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Preliminaries

We assume that all operators act on a separable (infinite dimensional) Hilbert space H. An
operator A is called invertible if there is a bounded operator A~! such that AA™t = A" 1A =1.

The polar decomposition of a bounded operator:

Lemma 1.1 /RS VI.10] Every operator A can be written as a product A = U|A| where |A| =
(A*A)Y? and U is a partial isometry with KerU = KerA and RanU = RanA.

Operator valued analytic functions: A bounded operator valued function F(z) is called ana-

lytic if the complex derivative exists, i.e., for every z there is an operator F’(z) with

lim |[w™ (F(z 4+ w) — F(2)) — F'(2)|| =0

w—0

Here || - || denotes the operator norm.

Problem 1.1: Suppose that F'(z) is a continuous family of bounded operators. Show that F'(z)

is analytic if (¢, F'(z)%)) is an analytic function for every choice of ¢, 1

Definitions and basic propeties

A bounded operator F' has finite rankif its range is a finite dimensional subspace of H. A operator

of finite rank is essentially an n x n matrix.

Problem 1.2: Show that every finite rank operator can be written
n
F=> (i)
i=1

Is the adjoint F'* also finite rank?




A bounded operator K is compact if it is the norm limit of finite rank operators. (An alternative
definition is that K is compact if it maps the unit ball in H to a set with compact closure. For a Hilbert
space, these two definitions are equivalent, but not in a Banach space, where the theory of compact
operators is more difficult.)

The compact operators form an ideal.
Theorem 1.2 If K is compact and A is bounded then K*, AK and KA are compact.

Theorem 1.3 A compact operator maps weakly convergent sequences into morm convergent se-

quences.

Proof: Let K be acompact operator and suppose f, — f is a weakly convergent sequence. Then g,, =
fn — f converges weakly to zero. Every weakly convergent sequence is bounded, so sup,, ||g.| < C.
Given e > 0 find a finite rank operator F' with || K — F|| < ¢/C. Then
K fn— Kfll = [Kgnll = [(K = F + F)gul
< K = F)[[llgnll + | Fgnll
< e+t | Fonll
But Fg, = Ei]\il (@i, gn)thn. This tends to zero in norm since each {¢;, g,) — 0 by weak convergence,

and the sum is finite. Thus

lim |Kf,— Kf| <e
n— 00

for every e. [

FEzxample: This theorem can be used together with a Mourre estimate and the Virial theorem to
show that eigenvalues of a Schrodinger operator H cannot accumulate in an interval I. A Mourre

estimate is an inequality of the form
E[[H,AlE; > aE} + K

Where o > 0 and FE is a spectral projection for H corresponding to the interval I. If ¢ is an
eigenfunction of H, i.e., HY = A\ with eigenvalue A contained in the interval I, then E 1) = 1.

The Virial theorem is the statement that (v, [H, A]y)) = 0. Formally, this is obviously
true (by expanding the commutator). However, in applications, H and A are both unbounded
operators, and ) need not lie in the domain of A. In this situation one the commutator [H, A] is
defined using a limiting process, and the Virial theorem may be false (see Georgescu and Gérard
12

Suppose, though, that both the Mourre estimate and the Virial theorem hold. Then there

cannot be an infinite sequence of eigenvalues A; all contained in I. For suppose there was
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such a sequence. Then the corresponding orthonormal eigenvectors v; converge weakly to zero.

Moreover Er1); = 1); so by the Virial theorem and the Mourre estimate

0 = (¢, [H, Alv;) = (y, Er[H, AJEr;) > al| Er;||* + (¢, Kiby) = o + (1, Kabj)

But 1/; converge weakly to zero, so K, tends to zero in norm. Thus (1;, K1;) — 0 which

gives rise to the contradiction 0 > .

The Analytic Fredholm Theorem

In many situations one wants to find a solution ¢ to an equation of the form
I-K)p=f

If the operator (I — K) isinvertible then there is a unique solution given by ¢ = (I — K ) ~! f. Otherwise,

for a general opeator K, the analysis of this equation is delicate.

Problem 1.3: Find a bounded operator A such that I — A is not invertible, but A does not have

1 as an eigenvalue (i.e., the kernel of I — A is zero).

There are two situations where this equation is easy to analyze. The firstis when || K'|| < 1. In this

case the inverse (I — K)~! exists and is given by the convergent Neumann expansion

[e )

(I-K)'=> K"

n=0

The other situation where the equation is easy to understand is when K has finite rank. In this case
(I — K) isinvertible if and only if K does not have eigenvalue 1. (If K does have 1 as an eigenvalue,
then the equation has either no solutions or infinitely many solutions, depending on whether f is in
the range of I — K). This situation can be generalized to compact operartors K.

Notice that in the second situation, if f = 0, then either I — K is invertible, or the equation has a
non-trivial solution (any element in the kernel of (I — K)). This dichotomy is known as the Fredholm
alternative.

In fact it is very fruitful to consider not a single compact operator K but an analytic family of
compact operators K (z) defined on some domain D in the complex plane.

Suppose for a moment that K (z) is a matrix with eigenvalues A\ (z), ..., A, (2). Let S denote the
values of z for which I — K (z) is not invertible. Then S is the union of the set of zeros of the functions
1 —=A1(2),...,1 = An(2). This is the same as the set of zeros of [ [, (1 — Ax(2)) = det(I — K(2)). Since
det(I — K (z)) is analytic, S is the set of zeros of an analytic function: either all of D (in the case that

det(I — K (z)) is identically equal to 0) or a discrete set, i.e., a set with no accumulation points in D.
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Theorem 1.4 [RS VI.16] Let K(z) be a compact operator valued analytic function of z, defined
for z in some domain D in the complex plane. Then either

(i) I — K(z) is never invertible, or

(i) I — K(z) is invertible for all z in D\S where S is a discrete set in D. In this case
(I — K(2))~! is meromorphic in D with finite rank residues at each point in S. For each point in

S, the equation (I — K (2))Y = 0 has non-trivial solutions.

Proof: The main step in the proof is this local result. Fix zy € D. There is a disk about zy such
| K(z) — K(z0)|| < 1/2for all z in this disk. There is a finite rank operator F' = 7" | 1;{¢;,-) with
|K(20) — F|| < 1/2. Let A(z) = K(z) — F. Then

AR = 1K (2) = K(20) + K(20) = F|| < [[K(2) = K(20)[| + [ K (20) = F[| <1
for z in the disk. So for z in the disk, I — A(z) is invertible and
I-K()=1-Az)—F=(I-F(I-A()"H(I - A(2))

This shows that I — K(z) is invertible if and only if the finite rank operator (I — F(I — A(z))™!) is.
But (I — F(I — A(z))~1) isinvertible unless F(I — A(z))~!) has eigenvalue 1. At these points z there

is a vector 1 such that
F(I—A(2) ) = ilei, (I — A(2))"'9) =4
i=1
Since ¢ lies in the range of F we may expand ¢ = > 8;4; and find that

> Bilei. (I = A2)Mbj)vhi = Y Bis

ij=1

pr

From this we conclude that for these z, the vector 3 = | : | lies in the kernel of the n x n matrix

Br
I —[(¢, (I = A(z))""4;)], s0

det(I = [(¢i, (I = A(2))""9;)]) =0

In other words, the points of non-invertibility for I — K (z) in the disk are the zeros of an analytic
function.

At points of invertibility we have
(I-K()'=I-AR)-FI-A@z)H™"

In the disk about zg, (I — A(z))~! is analytic. The inverse of (I — F(I — A(z))~!) can be written in

terms of cofactors. This leads to a proof of the second part of the theorem. []

4



The Fredholm alternative for compact operators

Theorem 1.5 If K is compact, then either I — K is invertible or there is a non-trivial solution to
Ky =1.

Proof: Apply the analytic Fredholm theorem with K(z) = 2K atz = 1. [J

Riesz-Schauder Theorem

Theorem 1.6 If K is compact, the o(K) is a discrete set with except for a possible accumulation

point at 0. Every non-zero A € o(K) is an eigenvalue of finite multiplicity.

Proof: We have K —\I = —\(I — A~ K), so we may use the analytic Fredholm theorem with z = A~ 1,
0

Hilbert-Schmidt Theorem

Theorem 1.7 If K is compact and self-adjoint then there is an orthonormal basis of eigenvectors

{tn} with K1y, = Aty and A, — 0.

The main point here is that a self-adjoint operator is zero if its spectral radius is zero (see Reed-

Simon).
Canonical form for compact operators

Theorem If K is compact, then there exist orthonormal sets {1);} and {¢;} and positive numbers

W so that
K = ZM@/&', ) Pi
The positive numbers p; are eigenvalues of |K| and are called the singular values of K.

This is proven using the polar decomposition X = U|K| and the Hilbert-Schmidt theorem for

| K|. The vectors v; are the eigenvectors of K and ¢, = U;.



