Families of Commuting Normal Matrices

Definition M. 1 (Notation)

i) $\mathbb{C}^{n}=\left\{\mathbf{v}=\left(v_{1}, \cdots, v_{n}\right) \mid v_{i} \in \mathbb{C}\right.$ for all $\left.1 \leq i \leq n\right\}$
ii) If $\lambda \in \mathbb{C}$ and $\mathbf{v}=\left(v_{1}, \cdots, v_{n}\right)$, $\mathbf{w}=\left(w_{1}, \cdots, w_{n}\right) \in \mathbb{C}^{n}$, then

$$
\begin{aligned}
\lambda \mathbf{v} & =\left(\lambda v_{1}, \cdots, \lambda v_{n}\right) \in \mathbb{C}^{n} \\
\mathbf{v}+\mathbf{w} & =\left(v_{1}+w_{1}, \cdots, v_{n}+w_{n}\right) \in \mathbb{C}^{n} \\
\langle\mathbf{v}, \mathbf{w}\rangle & =\sum_{j=1}^{n} \bar{v}_{j} w_{j} \in \mathbb{C}
\end{aligned}
$$

The ${ }^{-}$means complex conjugate.
iii) Two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{C}^{n}$ are said to be orthogonal (or perpendicular, denoted $\mathbf{v} \perp \mathbf{w}$) if $\langle\mathbf{v}, \mathbf{w}\rangle=0$.
iv) If $\mathbf{v} \in \mathbb{C}^{n}$ and A is the $m \times n$ matrix whose (i, j) matrix element is $A_{i, j}$, then $A \mathbf{v}$ is the vector in \mathbb{C}^{m} with

$$
(A \mathbf{v})_{i}=\sum_{j=1}^{n} A_{i, j} v_{j} \quad \text { for all } 1 \leq i \leq m
$$

v) A linear subspace V of \mathbb{C}^{n} is a subset of \mathbb{C}^{n} that is closed under addition and scalar multiplication. That is, if $\lambda \in \mathbb{C}$ and $\mathbf{v}, \mathbf{w} \in V$, then $\lambda \mathbf{v}, \mathbf{v}+\mathbf{w} \in V$.
vi) If V is a subset of \mathbb{C}^{n}, then its orthogonal complement is

$$
V^{\perp}=\left\{\mathbf{v} \in \mathbb{C}^{n} \mid \mathbf{v} \perp \mathbf{w} \text { for all } \mathbf{w} \in V\right\}
$$

Problem M. 1 Let $V \subset \mathbb{C}^{n}$. Prove that V^{\perp} is a linear subspace of \mathbb{C}^{n}.

Lemma M. 2 Let V be a linear subspace of \mathbb{C}^{n} of dimension at least one. Let A be an $n \times n$ matrix that maps V into V. Then A has an eigenvector in V.

Proof: Let $\mathbf{e}_{1}, \cdots, \mathbf{e}_{d}$ be a basis for V. As A maps V into itself, there exist numbers $a_{i, j}, 1 \leq i, j \leq d$ such that

$$
A \mathbf{e}_{j}=\sum_{i=1}^{d} a_{i, j} \mathbf{e}_{i} \quad \text { for all } 1 \leq j \leq d
$$

Consequently, A maps the vector $\mathbf{w}=\sum_{j=1}^{d} x_{j} \mathbf{e}_{j} \in V$ to

$$
A \mathbf{w}=\sum_{i, j=1}^{d} a_{i, j} x_{j} \mathbf{e}_{i}
$$

so that \mathbf{w} is an eigenvector of A of eigenvalue λ if and only if (1) not all of the x_{i} 's are zero and (2)

$$
\begin{aligned}
\sum_{i, j=1}^{d} a_{i, j} x_{j} \mathbf{e}_{i}=\lambda \sum_{i=1}^{d} x_{i} \mathbf{e}_{i} & \Longleftrightarrow \sum_{j=1}^{d} a_{i, j} x_{j}=\lambda x_{i} & & \text { for all } 1 \leq i \leq d \\
& \Longleftrightarrow \sum_{j=1}^{d}\left(a_{i, j}-\lambda \delta_{i, j}\right) x_{j}=0 & & \text { for all } 1 \leq i \leq d
\end{aligned}
$$

For any given λ, the linear system of equations " $\sum_{j=1}^{d}\left(a_{i, j}-\lambda \delta_{i, j}\right) x_{j}=0$ for all $1 \leq i \leq d$ " has a nontrivial solution $\left(x_{1}, \cdots, x_{d}\right)$ if and only if the $d \times d$ matrix $\left[a_{i, j}-\lambda \delta_{i, j}\right]_{1 \leq i, j \leq d}$ fails to be invertible and this, in turn, is the case if and only if $\operatorname{det}\left[a_{i, j}-\lambda \delta_{i, j}\right]=0$. But $\operatorname{det}\left[a_{i, j}-\lambda \delta_{i, j}\right]=0$ is a polynomial of degree d in λ and so always vanishes for at least one value of λ.

Definition M. 3 (Commuting) Two $n \times n$ matrices A and B are said to commute if $A B=B A$.

Lemma M. 4 Let $n \geq 1$ be an integer, V be a linear subspace of \mathbb{C}^{n} of dimension at least one and let \mathcal{F} be a nonempty set of $n \times n$ mutually commuting matrices that map V into V. That is, $A, B \in \mathcal{F} \Rightarrow A B=B A$ and $A \in \mathcal{F}, \mathbf{w} \in V \Rightarrow A \mathbf{w} \in V$. Then there exists a nonzero vector $\mathbf{v} \in V$ that is an eigenvector for every matrix in \mathcal{F}.

Proof: We shall show that
"There is a linear subspace W of V of dimension at least one, such that each $A \in \mathcal{F}$ is a multiple of the identity matrix when restricted to W."

This suffices to prove the lemma. The proof will be by induction on the dimension d of V. If $d=1$, we may take $W=V$, since the restriction of any matrix to a one dimensional vector space is a multiple of the identity.

Suppose that the claim has been proven for all dimensions strictly less than d. If every $A \in \mathcal{F}$ is a multiple of the identity, when restricted to V, we may take $W=V$ and we are done. If not, pick any $A \in \mathcal{F}$ that is not a multiple of the identity when restricted to V.

By Lemma M.2, it has at least one eigenvector $\mathbf{v} \in V$. Let λ be the corresponding eigenvalue and set

$$
V^{\prime}=V \cap\left\{\mathbf{w} \in \mathbb{C}^{n} \mid A \mathbf{w}=\lambda \mathbf{w}\right\}
$$

Then V^{\prime} is a linear subspace of V of dimension strictly less than d (since A, restricted to V, is not $\lambda \mathbb{1}$). We claim that every $B \in \mathcal{F}$ maps V^{\prime} into V^{\prime}. To see this, let $B \in \mathcal{F}$ and $\mathbf{w} \in V^{\prime}$ and set $\mathbf{w}^{\prime}=B \mathbf{w}$. We wish to show that $\mathbf{w}^{\prime} \in V^{\prime}$. But

$$
\begin{aligned}
A \mathbf{w}^{\prime}=A B \mathbf{w} & =B A \mathbf{w} \quad \\
& =B \lambda \mathbf{w} \quad(A \text { and } B \text { commute }) \\
& =\lambda B \mathbf{w}=\lambda \mathbf{w}^{\prime}
\end{aligned}
$$

so \mathbf{w}^{\prime} is indeed in V^{\prime}. We have verified that V^{\prime} has dimension at least one and strictly smaller than d and that every $B \in \mathcal{F}$ maps V^{\prime} into V^{\prime}. So we may apply the inductive hypothesis with V replaced by V^{\prime}.

Definition M. 5 (Adjoint) The adjoint of the $r \times c$ matrix A is the $c \times r$ matrix

$$
A_{i, j}^{*}=\overline{A_{j, i}}
$$

Problem M. 2 Let A and B be any $n \times n$ matrices. Prove that $B=A^{*}$ if and only if $\langle B \mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{v}, A \mathbf{w}\rangle$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{C}^{n}$.

Problem M. 3 Let A be any $n \times n$ matrix. Let V be any linear subspace of \mathbb{C}^{n} and V^{\perp} its orthogonal complement. Prove that if $A V \subset V$ (i.e. $\mathbf{w} \in V \Rightarrow A \mathbf{w} \in V$), then $A^{*} V^{\perp} \subset V^{\perp}$.

Definition M. 6 (Normal, Self-Adjoint, Unitary)

i) An $n \times n$ matrix A is normal if $A A^{*}=A^{*} A$. That is, if A commutes with its adjoint.
ii) An $n \times n$ matrix A is self-adjoint if $A=A^{*}$.
iii) An $n \times n$ matrix U is unitary if $U U^{*}=\mathbb{1}$. Here $\mathbb{1}$ is the $n \times n$ identity matrix. Its (i, j) matrix element is one if $i=j$ and zero otherwise.

Problem M. 4 Let A be a normal matrix. Let λ be an eigenvalue of A and V the eigenspace of A of eigenvalue λ. Prove that V is the eigenspace of A^{*} of eigenvalue $\bar{\lambda}$.

Problem M. 5 Let A be a normal matrix. Let \mathbf{v} and \mathbf{w} be eigenvectors of A with different eigenvalues. Prove that $\mathbf{v} \perp \mathbf{w}$.

Problem M. 6 Let A be a self-adjoint matrix. Prove that
a) A is normal
b) Every eigenvalue of A is real.

Problem M. 7 Let U be a unitary matrix. Prove that
a) U is normal
b) Every eigenvalue λ of U obeys $|\lambda|=1$, i.e. is of modulus one.

Theorem M. 7 Let $n \geq 1$ be an integer. Let \mathcal{F} be a nonempty set of $n \times n$ mutually commuting normal matrices. That is, $A, B \in \mathcal{F} \Rightarrow A B=B A$ and $A \in \mathcal{F} \Rightarrow A A^{*}=A^{*} A$. Then there exists an orthonormal basis $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$ of \mathbb{C}^{n} such that \mathbf{e}_{j} is an eigenvector of A for every $A \in \mathcal{F}$ and $1 \leq j \leq n$.

Proof: By Lemma M.4, with $V=\mathbb{C}^{n}$, there exists a nonzero vector \mathbf{v}_{1} that is an eigenvector for every $A \in \mathcal{F}$. Set $\mathbf{e}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}$ and $V_{1}=\left\{\lambda \mathbf{e}_{1} \mid \lambda \in \mathbb{C}\right\}$. By Problem M.4, \mathbf{e}_{1} is also an eigenvector of A^{*} for every $A \in \mathcal{F}$, so $A^{*} V_{1} \subset V_{1}$ for all $A \in \mathcal{F}$. By Problem M.3, $A V_{1}^{\perp} \subset V_{1}^{\perp}$ for all $A \in \mathcal{F}$.

By Lemma M.4, with $V=V_{1}^{\perp}$, there exists a nonzero vector $\mathbf{v}_{2} \in V_{1}^{\perp}$ that is an eigenvector for every $A \in \mathcal{F}$. Choose $\mathbf{e}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}$. As $\mathbf{e}_{2} \in V_{1}^{\perp}$, \mathbf{e}_{2} is orthogonal to \mathbf{e}_{1}. Define $V_{2}=\left\{\lambda_{1} \mathbf{e}_{1}+\lambda_{2} \mathbf{e}_{2} \mid \lambda_{1}, \lambda_{2} \in \mathbb{C}\right\}$. By Problem M.4, \mathbf{e}_{2} is also an eigenvector of A^{*} for every $A \in \mathcal{F}$, so $A^{*} V_{2} \subset V_{2}$ for all $A \in \mathcal{F}$. By Problem M.3, $A V_{2}^{\perp} \subset V_{2}^{\perp}$ for all $A \in \mathcal{F}$.

By Lemma M.4, with $V=V_{2}^{\perp}$, there exists a nonzero vector $\mathbf{v}_{3} \in V_{2}^{\perp}$ that is an eigenvector for every $A \in \mathcal{F}$. Choose $\mathbf{e}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}$. As $\mathbf{e}_{3} \in V_{2}^{\perp}$, \mathbf{e}_{3} is orthogonal to both \mathbf{e}_{1} and e_{2}. And so on.

