Lattices and Periodic Functions

Definition L. 1 Let $f(\mathbf{x})$ be a function on \mathbb{R}^{d}.
a) The vector $\gamma \in \mathbb{R}^{d}$ is said to be a period for f if

$$
f(\mathbf{x}+\gamma)=f(\mathbf{x}) \quad \text { for all } \mathbf{x} \in \mathbb{R}^{d}
$$

b) Set

$$
\mathcal{P}_{f}=\left\{\gamma \in \mathbb{R}^{d} \mid \gamma \text { is a period for } f\right\}
$$

If $\boldsymbol{\gamma}, \boldsymbol{\gamma}^{\prime} \in \mathcal{P}_{f}$ then $\boldsymbol{\gamma}+\boldsymbol{\gamma}^{\prime} \in \mathcal{P}_{f}$ and if $\boldsymbol{\gamma} \in \mathcal{P}_{f}$ then $-\boldsymbol{\gamma} \in \mathcal{P}_{f}(\operatorname{sub} \mathbf{x}=\mathbf{z}-\boldsymbol{\gamma}$ into $f(\mathbf{x}+\boldsymbol{\gamma})=f(\mathbf{x}))$. Furthermore, the zero vector $\mathbf{0} \in \mathbb{R}^{d}$ is always in \mathcal{P}_{f}. Thus \mathcal{P}_{f} is a (commutative) group under addition and

$$
\boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{p} \in \mathcal{P}_{f} \Rightarrow n_{1} \boldsymbol{\gamma}_{1}+\cdots+n_{p} \boldsymbol{\gamma}_{p} \in \mathcal{P}_{f} \quad \text { for all } p \in \mathbb{N} \text { and } n_{1}, \cdots, n_{p} \in \mathbb{Z}
$$

Example L. 2

a) If $f(x, y)=\sin \left(\frac{2 \pi x}{\ell_{1}}\right) \cos \left(\frac{2 \pi y}{\ell_{2}}\right)$, then $\mathcal{P}_{f}=\left\{\left(m \ell_{1}, n \ell_{2}\right) \mid m, n \in \mathbb{Z}\right\}$.
b) If $f(x, y)=\sin \left(\frac{2 \pi x}{\ell_{1}}\right)$, then $\mathcal{P}_{f}=\left\{\left(m \ell_{1}, y\right) \mid m \in \mathbb{Z}, y \in \mathbb{R}\right\}$.
c) If $f(x, y)=\sin \left(\frac{2 \pi x}{\ell_{1}}\right) \sinh y$, then $\mathcal{P}_{f}=\left\{\left(m \ell_{1}, 0\right) \mid m \in \mathbb{Z}\right\}$.

To exclude functions, as in Example L.2.b, that are constant in some direction, it suffices to require that $\mathbf{0}$ be an isolated point of \mathcal{P}_{f}. That is, to require that there be a number $r>0$ such that every nonzero $\gamma \in \mathcal{P}_{f}$ obeys $|\gamma| \geq r$.

Proposition L. 3 If \mathcal{P} is an additive subgroup of \mathbb{R}^{d} and $\mathbf{0}$ is an isolated point of \mathcal{P}, then there are $d^{\prime} \leq d$ and independent vectors $\gamma_{1}, \cdots, \gamma_{d^{\prime}} \in \mathbb{R}^{d}$ such that

$$
\mathcal{P}=\left\{n_{1} \boldsymbol{\gamma}_{1}+\cdots+n_{d^{\prime}} \boldsymbol{\gamma}_{d^{\prime}} \mid n_{1}, \cdots, n_{d^{\prime}} \in \mathbb{Z}\right\}
$$

Proof:

Claim 1. \mathcal{P} has a shortest nonzero element.

Proof of Claim 1: Define $r=\inf \{|\gamma| \mid \gamma \in \mathcal{P}, \gamma \neq \mathbf{0}\}$. If there were no shortest element, there would be a sequence of vectors $\beta_{1}, \beta_{2} \cdots$ in \mathcal{P} with $\lim _{i \rightarrow \infty}\left|\beta_{i}\right|=r$ and $r<\left|\beta_{i}\right| \leq 2 r$ for every $i=1,2, \cdots$. Because the closed ball of radius $2 r$ is compact, the sequence has a limit point and hence has a Cauchy subsequence. In particular, there are $\boldsymbol{\beta}_{i}$ and $\boldsymbol{\beta}_{j}$ in the sequence, with $\boldsymbol{\beta}_{i} \neq \boldsymbol{\beta}_{j}$ with $\left|\beta_{i}-\boldsymbol{\beta}_{j}\right|<\frac{r}{2}$. But this is impossible, because $\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}$ would be a nonzero element of \mathcal{P} with length smaller than r.

Claim 2. Let $\boldsymbol{\gamma}_{1}$ be a shortest nonzero element of \mathcal{P} and set $\mathcal{P}_{1}=\left\{\boldsymbol{\gamma} \in \mathcal{P} \mid \boldsymbol{\gamma} \| \boldsymbol{\gamma}_{1}\right\}$. Then $\mathcal{P}_{1}=\left\{n \gamma_{1} \mid n \in \mathbb{Z}\right\}$.

Proof of Claim 2: If $x \boldsymbol{\gamma}_{1} \in \mathcal{P}$ with x not an integer, then $(x-[x]) \boldsymbol{\gamma}_{1}$ (where [•] denotes integer part) is a nonzero element of \mathcal{P} with length strictly smaller than the length of $\boldsymbol{\gamma}_{1}$.

If $\mathcal{P}=\mathcal{P}_{1}$, we have finished. Otherwise continue with
Claim 3. Denote by \mathbb{P}_{1} orthogonal projection in \mathbb{R}^{d} onto the line $\left\{x \boldsymbol{\gamma}_{1} \mid x \in \mathbb{R}\right\}$ and by $\mathbb{P}_{1}^{\perp}=\mathbb{1}-\mathbb{P}_{1}$ orthogonal projection perpendicular to the line $\left\{x \gamma_{1} \mid x \in \mathbb{R}\right\}$. Then $\mathcal{P} \backslash \mathcal{P}_{1}$ has an element whose distance from the line $\left\{x \gamma_{1} \mid x \in \mathbb{R}\right\}$ is a minimum, i.e. that minimizes $\left|\mathbb{P}_{1}^{\perp} \gamma\right|$.

Proof of Claim 3: Define $r_{1}=\inf \left\{\left|\mathbb{P}_{1}^{\perp} \boldsymbol{\gamma}\right| \mid \gamma \in \mathcal{P} \backslash \mathcal{P}_{1}\right\}$. If there were no minimizing element, there would be a sequence of vectors $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \cdots$ in \mathcal{P} with

$$
2 r_{1} \geq\left|\mathbb{P}_{1}^{\perp} \boldsymbol{\beta}_{1}\right|>\left|\mathbb{P}_{1}^{\perp} \boldsymbol{\beta}_{2}\right|>\left|\mathbb{P}_{1}^{\perp} \beta_{3}\right|>\cdots>r_{1}
$$

Because $\left|\mathbb{P}_{1}^{\perp} \boldsymbol{\beta}_{i}\right|=\left|\mathbb{P}_{1}^{\perp}\left(\boldsymbol{\beta}_{i}+n \boldsymbol{\gamma}_{1}\right)\right|$ for all n, we may assume, without loss of generality, that $\left|\mathbb{P}_{1} \boldsymbol{\beta}_{i}\right| \leq\left|\boldsymbol{\gamma}_{1}\right|$ for every i. Because

$$
\left\{\mathbf{x} \in \mathbb{R}^{d}| | \mathbb{P}_{1}^{\perp} \mathbf{x}\left|\leq 2 r_{1},\left|\mathbb{P}_{1} \mathbf{x}\right| \leq\left|\gamma_{1}\right|\right\}\right.
$$

is compact, the sequence has a limit point and hence has a Cauchy subsequence. In particular, there are $\boldsymbol{\beta}_{i}$ and $\boldsymbol{\beta}_{j}$ in the sequence, with $\boldsymbol{\beta}_{i} \neq \boldsymbol{\beta}_{j}$ with $\left|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right|<\frac{r}{2}$. But this is impossible, because $\beta_{i}-\beta_{j}$ would be a nonzero element of \mathcal{P} with length smaller than r.

Claim 4. Let γ_{2} be an element of $\mathcal{P} \backslash \mathcal{P}_{1}$ that minimizes $\left|\mathbb{P}_{1}^{\perp} \gamma\right|$ and set

$$
\mathcal{P}_{2}=\mathcal{P} \cap\left\{x_{1} \boldsymbol{\gamma}_{1}+x_{2} \boldsymbol{\gamma}_{2} \mid x_{1}, x_{2} \in \mathbb{R}\right\}
$$

Then $\mathcal{P}_{2}=\left\{n_{1} \boldsymbol{\gamma}_{1}+n_{2} \boldsymbol{\gamma}_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}$.

Proof of Claim 4: If $x_{1} \boldsymbol{\gamma}_{1}+x_{2} \boldsymbol{\gamma}_{2} \in \mathcal{P}$ with x_{2} not an integer, then $\boldsymbol{\gamma}^{\prime}=x_{1} \boldsymbol{\gamma}_{1}+\left(x_{2}-\left[x_{2}\right]\right) \boldsymbol{\gamma}_{2}$ is an element of of $\mathcal{P} \backslash \mathcal{P}_{1}$ with $\left|\mathbb{P}_{1}^{\perp} \boldsymbol{\gamma}^{\prime}\right|=\left|x_{2}-\left[x_{2}\right]\right|\left|\mathbb{P}_{1}^{\perp} \boldsymbol{\gamma}_{2}\right|<\left|\mathbb{P}_{1}^{\perp} \boldsymbol{\gamma}_{2}\right|$. So x_{2} must be an integer. But then $\left(x_{1} \boldsymbol{\gamma}_{1}+x_{2} \boldsymbol{\gamma}_{2}\right)-x_{2} \boldsymbol{\gamma}_{2}=x_{1} \boldsymbol{\gamma}_{1} \in \mathcal{P}$ and, by Claim 2, x_{1} must be an integer as well.

If $\mathcal{P}=\mathcal{P}_{2}$, we have finished. Otherwise continue with \ldots.

To exclude functions, as in Example L.2.c, that are "mixed periodic/non-periodic", we shall assume that $d^{\prime}=d$. Let $\gamma_{1}, \cdots, \gamma_{d} \in \mathbb{R}^{d}$ be d linearly independent vectors and set

$$
\Gamma=\left\{n_{1} \boldsymbol{\gamma}_{1}+\cdots+n_{d} \boldsymbol{\gamma}_{d} \mid n_{1}, \cdots, n_{d} \in \mathbb{Z}\right\}
$$

Γ is called the lattice generated by $\gamma_{1}, \cdots, \gamma_{d}$.

Problem L. 1 The set of generators for a lattice are not uniquely determined. Let Γ be generated by d linearly independent vectors $\gamma_{1}, \cdots, \gamma_{d} \in \mathbb{R}^{d}$. Let Γ^{\prime} be generated by d linearly independent vectors $\boldsymbol{\gamma}_{1}^{\prime}, \cdots, \boldsymbol{\gamma}_{d}^{\prime} \in \mathbb{R}^{d}$. Prove that $\Gamma=\Gamma^{\prime}$ if and only there is a $d \times d$ matrix A with integer matrix elements and $|\operatorname{det} A|=1$ such that $\boldsymbol{\gamma}_{i}^{\prime}=\sum_{j=1}^{d} A_{i, j} \boldsymbol{\gamma}_{j}$.

Problem L. 2 Let $\boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{d} \in \mathbb{R}^{d}$ be d linearly independent vectors. Prove that there are two constants C and c, depending only on $\gamma_{1}, \cdots, \gamma_{d}$ such that

$$
c|\mathbf{x}| \leq\left|x_{1} \boldsymbol{\gamma}_{1}+\cdots+x_{d} \boldsymbol{\gamma}_{d}\right| \leq C|\mathbf{x}|
$$

for all $\mathbf{x} \in \mathbb{R}^{d}$.

We'll now find a bunch of functions that are periodic with respect to Γ. Consider $f(\mathbf{x})=e^{i \mathbf{b} \cdot \mathbf{x}}$. This function has period $\boldsymbol{\gamma}$ if and only if $e^{i \mathbf{b} \cdot(\mathbf{x}+\boldsymbol{\gamma})}=e^{i \mathbf{b} \cdot \mathbf{x}}$ for all $\mathbf{x} \in \mathbb{R}^{d}$. This is the case if and only if $e^{i \mathbf{b} \cdot \boldsymbol{\gamma}}=1$ and this is the case if and only if $\mathbf{b} \cdot \boldsymbol{\gamma} \in 2 \pi \mathbb{Z}$.

Definition L. 4 Let Γ be a lattice in \mathbb{R}^{d}. The dual lattice for Γ is

$$
\Gamma^{\#}=\left\{\mathbf{b} \in \mathbb{R}^{d} \mid \mathbf{b} \cdot \boldsymbol{\gamma} \in 2 \pi \mathbb{Z} \text { for all } \gamma \in \Gamma\right\}
$$

Remark L. 5 Let $\gamma_{1}, \cdots, \gamma_{d} \in \mathbb{R}^{d}$ be linearly independent and denote by Γ the lattice that they generate. A vector $\mathbf{b} \in \mathbb{R}^{d}$ is an element of Γ \# if and only if

$$
\mathbf{b} \cdot \boldsymbol{\gamma}_{j} \in 2 \pi \mathbb{Z} \quad \text { for all } 1 \leq j \leq d
$$

Example L. 6 Let $\mathbf{e}_{1}, \cdots, \mathbf{e}_{d}$ be the standard basis of \mathbb{R}^{d}. That is, \mathbf{e}_{j} has all components zero, except for the $j^{\text {th }}$, which is one. Choosing $\ell_{1}, \cdots, \ell_{d}>0$ and $\boldsymbol{\gamma}_{j}=\ell_{j} \mathbf{e}_{j}$,

$$
\Gamma=\left\{\left(n_{1} \ell_{1}, \cdots, n_{d} \ell_{d}\right) \mid n_{1}, \cdots, n_{d} \in \mathbb{Z}\right\}
$$

Then $\left(x_{1}, \cdots, x_{d}\right)$ is in $\Gamma^{\#}$ if and only if

$$
\left(x_{1}, \cdots, x_{d}\right) \cdot \boldsymbol{\gamma}_{j}=\ell_{j} x_{j} \in 2 \pi \mathbb{Z} \Longleftrightarrow x_{j} \in \frac{2 \pi}{\ell_{j}} \mathbb{Z}
$$

Thus

$$
\Gamma^{\#}=\left\{\left.\left(n_{1} \frac{2 \pi}{\ell_{1}}, \cdots, n_{d} \frac{2 \pi}{\ell_{d}}\right) \right\rvert\, n_{1}, \cdots, n_{d} \in \mathbb{Z}\right\}
$$

Example L. 7 Let

$$
\Gamma=\{n(1,0)+m(\pi, 1) \mid n, m \in \mathbb{Z}\}
$$

Then

$$
\Gamma^{\#}=\left\{n(0,2 \pi)+m\left(2 \pi,-2 \pi^{2}\right) \mid n, m \in \mathbb{Z}\right\}
$$

Since

$$
\left[n^{\prime}(1,0)+m^{\prime}(\pi, 1)\right] \cdot\left[n(0,2 \pi)+m\left(2 \pi,-2 \pi^{2}\right)\right]=2 \pi\left(n^{\prime} m+m^{\prime} n\right)
$$

every vector of the form $n(0,2 \pi)+m\left(2 \pi,-2 \pi^{2}\right)$ with $m, n \in \mathbb{Z}$ is indeed in $\Gamma^{\#}$. To verify that only vectors of this form are in $\Gamma^{\#}$, let $\mathbf{z}=x(0,2 \pi)+y\left(2 \pi,-2 \pi^{2}\right)$ be any vector in \mathbb{R}^{2}. (Certainly, $(0,2 \pi)$ and $\left(2 \pi,-2 \pi^{2}\right)$ form a basis for \mathbb{R}^{2}.) For \mathbf{z} to be in $\Gamma^{\#}$ it is necessary that

$$
\begin{aligned}
& \mathbf{z} \cdot(1,0)=2 \pi y \in 2 \pi \mathbb{Z} \\
& \mathbf{z} \cdot(\pi, 1)=2 \pi x \in 2 \pi \mathbb{Z}
\end{aligned}
$$

which forces $x, y \in \mathbb{Z}$.

Problem L. 3 Let Γ be generated by $\boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{d} \in \mathbb{R}^{d}$ (assumed linearly independent) and let

$$
\left[\gamma_{1}, \cdots \gamma_{d}\right]=\left\{\sum_{j=1}^{d} t_{j} \boldsymbol{\gamma}_{j} \mid 0 \leq t_{j} \leq 1 \text { for all } 1 \leq j \leq d\right\}
$$

be the parallelepiped with the $\boldsymbol{\gamma}_{j}$'s as edges. Prove that if $\mathbf{b} \in \Gamma^{\#}$, then

$$
\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{i \mathbf{b} \cdot \mathbf{x}}= \begin{cases}\left|\left[\gamma_{1}, \cdots \boldsymbol{\gamma}_{d}\right]\right| & \text { if } \mathbf{b}=\mathbf{0} \\ 0 & \text { if } \mathbf{b} \neq \mathbf{0}\end{cases}
$$

where $\left|\left[\gamma_{1}, \cdots \gamma_{d}\right]\right|$ is the volume of $\left|\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]\right|$. By Problem L.1, the volume $\left|\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]\right|$ is independent of the choice of generators. That is, if Γ is also generated by $\gamma_{1}^{\prime}, \cdots, \gamma_{d}^{\prime} \in \mathbb{R}^{d}$, then $\left|\left[\gamma_{1}, \cdots \gamma_{d}\right]\right|=\left|\left[\gamma_{1}^{\prime}, \cdots \gamma_{d}^{\prime}\right]\right|$. Consequently, it is legitimate to define $|\Gamma|=\left|\left[\gamma_{1}, \cdots \gamma_{d}\right]\right|$. Hence

$$
\frac{1}{|\Gamma|} \int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{i \mathbf{b} \cdot \mathbf{x}}= \begin{cases}1 & \text { if } \mathbf{b}=\mathbf{0} \\ 0 & \text { if } \mathbf{b} \neq \mathbf{0}\end{cases}
$$

Proposition L. 8 If $\boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{d} \in \mathbb{R}^{d}$ are linearly independent and

$$
\Gamma=\left\{n_{1} \boldsymbol{\gamma}_{1}+\cdots+n_{d} \boldsymbol{\gamma}_{d} \mid n_{1}, \cdots, n_{d} \in \mathbb{Z}\right\}
$$

then there exist d linearly independent vectors $\mathbf{b}_{1}, \cdots, \mathbf{b}_{d} \in \mathbb{R}^{d}$ such that

$$
\Gamma^{\#}=\left\{n_{1} \mathbf{b}_{1}+\cdots+n_{d} \mathbf{b}_{d} \mid n_{1}, \cdots, n_{d} \in \mathbb{Z}\right\}
$$

Proof: For each $1 \leq i \leq d$

$$
V_{i}=\left\{x_{1} \boldsymbol{\gamma}_{1}+\cdots+x_{d} \boldsymbol{\gamma}_{d} \mid x_{1}, \cdots, x_{d} \in \mathbb{R}, x_{i}=0\right\}
$$

is a $d-1$ dimensional subspace of \mathbb{R}^{d}. So V_{1}^{\perp} is a one dimensional subspace of \mathbb{R}^{d}. Let \mathbf{B}_{i} be any nonzero element of V_{i}^{\perp} and define

$$
\mathbf{b}_{i}=\frac{2 \pi}{\boldsymbol{\gamma}_{i} \cdot \mathbf{B}_{i}} \mathbf{B}_{i}
$$

Note that $\boldsymbol{\gamma}_{i} \cdot \mathbf{B}_{i}$ cannot vanish because then $\boldsymbol{\gamma}_{i}$ would have to be in V_{i}, i.e. would have to be a linear combination of $\boldsymbol{\gamma}_{j}, j \neq i$. Denote

$$
B=\left\{n_{1} \mathbf{b}_{1}+\cdots+n_{d} \mathbf{b}_{d} \mid n_{1}, \cdots, n_{d} \in \mathbb{Z}\right\}
$$

As

$$
\mathbf{b}_{i} \cdot \boldsymbol{\gamma}_{j}= \begin{cases}2 \pi & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

we have that $\mathbf{b}_{i} \in \Gamma^{\#}$ and hence $B \subset \Gamma^{\#}$.
If $x_{1} \mathbf{b}_{1}+\cdots+x_{d} \mathbf{b}_{d}=\mathbf{0}$ then $\left(x_{1} \mathbf{b}_{1}+\cdots+x_{d} \mathbf{b}_{d}\right) \cdot \boldsymbol{\gamma}_{j}=2 \pi x_{j}=0$ for every $1 \leq j \leq d$. So the \mathbf{b}_{i} 's are linearly independent and every vector in \mathbb{R}^{d} may be written in the form $x_{1} \mathbf{b}_{1}+\cdots+x_{d} \mathbf{b}_{d}$. If $x_{1} \mathbf{b}_{1}+\cdots+x_{d} \mathbf{b}_{d} \in \Gamma^{\#}$, then

$$
\left(x_{1} \mathbf{b}_{1}+\cdots+x_{d} \mathbf{b}_{d}\right) \cdot \boldsymbol{\gamma}_{j}=2 \pi x_{j} \in 2 \pi \mathbb{Z}
$$

so that $x_{j} \in \mathbb{Z}$ for every $1 \leq j \leq d$. Hence $\boldsymbol{\gamma}^{\#} \subset B$.

From now on, we fix d linearly independent vectors $\boldsymbol{\gamma}_{1}, \cdots, \gamma_{d} \in \mathbb{R}^{d}$, set

$$
\Gamma=\left\{n_{1} \boldsymbol{\gamma}_{1}+\cdots+n_{d} \boldsymbol{\gamma}_{d} \mid n_{1}, \cdots, n_{d} \in \mathbb{Z}\right\}
$$

The set of all C^{∞} functions on \mathbb{R}^{d} that are periodic with respect to Γ is denoted $C^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)$. We have already observed that $f(\mathbf{x})=e^{i \mathbf{b} \cdot \mathbf{x}}$ is in $C^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)$ if and only in $\mathbf{b} \in \Gamma^{\#}$.

Remark L. 9 Here is the story (at least in short form) behind the notation $C^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)$. We have already observed that \mathbb{R}^{d} is a group (under addition) and that Γ is a subgroup of of \mathbb{R}^{d}. As \mathbb{R}^{d} is abelian, all subgroups are normal and the set of equivalence classes under the equivalence relation

$$
\mathbf{x} \sim \mathbf{y} \Longleftrightarrow \mathbf{x}-\mathbf{y} \in \Gamma
$$

is itself a group, denoted, as usual \mathbb{R}^{d} / Γ. Precisely, the equivalence class of $\mathbf{x} \in \mathbb{R}^{d}$ is $[\mathbf{x}]=\left\{\mathbf{y} \in \mathbb{R}^{d} \mid \mathbf{x} \sim \mathbf{y}\right\} \subset \mathbb{R}^{d}$ and $\mathbb{R}^{d} / \Gamma=\left\{[\mathbf{x}] \mid \mathbf{x} \in \mathbb{R}^{d}\right\}$. The group operation in \mathbb{R}^{d} / Γ is

$$
[\mathbf{x}]+[\mathbf{y}]=[\mathbf{x}+\mathbf{y}]
$$

As well as being a group, \mathbb{R}^{d} / Γ can also be turned into a smooth manifold, called a d-dimensional torus. If \mathcal{O} is any open subset of \mathbb{R}^{d} with the property that no two points of \mathcal{O} are equivalent under \sim, then the map

$$
\begin{aligned}
\xi_{\mathcal{O}}: & \mathcal{O} \\
& \rightarrow \mathbb{R}^{d} / \Gamma \\
\mathbf{x} & \mapsto[\mathbf{x}]
\end{aligned}
$$

is one-to-one. Its inverse is a coordinate map for \mathbb{R}^{d} / Γ. If Γ is generated by $\boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{d}$ and X is any point in $\mathbb{R}^{d},\left\{X+t_{1} \boldsymbol{\gamma}_{1}+\cdots+t_{d} \boldsymbol{\gamma}_{d} \mid 0<t_{j}<1\right.$ for all $\left.1 \leq j \leq d\right\}$ is one possible choice of \mathcal{O}. The notation $C^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)$ designates the set of smooth (that is, C^{∞}) functions on the manifold \mathbb{R}^{d} / Γ.

Theorem L. 10 (Fourier Series) A function $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is in $C^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)$ if and only if

$$
\begin{aligned}
& f(\mathbf{x})=\frac{1}{|\Gamma|} \sum_{\mathbf{b} \in \Gamma^{\#}} \hat{f}_{\mathbf{b}} e^{i \mathbf{b} \cdot \mathbf{x}} \\
& \text { with } \sum_{\mathbf{b} \in \Gamma^{\#}}|\mathbf{b}|^{2 n}\left|\hat{f}_{\mathbf{b}}\right|<\infty \quad \text { for all } n \in \mathbb{N}
\end{aligned}
$$

Furthermore, in this case,

$$
\hat{f}_{\mathbf{b}}=\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{-i \mathbf{b} \cdot \mathbf{x}} f(\mathbf{x})
$$

Proof of "if": Suppose that we are given $\hat{f}_{\mathbf{b}}, \mathbf{b} \in \Gamma^{\#}$ obeying $\sum_{\mathbf{b} \in \Gamma \#}|\mathbf{b}|^{2 n}\left|\hat{f}_{\mathbf{b}}\right|<\infty$ for all $n \in \mathbb{N}$. In particular $\sum_{\mathbf{b} \in \Gamma^{\#}}\left|\hat{f}_{\mathbf{b}}\right|<\infty$ so the series $\frac{1}{|\Gamma|} \sum_{\mathbf{b} \in \Gamma^{\#}} \hat{f}_{\mathbf{b}} e^{i \mathbf{b} \cdot \mathbf{x}}$ converges absolutely and uniformly to some continuous function that is periodic with respect to Γ. Call the function $f(\mathbf{x})$. Furthermore for any $i_{1}, \cdots i_{d} \in \mathbb{N}$

$$
\left|\left(\prod_{j=1}^{d} \frac{\partial^{i_{j}}}{\partial x_{j}^{i_{j}}}\right) \hat{f}_{\mathbf{b}} e^{i \mathbf{b} \cdot \mathbf{x}}\right|=\left|\left(\prod_{j=1}^{d} b_{i_{j}}^{i_{j}}\right) \hat{f}_{\mathbf{b}} e^{i \mathbf{b} \cdot \mathbf{x}}\right| \leq|\mathbf{b}|^{\Sigma i_{j}}\left|\hat{f}_{\mathbf{b}}\right|
$$

so the series $\frac{1}{|\Gamma|} \sum_{\mathbf{b} \in \Gamma^{\#}}\left(\prod_{j=1}^{d} \frac{\partial^{i}{ }^{i}}{\partial x_{j}^{i_{j}}}\right) \hat{f}_{\mathbf{b}} e^{i \mathbf{b} \cdot \mathbf{x}}$ also converges absolutely and uniformly. This implies that $f(\mathbf{x})$ is C^{∞}. Furthermore

$$
\begin{aligned}
\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{-i \mathbf{b} \cdot \mathbf{x}} f(\mathbf{x}) & =\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{-i \mathbf{b} \cdot \mathbf{x}}\left[\frac{1}{|\Gamma|} \sum_{\mathbf{c} \in \Gamma^{\#}} \hat{f}_{\mathbf{c}} e^{i \mathbf{c} \cdot \mathbf{x}}\right] \\
& =\frac{1}{|\Gamma|} \sum_{\mathbf{c} \in \Gamma \#} \int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{i(\mathbf{c}-\mathbf{b}) \cdot \mathbf{x}} \hat{f}_{\mathbf{c}} \\
& =\frac{1}{|\Gamma|} \int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} \hat{f}_{\mathbf{b}}+\frac{1}{|\Gamma|} \sum_{\substack{\mathbf{c} \in \Gamma \# \\
\mathbf{c} \neq \mathbf{b}}} \int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{i(\mathbf{c}-\mathbf{b}) \cdot \mathbf{x}} \hat{f}_{c} \\
& =\hat{f}_{\mathbf{b}}
\end{aligned}
$$

by Problem L. 3 .

Proof of "only if": Now suppose that we are given $f \in C^{\infty}\left(\mathbb{R}^{d} / \Gamma\right)$. Define

$$
\hat{f}_{\mathbf{b}}=\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{-i \mathbf{b} \cdot \mathbf{x}} f(\mathbf{x})
$$

Then for any $i_{1}, \cdots i_{d} \in \mathbb{N}$

$$
\begin{aligned}
\left|\left(\prod_{j=1}^{d} b_{i_{j}}^{i_{j}}\right) \hat{f}_{\mathbf{b}}\right| & =\left|\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x}\left(\prod_{j=1}^{d} b_{i_{j}}^{i_{j}}\right) e^{-i \mathbf{b} \cdot \mathbf{x}} f(\mathbf{x})\right| \\
& =\left|\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x}\left(\prod_{j=1}^{d} \frac{\partial^{i_{j}}}{\partial x_{j}^{i_{j}}} e^{-i \mathbf{b} \cdot \mathbf{x}}\right) f(\mathbf{x})\right| \\
& =\left|\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{-i \mathbf{b} \cdot \mathbf{x}}\left(\prod_{j=1}^{d} \frac{\partial^{i_{j}}}{\partial x_{j}^{i_{j}}} f(\mathbf{x})\right)\right| \\
& \left.\leq|\Gamma| \sup _{\mathbf{x}}\left(\prod_{j=1}^{d} \frac{\partial^{i_{j}}}{\partial x_{j}^{i_{j}}} f(\mathbf{x})\right) \right\rvert\,<\infty
\end{aligned}
$$

so that, by Problem L.2,

$$
\begin{aligned}
\sum_{\mathbf{b} \in \Gamma^{\#}}\left|\left(\prod_{j=1}^{d} b_{i_{j}}^{i_{j}}\right) \hat{f}_{\mathbf{b}}\right| & =\sum_{\mathbf{b} \in \Gamma^{\#}} \frac{1+|\mathbf{b}|^{d+1}}{1+|\mathbf{b}|^{d+1}}\left|\left(\prod_{j=1}^{d} b_{i_{j}}^{i_{j}}\right) \hat{f}_{\mathbf{b}}\right| \\
& \leq\left[\sup _{\mathbf{b} \in \Gamma^{\#}}\left(1+|\mathbf{b}|^{d+1}\right)\left|\left(\prod_{j=1}^{d} b_{i_{j}}^{i_{j}}\right) \hat{f}_{\mathbf{b}}\right|\right] \sum_{\mathbf{b} \in \Gamma^{\#}} \frac{1}{1+|\mathbf{b}|^{d+1}} \\
& \leq\left[\sup _{\mathbf{b} \in \Gamma^{\#}}\left(1+|\mathbf{b}|^{d+1}\right)\left|\left(\prod_{j=1}^{d} b_{i_{j}}^{i_{j}}\right) \hat{f}_{\mathbf{b}}\right|\right] \sum_{\mathbf{n} \in \mathbb{Z}^{d}} \frac{1}{1+(c|\mathbf{n}|)^{d+1}}<\infty
\end{aligned}
$$

Hence, by the "only if" part of this Theorem, that we have already proven,

$$
g(\mathbf{x})=\frac{1}{|\Gamma|} \sum_{\mathbf{b} \in \Gamma^{\#}} \hat{f}_{\mathbf{b}} e^{i \mathbf{b} \cdot \mathbf{x}}
$$

is a C^{∞} function and

$$
\begin{equation*}
\hat{f}_{\mathbf{b}}=\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{-i \mathbf{b} \cdot \mathbf{x}} g(\mathbf{x}) \tag{L.1}
\end{equation*}
$$

We just have to show that $g(\mathbf{x})=f(\mathbf{x})$.
Here is one proof that $g(\mathbf{x})=f(\mathbf{x})$. By (L.1)

$$
\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} e^{-i \mathbf{b} \cdot \mathbf{x}}[g(\mathbf{x})-f(\mathbf{x})]=0
$$

for all $\mathbf{b} \in \Gamma^{\#}$. Consequently,

$$
\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \gamma_{d}\right]} d^{d} \mathbf{x} \varphi(\mathbf{x})[g(\mathbf{x})-f(\mathbf{x})]=0
$$

for any function $\varphi \in \mathcal{P}\left(\Gamma^{\#}\right)$ where $\mathcal{P}\left(\Gamma^{\#}\right)$ is the set of all functions that are finite linear combinations of the $e^{-i \mathbf{b} \cdot \mathbf{x}}$'s with $\mathbf{b} \in \Gamma^{\#}$. Consequently,

$$
\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \gamma_{d}\right]} d^{d} \mathbf{x} \varphi(\mathbf{x})[g(\mathbf{x})-f(\mathbf{x})]=0
$$

for any function $\varphi \in \overline{\mathcal{P}\left(\Gamma^{\#}\right)}$ where $\overline{\mathcal{P}\left(\Gamma^{\#}\right)}$ is the set of all functions that are uniform limits of sequences of functions in $\mathcal{P}\left(\Gamma^{\#}\right)$. But by the Stone-Weierstrass Theorem [Walter Rudin, Principles of Mathematical Analysis, Theorem 7.33], $\overline{\mathcal{P}\left(\Gamma^{\#}\right)}$ is the set of all continuous functions that are periodic with respect to Γ. In particular, the complex conjugate of $g(\mathbf{x})-f(\mathbf{x})$ is in $\overline{\mathcal{P}\left(\Gamma^{\#}\right)}$. Hence

$$
\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x}|g(\mathbf{x})-f(\mathbf{x})|^{2}=0
$$

so that $g(\mathbf{x})=f(\mathbf{x})$ for all \mathbf{x}.
One may also build Problem L.5, below, into a second proof that $g(\mathbf{x})=f(\mathbf{x})$. Just make a change of variables so that Γ is replaced by $2 \pi \mathbb{Z}^{d}$ and apply Problem L.5.b, once in each dimension.

Problem L. 4 Let Γ be generated by $\boldsymbol{\gamma}_{1}, \cdots, \boldsymbol{\gamma}_{d} \in \mathbb{R}^{d}$ (assumed linearly independent) and also by $\gamma_{1}^{\prime}, \cdots, \gamma_{d}^{\prime} \in \mathbb{R}^{d}$ (also assumed linearly independent). Recall that

$$
\left[\gamma_{1}, \cdots \gamma_{d}\right]=\left\{\sum_{j=1}^{d} t_{j} \gamma_{j} \mid 0 \leq t_{j} \leq 1 \text { for all } 1 \leq j \leq d\right\}
$$

is the parallelepiped with the $\boldsymbol{\gamma}_{j}$'s as edges. Let, for $\mathbf{y} \in \mathbb{R}^{d}$,

$$
\mathbf{y}+\left[\gamma_{1}, \cdots \boldsymbol{\gamma}_{d}\right]=\left\{\mathbf{y}+\sum_{j=1}^{d} t_{j} \boldsymbol{\gamma}_{j} \mid 0 \leq t_{j} \leq 1 \text { for all } 1 \leq j \leq d\right\}
$$

be the translate of $\left[\gamma_{1}, \cdots \gamma_{d}\right]$ by \mathbf{y}. Let $f(\mathbf{x})$ be periodic with respect to Γ. Prove that

$$
\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} f(\mathbf{x})=\int_{\mathbf{y}+\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} f(\mathbf{x})=\int_{\left[\boldsymbol{\gamma}_{1}^{\prime}, \cdots \boldsymbol{\gamma}_{d}^{\prime}\right]} d^{d} \mathbf{x} f(\mathbf{x})
$$

We denote

$$
\int_{\mathbb{R}^{d} / \Gamma} d^{d} \mathbf{x} f(\mathbf{x})=\int_{\left[\boldsymbol{\gamma}_{1}, \cdots \boldsymbol{\gamma}_{d}\right]} d^{d} \mathbf{x} f(\mathbf{x})
$$

Problem L. 5 Let $f \in C^{1}(\mathbb{R})$ be periodic of period 2π. Set

$$
c_{n}=\int_{0}^{2 \pi} e^{-i n x} f(x) d x
$$

and

$$
\left(S_{M} f\right)(\theta)=\frac{1}{2 \pi} \sum_{n=-M}^{M} c_{n} e^{i n \theta}
$$

a) Prove that $S_{M} f(\theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta+x) \frac{\sin (M+1 / 2) x}{\sin (x / 2)} d x$.
b) Prove that $S_{M} f(\theta)$ converges to $f(\theta)$ as $M \rightarrow \infty$.

