
Families of Commuting Normal Matrices

Definition M.1 (Notation)

i) Cn =
{

v = (v1, · · · , vn)
∣

∣ vi ∈ C for all 1 ≤ i ≤ n
}

ii) If λ ∈ C and v = (v1, · · · , vn), w = (w1, · · · , wn) ∈ Cn, then

λv = (λv1, · · · , λvn) ∈ Cn

v +w = (v1 + w1, · · · , vn + wn) ∈ Cn

〈v,w〉 =

n
∑

j=1

v̄jwj ∈ C

The ¯ means complex conjugate.

iii) Two vectors v,w ∈ Cn are said to be orthogonal (or perpendicular, denoted v ⊥ w) if

〈v,w〉 = 0.

iv) If v ∈ Cn and A is the m× n matrix whose (i, j) matrix element is Ai,j, then Av is the

vector in Cm with

(Av)i =
n
∑

j=1

Ai,jvj for all 1 ≤ i ≤ m

v) A linear subspace V of Cn is a subset of Cn that is closed under addition and scalar

multiplication. That is, if λ ∈ C and v,w ∈ V , then λv, v +w ∈ V .

vi) If V is a subset of Cn, then its orthogonal complement is

V ⊥ =
{

v ∈ Cn
∣

∣ v ⊥ w for all w ∈ V
}

Problem M.1 Let V ⊂ Cn. Prove that V ⊥ is a linear subspace of Cn.

Lemma M.2 Let V be a linear subspace of Cn of dimension at least one. Let A be an n×n

matrix that maps V into V . Then A has an eigenvector in V .

Proof: Let e1, · · · , ed be a basis for V . As A maps V into itself, there exist numbers

ai,j, 1 ≤ i, j ≤ d such that

Aej =
d

∑

i=1

ai,jei for all 1 ≤ j ≤ d
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Consequently, A maps the vector w =
∑d

j=1 xjej ∈ V to

Aw =
d

∑

i,j=1

ai,jxjei

so that w is an eigenvector of A of eigenvalue λ if and only if (1) not all of the xi’s are zero

and (2)

d
∑

i,j=1

ai,jxjei = λ

d
∑

i=1

xiei ⇐⇒

d
∑

j=1

ai,jxj = λxi for all 1 ≤ i ≤ d

⇐⇒

d
∑

j=1

(

ai,j − λδi,j
)

xj = 0 for all 1 ≤ i ≤ d

For any given λ, the linear system of equations “
∑d

j=1

(

ai,j − λδi,j
)

xj = 0 for all 1 ≤ i ≤ d”

has a nontrivial solution (x1, · · · , xd) if and only if the d × d matrix
[

ai,j − λδi,j
]

1≤i,j≤d

fails to be invertible and this, in turn, is the case if and only if det
[

ai,j − λδi,j
]

= 0. But

det
[

ai,j − λδi,j
]

= 0 is a polynomial of degree d in λ and so always vanishes for at least one

value of λ.

Definition M.3 (Commuting) Two n × n matrices A and B are said to commute if

AB = BA.

Lemma M.4 Let n ≥ 1 be an integer, V be a linear subspace of Cn of dimension at least

one and let F be a nonempty set of n× n mutually commuting matrices that map V into V .

That is, A,B ∈ F ⇒ AB = BA and A ∈ F , w ∈ V ⇒ Aw ∈ V . Then there exists a nonzero

vector v ∈ V that is an eigenvector for every matrix in F .

Proof: We shall show that

“There is a linear subspace W of V of dimension at least one, such that each A ∈ F

is a multiple of the identity matrix when restricted to W .”

This suffices to prove the lemma. The proof will be by induction on the dimension d of V . If

d = 1, we may take W = V , since the restriction of any matrix to a one dimensional vector

space is a multiple of the identity.

Suppose that the claim has been proven for all dimensions strictly less than d. If

every A ∈ F is a multiple of the identity, when restricted to V , we may take W = V and we

are done. If not, pick any A ∈ F that is not a multiple of the identity when restricted to V .
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By Lemma M.2, it has at least one eigenvector v ∈ V . Let λ be the corresponding eigenvalue

and set

V ′ = V ∩
{

w ∈ Cn
∣

∣ Aw = λw
}

Then V ′ is a linear subspace of V of dimension strictly less than d (since A, restricted to V ,

is not λ1l). We claim that every B ∈ F maps V ′ into V ′. To see this, let B ∈ F and w ∈ V ′

and set w′ = Bw. We wish to show that w′ ∈ V ′. But

Aw′ = ABw = BAw (A and B commute)

= Bλw (Definition of V ′)

= λBw = λw′

so w′ is indeed in V ′. We have verified that V ′ has dimension at least one and strictly smaller

than d and that every B ∈ F maps V ′ into V ′. So we may apply the inductive hypothesis

with V replaced by V ′.

Definition M.5 (Adjoint) The adjoint of the r × c matrix A is the c× r matrix

A∗
i,j = Aj,i

Problem M.2 Let A and B be any n × n matrices. Prove that B = A∗ if and only if

〈Bv,w〉 = 〈v, Aw〉 for all v,w ∈ Cn.

Problem M.3 Let A be any n× n matrix. Let V be any linear subspace of Cn and V ⊥ its

orthogonal complement. Prove that if AV ⊂ V (i.e. w ∈ V ⇒ Aw ∈ V ), then A∗V ⊥ ⊂ V ⊥.

Definition M.6 (Normal, Self–Adjoint, Unitary)

i) An n× n matrix A is normal if AA∗ = A∗A. That is, if A commutes with its adjoint.

ii) An n× n matrix A is self–adjoint if A = A∗.

iii) An n × n matrix U is unitary if UU∗ = 1l. Here 1l is the n× n identity matrix. Its (i, j)

matrix element is one if i = j and zero otherwise.

Problem M.4 Let A be a normal matrix. Let λ be an eigenvalue of A and V the eigenspace

of A of eigenvalue λ. Prove that V is the eigenspace of A∗ of eigenvalue λ̄.

Problem M.5 Let A be a normal matrix. Let v and w be eigenvectors of A with different

eigenvalues. Prove that v ⊥ w.
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Problem M.6 Let A be a self-adjoint matrix. Prove that

a) A is normal

b) Every eigenvalue of A is real.

Problem M.7 Let U be a unitary matrix. Prove that

a) U is normal

b) Every eigenvalue λ of U obeys |λ| = 1, i.e. is of modulus one.

Theorem M.7 Let n ≥ 1 be an integer. Let F be a nonempty set of n × n mutually

commuting normal matrices. That is, A,B ∈ F ⇒ AB = BA and A ∈ F ⇒ AA∗ = A∗A.

Then there exists an orthonormal basis {e1, · · · , en} of Cn such that ej is an eigenvector of

A for every A ∈ F and 1 ≤ j ≤ n.

Proof: By Lemma M.4, with V = Cn, there exists a nonzero vector v1 that is an eigenvector

for every A ∈ F . Set e1 = v1

‖v1‖
and V1 =

{

λe1
∣

∣ λ ∈ C
}

. By Problem M.4, e1 is also an

eigenvector of A∗ for every A ∈ F , so A∗V1 ⊂ V1 for all A ∈ F . By Problem M.3, AV ⊥
1 ⊂ V ⊥

1

for all A ∈ F .

By Lemma M.4, with V = V ⊥
1 , there exists a nonzero vector v2 ∈ V ⊥

1 that is an

eigenvector for every A ∈ F . Choose e2 = v2

‖v2‖
. As e2 ∈ V ⊥

1 , e2 is orthogonal to e1. Define

V2 =
{

λ1e1+λ2e2
∣

∣ λ1, λ2 ∈ C
}

. By Problem M.4, e2 is also an eigenvector of A∗ for every

A ∈ F , so A∗V2 ⊂ V2 for all A ∈ F . By Problem M.3, AV ⊥
2 ⊂ V ⊥

2 for all A ∈ F .

By Lemma M.4, with V = V ⊥
2 , there exists a nonzero vector v3 ∈ V ⊥

2 that is an

eigenvector for every A ∈ F . Choose e3 = v3

‖v3‖
. As e3 ∈ V ⊥

2 , e3 is orthogonal to both e1

and e2. And so on.
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