
Compact operators II

filename: compact2.tex

January 17, 2000

Inequalities on eigenvalues and singular values

We will denote the singular values of a compact operator K by µn(K), n = 1, 2, . . ., arranged

in order decreasing size. The eigenvalues of K will be denoted λn(K), n = 1, 2, . . ., arranged in

order of decreasing absolute value. Since ‖K‖ =
√‖K ∗K‖,

µ1(K) = ‖K‖.

Also, since every eigenvalue is bounded by the norm,

|λ1(K)| ≤ µ1(K)

Lemma 1.1

µn(K∗) = µn(K)

Proof: The singular values of K∗ are the positive square roots of the eigenvalues of KK∗. We may

write K =
∑
µn〈φn, ·〉ψn. Then K∗ =

∑
µn〈ψn, ·〉φn, which implies KK∗ =

∑
µ2

n〈ψn, ·〉ψn. But

this formula shows that the eigenvalues of KK∗ are µ2
n (with eigenvectors ψn.)

Our next proof requires the min–max formula for the eigenvalues of compact self-adjoint

operators. Here is a statement of the min–max formula.

Theorem 1.2 If K is a compact self-adjoint operator, then

λn(K) = min
φ1,...,φn−1

max
ψ∈[φ1,...,φn−1]⊥

‖ψ‖=1

‖Kψ‖

Corollary 1.3 If K is compact, then

µn(K) = min
φ1,...,φn−1

max
ψ∈[φ1,...,φn−1]⊥

‖ψ‖=1

‖Kψ‖

Proof: This follows from µn(K) = λn(|K|) and ‖|K|ψ‖ = ‖Kψ‖.

Theorem 1.4 If K is compact and B is bounded then

µn(KB)
µn(BK)

}
≤ ‖B‖µn(K)
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Proof: We have
µn(BK) = min

φ1,...,φn−1
max

ψ∈[φ1,...,φn−1]⊥
‖ψ‖=1

‖BKψ‖

≤ ‖B‖ min
φ1,...,φn−1

max
ψ∈[φ1,...,φn−1]⊥

‖ψ‖=1

‖Kψ‖

= ‖B‖µn(K)

Theorem 1.5 If A and B are compact then

µn+m+1(A+B) ≤ µn+1(A) + µm+1(B)

Proof:
max

ψ∈[φ1,...,φn+m]⊥
‖ψ‖=1

‖(A+B)ψ‖ ≤ max
ψ∈[φ1,...,φn+m]⊥

‖ψ‖=1

‖Aψ‖ + max
ψ∈[φ1,...,φn+m]⊥

‖ψ‖=1

‖Bψ‖

≤ max
ψ∈[φ1,...,φn]⊥

‖ψ‖=1

‖Aψ‖ + max
ψ∈[φn+1,...,φn+m]⊥

‖ψ‖=1

‖Bψ‖

Minimizing the left side over φ1, . . . , φn+m gives µn+m+1(A+B). The first term on the right only

involves φ1, . . . , φn and the second term only φn+1, . . . , φn+m. Thus, minimizing the right side

over φ1, . . . , φn+m gives

min
φ1,...,φn+m

 max
ψ∈[φ1,...,φn]⊥

‖ψ‖=1

‖Aψ‖ + max
ψ∈[φn+1,...,φn+m]⊥

‖ψ‖=1

‖Bψ‖


= min
φ1,...,φn

max
ψ∈[φ1,...,φn]⊥

‖ψ‖=1

‖Aψ‖ + min
φn+1,...,φn+m

max
ψ∈[φn+1,...,φn+m]⊥

‖ψ‖=1

‖Bψ‖

= µn+1(A) + µm+1(B)

There is a similar inequality for the singular values of AB. Simon’s book gives a reference to

the proof (due to Fan)

Theorem 1.6 If A and B are compact then

µn+m+1(AB) ≤ µn+1(A)µm+1(B)

Here are two inequalities involving products of singular values and eigenvalues.

Theorem 1.7 If A and B are compact then

k∏
n=1

µn(AB) ≤
k∏

n=1

µn(A)µn(B)

Theorem 1.8 If A is compact then

k∏
n=1

|λn(A)| ≤
k∏

n=1

µn(A)
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The proof to these two inequalities uses the exterior tensor powers Λk(H) of the Hilbert

space H. Briefly, every operator A on H gives rise to an operator Λk(A) on Λk(H) satisfying

Λk(AB) = Λk(A)Λk(B). If A is compact and self-adjoint then eigenvalues of Λk(A) are products

of k distinct eigenvalues of A. In particular

λ1

(
Λk(A)

)
=

k∏
n=1

λn(A)

The first theorem just says

µ1(Λk(AB)) = ‖Λk(AB)‖ = ‖Λk(A)Λk(B)‖ ≤ ‖Λk(A)‖‖Λk(B)‖ = µ1(Λk(A))µ1(Λk(B))

It is also true that
∣∣Λk(A)

∣∣ = Λk(|A|). Thus the second theorem is a rephrasing of

|λ1(Λk(A))| ≤ µ1(Λk(A)) = λ1(|Λk(A)|) = λ1(Λk(|A|))

One might hope that |λn(A)| ≤ µn(A). While this may not be true, there is Weyl’s inequality

Theorem 1.9 If K is compact and 1 ≤ p <∞ then

k∑
n=1

|λn(K)|p ≤
k∑

n=1

µn(K)p

The trace ideals Ip

A compact operator K is in Ip if {µn(K)} ∈ `p. A common notation is

‖K‖p = ‖{µn(K)}‖`p

Operators in I1 are called trace class and operators in I2 are called Hilbert-Schmidt. There are

other trace ideals that are useful occasionaly. For example the spaces Ip,w are based on the the

weak `p spaces.

Problem 1.1: Use the inequalities in the previous section to prove:

(i) Each Ip is a subspace whose closure in H is the space of compact operators.

(ii) Each Ip is an ideal, i.e., if K ∈ Ip and B is bounded thenBK,KB ∈ Ip.

Problem 1.2: If A ∈ Ip and B ∈ Iq , for which r is Ir guaranteed to containAB?

Hilbert Schmidt operators

Suppose a compact operator K is given explicitly as an infinite matrix or an integral operator.

When p 6= 2, it still may be difficult to decide whether K ∈ Ip. However, p = 2 is special.
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Theorem 1.10 Let {fi} be an orthonormal basis for H and let ki,j = 〈fi,Kfj〉 be the matrix

elements of K. Then
∑

i,j |ki,j |2 <∞ iff K ∈ I2 and

∑
i,j

|ki,j |2 = ‖K‖2
2

Proof: Suppose
∑

i,j |ki,j |2 < ∞. Since the sum of matrix elements is absolutely convergent we may

evaluate it in any order. Thus

∑
i,j

|ki,j |2 =
∑

i

∑
j

〈fi,K
∗fj〉〈fj ,Kfi〉 =

∑
i

〈fi,K
∗Kfi〉.

Write K =
∑

n µnψn〈φn, ·〉.Then K∗K =
∑

n µ
2
nφn〈φn, ·〉. Therefore

∑
i

〈fi,K
∗Kfi〉 =

∑
i

∑
n

µ2
n|〈φn, fi〉|2 =

∑
n

µ2
n

∑
i

|〈φn, fi〉|2 =
∑

n

µ2
n‖φn‖2 =

∑
n

µ2
n

The exchange of sums is permitted, since the summands are positive.

If K ∈ I2, we may reverse the argument.

Now we consider the situation where our (separable) Hilbert space is of the form L2(X, dµ).

An operator K is called an integral operator if there exists a function K(x, y) such that for every

f, g ∈ L2(X, dµ)

〈f,Kg〉 =
∫

X×X

f(x)K(x, y)g(y) dµ(x)dµ(y)

Example: An important class of integral operators are the convolution operators onL2(Rn, dx).

These are operators with integral kernels of the forms K(x, y) = f(x − y) and arise in the

following way. Recall that the Fourier transform F converts differentiation to multiplication. In

other words, for nice functions ψ(x), F∇ψ(x) = ξ(Fψ)(ξ), so that

∇ψ(x) = F−1ξFψ

Thus it is natural to define f(∇) to be the operator sending ψ to F−1f(ξ)Fψ. A calculation

shows that this is an integral operator with integral kernel (2π)−nf̂(x − y).

Theorem 1.11 Suppose H is a separable Hilbert space L2(X, dµ). If K(x, y) ∈ L2(X×X, dµ×dµ)

then K defines an integral operator in K ∈ I2 with

‖K‖2 = ‖K‖L2(X×X,dµ×dµ). (1.1)

Conversely, every operator K ∈ I2 has an integral kernel K(x, y) ∈ L2(X ×X, dµ× dµ) such that

(1.1) holds.
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Proof: Let {fi} be an orthonormal basis for L2(X, dµ). Then {fi(x)fj(y)} is an orthonormal basis for

L2(X ×X, dµ× dµ). So, if K(x, y) ∈ L2(X ×X, dµ× dµ) then

K(x, y) =
∑
i,j

ki,jfi(x)fj(y)

with

‖K‖L2(X×X,dµ×dµ) =
∑
i,j

|ki,j |2

But ki,j = 〈fi,Kfj〉 are the matrix elements of the integral operatorK defined byK. So by the previous

theorem,K ∈ I2 and (1.1) holds.

On the other hand, if K =
∑

n µnψn〈φn, ·〉 is in I2 then
∑

n µ
2
n < ∞. Since {ψn(x)φn(y)} is an

orthonormal set in L2(X × X, dµ × dµ),
∑

n µnψn(x)φn(y) converges in L2(X × X, dµ × dµ) to a

function K(x, y). Clearly, K is an integral kernel for K , so (1.1) holds.

Example: An operator of the form f(x)g(∇) on L2(Rn, dnx) has integral kernel K(x, y) =

(2π)−nf(x)ĝ(x− y). If f, g ∈ L2(Rn, dnx), then∫ ∫
|K(x, y)|2dnydnx = (2π)−2n

∫ ∫
|f(x)|2|ĝ(x− y)|2dnydnx

= (2π)−2n

∫
|f(x)|2dnx

∫
|ĝ(z)|2dny

= (2π)−2n‖f‖2
L2‖g‖2

L2

Thus f(x)g(∇) ∈ I2.

Trace class operators

Theorem 1.12 Suppose that K ∈ I1. For every orthonormal basis {ηi},
∑

i |〈ηi,Kηi〉| < ∞ and

the trace of K, defined by

tr(K) =
∑

i

〈ηi,Kηi〉

is basis independent. Moreover |tr(K)| < ‖K‖1 so that A 7→ tr(A) is a bounded linear functional

on I1. If B is a bounded operator then tr(AB) = tr(BA)

Proof: Let K =
∑

n µnψn〈φn, ·〉. By Cauchy-Schwarz

∑
i

|〈ηi, ψn〉〈φn, ηi〉| ≤
(∑

i

|〈ηi, ψn〉|2
)1/2(∑

i

|〈φn, ηi〉|2
)1/2

= ‖ψn‖‖φn‖ = 1

5



Thus ∑
i

|〈ηi,Kηi〉| =
∑

i

∣∣∣∣∣∑
n

µn〈ηi, ψn〉〈φn, ηi〉
∣∣∣∣∣

≤
∑

i

∑
n

µn|〈ηi, ψn〉〈φn, ηi〉|

=
∑

n

µn

∑
i

|〈ηi, ψn〉〈φn, ηi〉|

≤
∑

n

µn

= ‖K‖1

(1.2)

This implies tr(K) ≤ ‖K‖1. Also, the absolute convergence in the double sum allows changing the

order of summation in the following calculation.

tr(K) =
∑

i

〈ηi,Kηi〉

=
∑

i

∑
n

µn〈ηi, ψn〉〈φn, ηi〉

=
∑

n

µn

∑
i

〈ηi, ψn〉〈φn, ηi〉

=
∑

n

µn〈φi, ψn〉.

This shows the basis independence. Finally, we find

tr(BK) =
∑

n

µn(K)〈φn, Bψn〉 = tr(KB).

Notice that the product of two Hilbert Schmidt operators is trace class. In fact

‖K‖2 = tr(K∗K)

and I2 is a Hilbert space with inner product 〈A,B〉 = tr(A∗B).

If K on L2(X, dµ) is given directly by an integral kernel K(x, y) there is no simple necessary and

sufficient condition for K ∈ I1 (see Simon for some results).

Example: Suppose X is a compact smooth Riemannian manifold and dµ is the Riemannian

density. If K(x, y) is smooth then it defines an operator in K ∈ I1. The idea behind the proof is

to use an unbounded self-adjoint operator like the Laplace operator ∆ whose singular values (i.e.,

eigenvalues) are either known explicity or can be estimated. Then, even though ∆ is unbounded,

the product ∆pK defines a bounded operator with integral kernel ∆p
xK(x, y). Then

µn(K) = µn(∆−p∆pK) ≤ ‖∆pK‖µn(∆−p)

soK is in I1 if ∆−p is.
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It need not be true in general that

tr(K) =
∫

K(x, x)dµ(x). (1.3)

After all, typically the diagonal has measure zero in X ×X , so the right side is meaningless. Never-

theless, (1.3) does hold in many situations.

Example: Suppose X is a compact smooth Riemannian manifold and dµ is the Riemannian

density. If K ∈ I1 and K(x, y) is continuous then (1.3) holds.

For a matrix, the trace is equal to the sum of the eigenvalues. This is true for operators in I1

too, but not easy to prove. The result is called Lidskii’s theorem. The proof uses the determinant

det(I +K), which is defined for K ∈ I1.
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