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Inequalities on eigenvalues and singular values

We will denote the singular values of a compact operator K by p,(K), n=1,2,..., arranged
in order decreasing size. The eigenvalues of K will be denoted A\, (K), n = 1,2,..., arranged in

order of decreasing absolute value. Since ||K|| = /[ K * K|,
p (K) = | K.
Also, since every eigenvalue is bounded by the norm,
A (K)] < (K)
Lemma 1.1

pin (K7) = pin (K)

Proof: The singular values of K* are the positive square roots of the eigenvalues of K K*. We may

write K = Y pn (b, Y. Then K* =3 pn(thy, )¢, which implies KK* = 3" 2 (1., -)tb,,. But

this formula shows that the eigenvalues of K K* are u2 (with eigenvectors v,.) [J

Our next proof requires the min—max formula for the eigenvalues of compact self-adjoint

operators. Here is a statement of the min-max formula.

Theorem 1.2 If K is a compact self-adjoint operator, then

An(K) = min max I K|
B1ses 1 WELDT b1
T ll=1

Corollary 1.3 If K is compact, then

K)= min max K
,Ltn( ) DLy 1 YE[DL, o bp 1]t H @ZJH
lwl=1

Proof: This follows from p,(K) = A\, (|K]|) and |||K|¢| = ||[Kv|. U
Theorem 1.4 If K is compact and B is bounded then

pn (K B)
it | < 1Bl )
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Proof: We have
Un(BK) = min max (| BK|]
DLy 1 VE[SL, by 1]t
llwl=1

<B|, min owmax K9]

1oy ®n—1 YE[D1,.vbp 1]t
lpll=1

= [|1Blpn(K)
Theorem 1.5 If A and B are compact then

pntmt1(A+ B) < png1(A) + pimy1(B)

Proof:
max [(A+ Byl < max | Ayl + max Bl
YE[DLs s bntm]t YE[DLs s bptm]t YE[DLse s bmtm] T
lll=1 lll=1 lll=1
< max  [|AY| + max Byl
PYE[P1,--s n ]t YE[Dpt1s s bntml®
llpll=1 =1

Minimizing the left side over ¢1, ..., dnitm gives pntm+1(A+ B). The first term on the right only

involves ¢1, ..., ¢, and the second term only ¢n4+1,..., Pntm. Thus, minimizing the right side
over @1, ..., Optm gives
min max  ||[Ay] + max |1 Bl
D1y s Prtm YE[d1,.-, onll VE[Dpt1s s bntmlt
T ll=1 I ll=1
= min max || AY| + min max |By|]
P1seenybn we[qsuly-u--m% GntlsePrtm vE[Dn L1 Intmlt
wll=1 lwl=1

= pn+1(A4) + pmt1(B)

There is a similar inequality for the singular values of AB. Simon’s book gives a reference to

the proof (due to Fan)

Theorem 1.6 If A and B are compact then

Hntm+1(AB) < 1 (A) pnt1(B)

Here are two inequalities involving products of singular values and eigenvalues.

Theorem 1.7 If A and B are compact then

k

k
H Mn(AB) < H Mn(A)Mn(B)
n=1

n=1

Theorem 1.8 If A is compact then



The proof to these two inequalities uses the exterior tensor powers A¥(H) of the Hilbert
space H. Briefly, every operator A on H gives rise to an operator Ak(A) on Ak('H) satisfying
AF(AB) = A*(A)A*(B). If A is compact and self-adjoint then eigenvalues of A¥(A) are products

of k distinct eigenvalues of A. In particular

k

A (AR(4)) = [T An)

n=1

The first theorem just says
p(AM(AB)) = [[A*(AB)|| = [AM(A)AS(B)]| < [AF(A)[AMB)I] = p (A" (A))a (A*(B))
It is also true that ‘Ak(A)‘ = A¥(|A]). Thus the second theorem is a rephrasing of
A (AR(A))] < pa(AR(A)) = M (IAR(A)]) = A (A*(|A])
One might hope that |\, (A)| < pn(A). While this may not be true, there is Weyl’s inequality

Theorem 1.9 If K is compact and 1 < p < oo then

k

k
DI <Y (K

n=1
The trace ideals 7,

A compact operator K is in Z,, if {u,(K)} € £,. A common notation is

1Ky = [[{pn(E) e,

Operators in Z; are called trace class and operators in Zs are called Hilbert-Schmidt. There are
other trace ideals that are useful occasionaly. For example the spaces 7, ,, are based on the the

weak (P spaces.

Problem 1.1: Use the inequalities in the previous section to prove:
(i) Each Z,, is a subspace whose closure in H is the space of compact operators.

(i) Each Z,, isan ideal, i.e., if K € 7}, and B is bounded then BK, KB € TI,,.

Problem 1.2: 1f A € I, and B € Z,, for which r is Z,. guaranteed to contain AB?

Hilbert Schmidt operators

Suppose a compact operator K is given explicitly as an infinite matrix or an integral operator.

When p # 2, it still may be difficult to decide whether K € Z,,. However, p = 2 is special.
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Theorem 1.10 Let {f;} be an orthonormal basis for H and let k; ; = (fi, K f;) be the matriz
elements of K. Then 3, |ki j|? < oo iff K € Iy and

2 2
D kil = 153
4,
Proof: Suppose Zi_j i 5 |2 < oo. Since the sum of matrix elements is absolutely convergent we may
evaluate it in any order. Thus

Dokl =D (KX K fi) = > (fi, KK ).
i i

%

Write K = > f1n¥n(¢n, ). Then K*K = > 12 ¢, (¢n, ). Therefore

S KK f;) = ZZun (6n, £)] Zunan,ﬁ Zun||¢n||2 Zun

i
The exchange of sums is permitted, since the summands are positive.

If K € 7, we may reverse the argument. []

Now we consider the situation where our (separable) Hilbert space is of the form L?(X,du).
An operator K is called an integral operator if there exists a function K(xz,y) such that for every
f9 € L*(X, dp)

(f.Kg) = /X T@K.y)aly) dnte)dnty)

Example: Animportant class of integral operators are the convolution operators on L2(R™, d%).
These are operators with integral kernels of the forms IC(x,y) = f(z — y) and arise in the
following way. Recall that the Fourier transform F converts differentiation to multiplication. In

other words, for nice functions ¥ (z), FV(z) = £(F)(§), so that
Vi(z) = FLEFy

Thus it is natural to define f(V) to be the operator sending 1 to F 1 f(£)F1). A calculation

shows that this is an integral operator with integral kernel (27) “nfl —y).

Theorem 1.11 Suppose H is a separable Hilbert space L*(X,du). If K(x,y) € L*(X x X, du x dpu)

then IC defines an integral operator in K € Ty with

K N2 = 1Kl 22(x x X, dpx da) - (1.1)

Conversely, every operator K € Ty has an integral kernel K(x,y) € L*(X x X,du x du) such that
(1.1) holds.



Proof: Let { f;} be an orthonormal basis for L?(X, du). Then { f;(z) f;(y)} is an orthonormal basis for
L?(X x X, du x dp). So, if K(x,y) € L2(X x X,du x du) then

K(z,y) = Z kijfi(z)fi(y)

with
1K 22 (x % X, dpxdp) = Z ki ]2

0,J
Butk; ; = (fi, K f;) are the matrix elements of the integral operator K defined by . So by the previous
theorem, K € 7, and (1.1) holds.
On the other hand, if K = 3 1,00y, ) isin I then Y, 12 < oo. Since {1 (z)¢n(y)} is an
orthonormal set in L*(X x X,du x du), >, pntn(x)dn(y) converges in L?(X x X,du x dp) to a
function KC(x, y). Clearly, K is an integral kernel for K, so (1.1) holds. []

Ezample: An operator of the form f(z)g(V) on L%(R", d"x) has integral kernel K(z,y) =
2m) " f(x)g(z — y). If f,g € L*(R™, d"x), then

[ [ k@upaves =en= [ [ii@Pee - P
=0 [lr@Pds [ ek
= (20) £ 32 g3

Thus f(x)g(V) € Zs.

Trace class operators

Theorem 1.12 Suppose that K € Z,. For every orthonormal basis {n;}, >, [(ni, Kn;)| < oo and
the trace of K, defined by

tr(K) = (ns, Kpi)

is basis independent. Moreover |tr(K)| < ||K||1 so that A — tr(A) is a bounded linear functional
on I;. If B is a bounded operator then tr(AB) = tr(BA)

Proof: Let K = %" jin¥n{dn, ). By Cauchy-Schwarz

1/2

1/2
S 1 ) ()| < <Z|<m,wn>|2> (Z |<¢n,m>|2> = alllgall = 1
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Thus

> iy Kmi) I—Z Zun Mo ¥n) (Pns )

| <Zzun (is Y S i)
_iMnZI My Vo) (s )] (1.2)
<> tn l

= (1K1
This implies tr(K) < || K]||1. Also, the absolute convergence in the double sum allows changing the

order of summation in the following calculation.
tr(K) =Y (mi, Kn;)
= Z fin Z M ¥n ) (dns 1)
n
This shows the basis independence. Finally, we find

Zﬂn (mewn) = tl‘(KB)

Notice that the product of two Hilbert Schmidt operators is trace class. In fact
[ K]l = tr(K"K)

and Z; is a Hilbert space with inner product (A4, B) = tr(A*B).
If K on L2(X,du) is given directly by an integral kernel K(z, /) there is no simple necessary and

sufficient condition for K € Z; (see Simon for some results).

Ezxample: Suppose X is a compact smooth Riemannian manifold and du is the Riemannian
density. If K(z, y) is smooth then it defines an operator in i € Z;. The idea behind the proof is
to use an unbounded self-adjoint operator like the Laplace operator A whose singular values (i.e.,
eigenvalues) are either known explicity or can be estimated. Then, even though A is unbounded,

the product AP K defines a bounded operator with integral kernel A2fC(z, y). Then
a(K) = 1tn(APAPK) < |APK [ (A7)

so KisinZ1 if A™Pis.



It need not be true in general that

tr(K) = /K(m,x)du(az). (1.3)

After all, typically the diagonal has measure zero in X x X, so the right side is meaningless. Never-

theless, (1.3) does hold in many situations.

Ezxample: Suppose X is a compact smooth Riemannian manifold and du is the Riemannian

density. If K € 7 and KC(x, y) is continuous then (1.3) holds.

For a matrix, the trace is equal to the sum of the eigenvalues. This is true for operators in Z;
too, but not easy to prove. The result is called Lidskii’s theorem. The proof uses the determinant
det(I 4+ K), which is defined for K € T7;.



