(k)− ẽn(k
′)
∣

∣ ≤ C′|k− k′|

Hence, each ẽn(k), and consequently each en(k), is continuous.

c) By Lemma S.7, the spectrum of
(

i∇∇∇ − k
)2

is
{

(b − k)2
∣

∣ b ∈ Γ#
}

. Label these

eigenvalues, in order, f1(k) ≤ f2(k) ≤ f3(k) ≤ · · ·. Observe that Hk and
(

i∇∇∇ − k
)2

both

have domain D and that, for every ϕ ∈ D,
∣

∣

∣

〈

ϕ,
[

Hk −
(

i∇∇∇− k
)2]

ϕ
〉
∣

∣

∣
=

∣

∣ 〈ϕ, V ϕ〉
∣

∣ ≤ ‖V ‖ ‖ϕ‖2

Hence, by the min-max principle,

∣

∣en(k) − fn(k)
∣

∣ ≤ ‖V ‖

for all n and k so that, for all R > 0,

#
{

n ∈ IN
∣

∣ en(k) < R
}

≤ #
{

n ∈ IN
∣

∣ fn(k) < R+ ‖V ‖
}

#
{

n ∈ IN
∣

∣ fn(k) < R
}

≤ #
{

n ∈ IN
∣

∣ en(k) < R+ ‖V ‖
}

(S.4)

Let b + B be the half open parallelepiped, centered on b, with edges parallel to the bj ’s.

Then
{

b+B
∣

∣ b ∈ Γ#
}

is a paving of IRd. This means that (b+B) ∩ (b′ +B) = ∅ unless

b = b′ and every point in IRd is in some b+B. So, for each r > 0

#
{

n ∈ IN
∣

∣ fn(k) < r
}

= #
{

b ∈ Γ#
∣

∣ |b− k| <
√
r
}

= 1
|Γ#|

Volume
(

∪b∈Sr b+B
) (S.5)
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where Sr =
{

b ∈ Γ#
∣

∣ |b− k| < √
r
}

.

Every point of b+B lies within distance of 1
2
D of b, so every point of ∪b∈Srb+B

lies within a distance
√
r + 1

2D of k. On the other hand, if p ∈ IRd lies within a distance
√
r − 1

2D of k, then p lies in precisely one b+B and that b obeys |p− b| ≤ 1
2D and hence

|b− k| ≤ √
r − 1

2D + 1
2D ≤ √

r. Thus

Vd
(√
r − 1

2D
)d ≤ Volume

(

∪b∈Sr b+B
)

≤ Vd
(√
r + 1

2D
)d

(S.6)

Subbing (S.6) in (S.5) gives

Vd
|Γ#|

(√
r − 1

2D
)d ≤ #

{

n ∈ IN
∣

∣ fn(k) < r
}

≤ Vd
|Γ#|

(√
r + 1

2D
)d

and subbing this into (S.4) gives the desired bounds.

Problem S.7 Let b1, · · · ,bd be any set of generators for Γ# and

B =
{

d
∑

j=1

tjbj

∣

∣ − 1
2
≤ tj <

1
2
for all 1 ≤ j ≤ d

}

Prove that
{

b+B
∣

∣ b ∈ Γ#
}

is a paving of IRd.

Theorem S.10 Let V be a C∞ function of IRd that is periodic with respect to the lattice Γ

and H =
(

i∇∇∇
)2

+ V (x) the self–adjoint operator of Theorem S.5. The spectrum of H is

{

en(k)
∣

∣ k ∈ IRd/Γ#, n ∈ IN
}

Proof: Denote by ΣH the spectrum of H and by

S =
{

en(k)
∣

∣ k ∈ IRd/Γ#, n ∈ IN
}

the set of all eigenvalues of all the Hk’s.

Proof that S ⊂ ΣH : Fix any p ∈ IRd and any n ∈ IN. We shall construct, for each ε > 0,

a vector ψε ∈ S
(

IRd/Γ# × IRd/Γ
)

obeying

∥

∥

(

ũHu− en(p)1l
)

ψε

∥

∥ ≤ ε‖ψ‖
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This will prove that
[

ũHu − en(p)1l
]−1

and hence
[

H − en(p)1l
]−1

cannot be a bounded

operator with norm at most 1
ε
, for any ε > 0; hence that

[

H − en(p)1l
]−1

cannot be a

bounded operator and hence that en(p) ∈ ΣH .

By hypothesis, en(p) is an eigenvalue of Hp. So there is a nonzero vector ϕ̃(x) ∈ D
such that

[

Hp − en(p)
]

ϕ̃ = 0. As Hp is essentially self–adjoint on D0, there is a sequence of

functions ϕm(x) ∈ D0 obeying

lim
m→∞

ϕm = ϕ̃ lim
m→∞

Hpϕm = Hpϕ̃

=⇒ lim
m→∞

‖ϕm‖ = ‖ϕ̃‖ 6= 0 lim
m→∞

∥

∥

(

Hp − en(p)1l
)

ϕm

∥

∥ = 0

Hence there is a member of that sequence, call it ϕε(x), for which

∥

∥

(

Hp − en(p)1l
)

ϕε

∥

∥ ≤ ε
2‖ϕε‖

Let f(k) be any nonnegative C∞ function that is supported in
{

k ∈ IRd
∣

∣ |k| < 1
}

and whose square has integral one. Define, for each δ > 0,

fδ(k) =
1

δd/2
f(k

δ
)

Observe that fδ(k) is a nonnegative C∞ function that is supported in
{

k ∈ IRd
∣

∣ |k| < δ
}

and whose square has integral one. Set

ψε(k,x) =
∑

c∈Γ#

eic·xfδε(k− p+ c)ϕε(x)

We shall choose δε later. The function ψε(k,x) is in S
(

IRd/Γ# × IRd/Γ
)

because

• the term fδε(k − p + c)ϕε(x) vanishes unless k is within a distance δε of p − c.

Hence ψε vanishes unless k ∈ Bδε(p − c), the ball of radius δε centered on p − c,

for some c ∈ Γ#. There is a nonzero lower bound on the distance between points of

Γ#. We will choose δε to be strictly smaller than half that lower bound. Then the

balls Bδε(p − c), c ∈ Γ# are disjoint. For k outside their union ψε(k,x) vanishes.

For k in Bδε(p − c0) the only term in the sum that does not vanish is that with

c = c0. Consequently ψε(k,x) is C
∞.

Bδε(p− c)

k
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• ψε(k,x) is periodic in x with respect to Γ because ϕε(x) is.

•
ψε(k+ b,x) =

∑

c∈Γ#

eic·xfδε(k+ b− p+ c)ϕε(x)

=
∑

c′∈Γ#

ei(c
′−b)·xfδε(k− p+ c′)ϕε(x)

= e−ib·xψε(k,x)

so ψε(k,x) has the required “twisted” periodicity in k.

The square of the norm

∥

∥

(

ũHu− en(p)1l
)

ψε

∥

∥

2
= 1

|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx
∣

∣

(

(ũHu− en(p)1l)ψε

)

(k,x)
∣

∣

2

By Problem L.4 of the notes “Lattices and Periodic Functions”, we may choose

p+B = p+
{

d
∑

j=1
tjbj

∣

∣ − 1
2 ≤ tj <

1
2 for all 1 ≤ j ≤ d

}

as the domain of integration in k. This domain contains the ball Bδε(p− c) with c = 0 and

does not intersect Bδε(p− c) for any c ∈ Γ# \ {0} (again assuming that δε has been chosen

p+B

sufficiently small). On p+B, ψε(k,x) = fδε(k− p)ϕε(x) and

(

(ũHu− en(p)1l)ψε

)

(k,x) = fδε(k− p)
(

Hk − en(p)1l)ϕε)(x)

so that
∥

∥

(

ũHu− en(p)1l
)

ψε

∥

∥

2
= 1

|Γ#|

∫

dk

∫

IRd/Γ

dx fδε(k− p)2
∣

∣

(

Hk − en(p)1l)ϕε)(x)
∣

∣

2

= 1
|Γ#|

∫

dk fδε(k− p)2
∥

∥

(

Hk − en(p)1l)ϕε

∥

∥

2

L2(IRd/Γ,dx)

The norm

‖
(

Hk − en(p)1l)ϕε

∥

∥ ≤ ‖
(

Hp − en(p)1l)ϕε

∥

∥+ ‖
(

Hk −Hp)ϕε

∥

∥

≤ ε
2
‖ϕε

∥

∥+ ‖
(

Hk −Hp)
1

1l−∆

∥

∥ ‖(1l−∆)ϕε‖
≤ ε

2‖ϕε

∥

∥+ C|k− p| ‖(1l−∆)ϕε‖
≤ ε

2‖ϕε

∥

∥+ Cδε ‖(1l−∆)ϕε‖
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for k in the support of fδε(k− p). Now choose

δε = ε
2C

‖ϕε‖
max{1,‖(1l−∆)ϕε‖}

With this choice of δε, ‖
(

Hk − en(p)1l)ϕε

∥

∥

L2(IRd/Γ,dx)
≤ ε‖ϕε

∥

∥

L2(IRd/Γ,dx)
so that

∥

∥

(

ũHu− en(p)1l
)

ψε

∥

∥

2 ≤ ε2

|Γ#|

∫

dk fδε(k− p)2‖ϕε‖2L2(IRd/Γ,dx) = ε2‖ψε‖2

as desired.

Proof that ΣH ⊂ S: Fix any λ /∈ S. We must show that λ /∈ ΣH . As, for each fixed n,

en(k) is periodic and continuous in k,

inf
k

∣

∣en(k)− λ
∣

∣ > 0

By Lemma S.9.b,

lim
n→∞

inf
k
en(k) = ∞

Hence

D = inf
k∈IRd

n∈IN

∣

∣en(k)− λ
∣

∣ > 0

By the spectral theorem

∥

∥

(

Hk − λ1l)ϕ
∥

∥

L2(IRd/Γ,dx)
≥ D

∥

∥ϕ
∥

∥

L2(IRd/Γ,dx)

for all ϕ in the domain, D, of Hk and in particular for all ϕ ∈ C∞
(

IRd/Γ
)

. Consequently, for

all ψ(k,x) ∈ S
(

IRd/Γ# × IRd/Γ
)

∥

∥

(

ũHu− λ1l
)

ψ
∥

∥

2
= 1

|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx
∣

∣

(

(ũHu− λ1l)ψ
)

(k,x)
∣

∣

2

= 1
|Γ#|

∫

IRd/Γ#

dk

∫

IRd/Γ

dx
∣

∣

(

(Hk − λ1l)ψ
)

(k,x)
∣

∣

2

= 1
|Γ#|

∫

IRd/Γ#

dk
∥

∥(Hk − λ1l)ψ(k, · )
∥

∥

2

L2(IRd/Γ,dx)

≥ D2

|Γ#|

∫

IRd/Γ#

dk
∥

∥ψ(k, · )
∥

∥

2

L2(IRd/Γ,dx)

= D2‖ψ‖2

Recall that u is a unitary map from S
(

IRd/Γ# × IRd/Γ
)

onto S(IRd). Hence

∥

∥(H − λ1l)f
∥

∥ ≥ D‖f‖ (S.7)

for all f ∈ S(IRd). By Theorem S.5, H is essentially self–adjoint on S(IRd), so (S.7) applies

for all f in the domain of H and
[

H − λ1l
]−1

is a bounded operator with norm at most 1
D .

Hence λ is not in the spectrum of H.

c© Joel Feldman. 2000. All rights reserved. 21



§V A Nontrivial Example – the Lamé Equation

Fix two real numbers β, γ > 0. The Weierstrass function with primitive periods γ

and iβ is the function ℘ : C → C defined by

℘(z) =
1

z2
+

∑

ω∈γZZ⊕iβZZ
ω 6=0

1

(z − ω)2
− 1

ω2

It is an elliptic function, which means that it is a meromorphic function that is doubly

periodic. It is analytic everywhere except for a double pole at each point of γZZ ⊕ iβZZ and

it has periods γ and iβ. The Weierstrass function is discussed in the notes “An Elliptic

Function – The Weierstrass Function”. The labels “W.*” refer to those notes. Two functions

closely related to ℘ are

σ(z) = z
∏

ω∈γZZ⊕iβZZ
ω 6=0

(

1− z
ω

)

e
z
ω+ 1

2
z2

ω2

ζ(z) = σ′(z)
σ(z) = 1

z +
∑

ω∈γZZ⊕iβZZ
ω 6=0

1
z−ω + 1

ω + z
ω2

As ζ ′(z) = −℘(z), ζ is an antiderivative of −℘ and consequently is, except for some constants

of integration, periodic too. Similarly, σ is the exponential of an antiderivative of ζ and it is

not hard to determine how σ(z + γ) and σ(z + iβ) are related to σ(z).

Lemma W.4 There are constants η1 ∈ IR and η2 ∈ iIR satisfying

η1iβ − η2γ = 2πi

such that
ζ(z + γ) = ζ(z) + η1 ζ(z + iβ) = ζ(z) + η2

σ(z + γ) = −σ(z) eη1(z+
γ
2 ) σ(z + iβ) = −σ(z) eη2(z+i β2 )

Now set, for z ∈ C \
(

γZZ⊕ iβZZ
)

,

ϕ(z, x) = eζ(z)x
σ
(

z − x− iβ
2

)

σ
(

x+ iβ2
)

λ(z) = −℘(z)
k(z) = −i

(

ζ(z) − z η1

γ

)

ξ(z) = eγik(z) = eγζ(z)−zη1
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Lemma S.11

a)

ϕ(z, x+ γ) = ξ(z) ϕ(z, x)

b)

−d2

dx2ϕ(z, x) + 2℘
(

x+ iβ
2

)

ϕ(z, x) = λ(z)ϕ(z, x)

c)

ξ(z + γ) = ξ(z) ξ(z + iβ) = ξ(z)

Proof: a) By Problem W.3.d and Lemma W.4

ϕ(z, x+ γ) = eζ(z)(x+γ) σ
(

z − x− γ − iβ2
)

σ
(

x+ γ + iβ2
)

= −eζ(z)(x+γ) σ
(

− z + x+ γ + iβ
2

)

σ
(

x+ γ + iβ2
)

= −eζ(z)(x+γ) σ
(

− z + x+ iβ2
)

eη1(−z+x+i β2 +
γ
2 )

σ
(

x+ iβ2
)

eη1(x+i β2 + γ
2 )

= eζ(z)(x+γ)e−η1z
σ
(

z − x− iβ
2

)

σ
(

x+ iβ2
)

= eζ(z)γ−η1z ϕ(z, x)

b) First observe that, since

d

dx

σ
(

z − x− iβ2
)

σ
(

x+ iβ
2

) = −
[

σ′
(

z − x− iβ2
)

σ
(

z − x− iβ
2

) +
σ′
(

x+ iβ2
)

σ
(

x+ iβ
2

)

]

σ
(

z − x− iβ2
)

σ
(

x+ iβ
2

)

= −
[

ζ
(

z − x− iβ2
)

+ ζ
(

x+ iβ2
)

]σ
(

z − x− iβ2
)

σ
(

x+ iβ
2

)

we have

d
dx
ϕ(z, x) =

(

ζ(z)− ζ
(

z − x− iβ
2

)

− ζ
(

x+ iβ
2

)

)

ϕ(z, x)
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Differentiate again

d2

dx2ϕ(z, x) =
(

ζ ′
(

z − x− iβ2
)

− ζ ′
(

x+ iβ2
)

)

ϕ(z, x)

+
[

ζ(z)− ζ
(

z − x− iβ2
)

− ζ
(

x+ iβ2
)]2

ϕ(z, x)

= −
(

℘
(

z − x− iβ2
)

− ℘
(

x+ iβ2
)

)

ϕ(z, x)

+
[

ζ(z)− ζ
(

z − x− iβ
2

)

− ζ
(

x+ iβ
2

)]2
ϕ(z, x)

Lemma W.5 says that

[

ζ(u+ v)− ζ(u)− ζ(v)
]2

= ℘(u+ v) + ℘(u) + ℘(v)

for all u, v ∈ C such that none of u, v, u + v are in γZZ ⊕ iβZZ (basically because, for each

fixed v ∈ C \ (γZZ ⊕ iβZZ), both the left and right hand sides are periodic and have double

poles, with the same singular part, at each u ∈ γZZ⊕ iβZZ and each u ∈ −v+ γZZ⊕ iβZZ). By

this Lemma,

d2

dx2ϕ(z, x) = −
(

℘
(

z − x− iβ2
)

− ℘
(

x+ iβ2
)

)

ϕ(z, x)

+
(

℘(z) + ℘
(

z − x− iβ
2

)

+ ℘
(

x+ iβ
2

)

)

ϕ(z, x)

=
(

℘(z) + 2℘
(

x+ iβ
2

)

)

ϕ(z, x)

c) By Lemma W.4,

ξ(z + γ) = eγζ(z+γ)−(z+γ)η1 ξ(z + iβ) = eγζ(z+iβ)−(z+iβ)η1

= eγζ(z)−zη1 = eγη2−iβη1eγζ(z)−zη1

= ξ(z) = ξ(z)

Set Γ = γZZ and
V (x) = 2℘(x+ iβ2 )

H =
(

id
dx

)2
+ V (x)

By ProblemW.1, parts (b), (c) and (f), V ∈ C∞(IR/Γ) and is real valued. The Lamé equation

is

−d2

dx2 φ+ 2℘(x+ iβ2 )φ = λφ i.e. Hφ = λφ (S.8)

A solution φ(k, x) of (S.8) that satisfies

φ(k, x+ γ) = eiγkφ(k, x) (S.9)

c© Joel Feldman. 2000. All rights reserved. 24



is called a Bloch solution with energy λ and quasimomentum k.

Lemma S.11 says that, for each z ∈ C \
(

γZZ⊕ iβZZ
)

, ϕ(z, x) is a Bloch solution of

the Lamé equation with energy λ = λ(z) and quasimomentum k = k(z). I claim that the

energy λ and multiplier ξ = eγik are fully parameterized by

λ(z) = −℘(z) ξ(z) = eγζ(z)−zη1

That is, the boundary value problem (S.8), (S.9) has a nontrivial solution if and only if

(λ, eiγk) = (λ(z), ξ(z)), for some z ∈ C \
(

γZZ ⊕ iβZZ
)

. The only if implication follows

from the observation, which is an immediate consequence of Lemma S.12 below, that unless

2z ∈ γZZ⊕ iβZZ the functions ϕ(z, x) and ϕ(−z, x) are linearly independent solutions of (S.8)

for λ(z) = λ(−z). As a second order ordinary differential equation, (S.8) only has two linearly

independent solutions for each fixed value of λ. For z ∈ γZZ ⊕ iβZZ, λ(z) is not finite. For

2z ∈ γZZ ⊕ iβZZ with z /∈ γZZ ⊕ iβZZ, λ′(z) = 0, by Corollary W.3, and the second linearly

independent solution is ∂
∂z
ϕ(z, x).

Lemma S.12

a) Let z1, z2 ∈ C \
(

γZZ⊕ iβZZ
)

. If z1 − z2 /∈ γZZ⊕ iβZZ, then ϕ(z1, x) and ϕ(z2, x) are linearly

independent (as functions of x).

b) If z ∈ C \
(

γZZ⊕ iβZZ
)

, then ϕ(z, x) and ∂
∂zϕ(z, x) are linearly independent (as functions

of x).

Proof: a) If ϕ(z1, x) and ϕ(z2, x) were linearly dependent, there would exist a, b ∈ C, not

both zero, such that aϕ(z1, x) + bϕ(z2, x) = 0 for all x ∈ IR. But

ϕ(z1, x) = eζ(z1)x
σ
(

z1 − x− iβ
2

)

σ
(

x+ iβ2
) and ϕ(z2, x) = eζ(z2)x

σ
(

z2 − x− iβ
2

)

σ
(

x+ iβ2
)

have analytic continuations to x ∈ C \
(

− iβ2 + γZZ ⊕ iβZZ
)

. These analytic continuations

must obey aϕ(z1, x) + bϕ(z2, x) = 0 for all x ∈ C \
(

− iβ
2
+ γZZ ⊕ iβZZ

)

. In particular, the

zero set of ϕ(z1, x), which is z1 − iβ2 + γZZ⊕ iβZZ, must coincide with the zero set of ϕ(z2, x),

which is z2 − iβ2 + γZZ⊕ iβZZ. This is the case if and only if z1 − z2 ∈ γZZ⊕ iβZZ.

b) Fix any z ∈ C \
(

γZZ⊕ iβZZ
)

. As

∂ϕ

∂z
= xζ ′(x)ϕ(z, x) + eζ(z)x

σ′
(

z − x− iβ2
)

σ
(

x+ iβ2
)

and σ has only simple zeroes, the zero set of ∂ϕ
∂z cannot coincide with that of ϕ.
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Theorem S.13 Set

Λ1 = −℘(γ
2
) Λ2 = −℘(γ

2
+ iβ

2
) Λ3 = −℘(iβ

2
)

Then Λ1,Λ2,Λ3 are real, Λ1 < Λ2 < Λ3 and the spectrum of H is [Λ1,Λ2] ∪ [Λ3,∞).

Proof: If, for given values of λ and k, the boundary value problem (S.8), (S.9) has a

nontrivial solution and if k is real then λ is in the spectrum of H. We know that all such

λ’s are also real.

Imagine walking along the path in the z–plane that follows the four line segments

from 0 to γ
2
to γ

2
+ iβ

2
to iβ

2
and back to 0. As ℘(z) = ℘(z̄), ℘(−z) = ℘(z) and ℘(z − γ) =

℘(z − iβ) = ℘(z) (this is part of Problem W.1.f), λ(z) = −℘(z) remains real throughout the

entire excursion. Near z = 0,

λ(z) = −℘(z) ≈ − 1
z2

so λ starts out near −∞ at the beginning of the walk and moves continuously to +∞ at the

end of the walk. Furthermore, by Corollary W.3, which states, in part,

℘(z) = ℘(z′) if and only if z − z′ ∈ γZZ⊕ iβZZ or z + z′ ∈ γZZ⊕ iβZZ.

λ never takes the same value twice on the walk, because no two distinct points z, z′ on the

walk obey z + z′ ∈ γZZ⊕ iβZZ or z − z′ ∈ γZZ⊕ iβZZ.

• On the first quarter of the walk, from z = 0 to z = γ
2 , λ(z) increases from −∞ to

Λ1 = −℘(γ
2
). But we cannot put these λ’s into the spectrum of H because, by Problem

W.5.e, k(z) is pure imaginary on this part of the walk. You might worry that k(z) might

happen to be exactly zero at some points of this first quarter of the walk. This could only

happen at isolated points, because k(z) is a nonconstant analytic function. If this were

to happen, the Lamé Schrödinger operator would have an isolated eigenvalue of finite

multiplicity. We have already seen that no periodic Schrödinger operator can have such

eigenvalues.
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• On the second quarter of the walk, from z = γ
2 to z = γ

2 + iβ2 , λ(z) increases from Λ1 to

Λ2 = −℘(γ2 + iβ2 ). By Problem W.5.d, k(z) is pure real on this part of the walk, so these

λ’s are in the spectrum of H.

• On the third quarter of the walk, from z = γ
2 + iβ2 to z = iβ2 , λ(z) increases from Λ2 to

Λ3 = −℘(iβ
2
). By Problem W.5.e, these λ’s do not go into the spectrum of H.

• On the last quarter of the walk, from z = iβ2 back to zero, λ(z) increases from Λ3 to +∞.

By Problem W.5.d, these λ’s are in the spectrum of H.

For more information on the Lamè equation, see

Edward Lindsay Ince, Ordinary Differential Equations, Dover Publications,

1956, section 15.62.

Edmund Taylor Whittaker and George Neville Watson, A Course of Modern

Analysis, chapter XXIII.
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