Discrete Probability Distributions

Uniform Distribution

Experiment obeys: all outcomes equally probable Random variable: outcome **Probability distribution:** if k is the number of possible outcomes,

$$p(x) = \begin{cases} \frac{1}{k} & \text{if } x \text{ is a possible outcome} \\ 0 & \text{otherwise} \end{cases}$$

Example: tossing a fair die (k = 6)

Bernoulli Distribution

Experiment obeys: (1) a single trial with two possible outcomes (success and failure)

(2) $P(\{\text{trial is successful}\}) = p$ Random variable: number of successful trials (zero or one) **Probability distribution:** $p(x) = p^{x}(1-p)^{n-x}$ Mean and variance: $\mu = p, \sigma^2 = p(1-p)$

Example: tossing a fair coin once

Binomial Distribution

Experiment obeys: (1) n repeated trials

(2) each trial has two possible outcomes (success and failure)

(3) $P(\{i^{\text{th}} \text{ trial is successful}\}) = p \text{ for all } i$

(4) the trials are independent

Random variable: number of successful trials

Probability distribution: $b(x;n,p) = \binom{n}{x}p^x(1-p)^{n-x}$ Mean and variance: $\mu = np, \sigma^2 = np(1-p)$

Example: tossing a fair coin n times

Approximations: (1) $b(x; n, p) \approx p(x; \lambda = pn)$ if $p \ll 1, x \ll n$ (Poisson approximation) (2) $b(x; n, p) \approx n(x; \mu = pn, \sigma = \sqrt{np(1-p)})$ if $np \gg 1, n(1-p) \gg 1$

(Normal approximation)

Geometric Distribution

Experiment obeys: (1) indeterminate number of repeated trials

(2) each trial has two possible outcomes (success and failure)

(3) $P(\{i^{\text{th}} \text{ trial is successful}\}) = p \text{ for all } i$

(4) the trials are independent

Random variable: trial number of first successful trial

Probability distribution: $p(x) = p(1-p)^{x-1}$ **Mean and variance:** $\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$ **Example:** repeated attempts to start an engine, or playing a lottery until you win

Negative Binomial Distribution

Experiment obeys: (1) indeterminate number of repeated trials

- (2) each trial has two possible outcomes (success and failure)
- (3) $P(\{i^{\text{th}} \text{ trial is successful}\}) = p \text{ for all } i$
- (4) the trials are independent
- (5) keep going until r^{th} success

Random variable: trial number on which r^{th} success occurs

Probability distribution: $b^*(x;r,p) = \binom{x-1}{r-1}p^r(1-p)^{x-r}$

Mean and variance: $\mu = \frac{r}{p}, \sigma^2 = \frac{r(1-p)}{p^2}$ Example: fabricating r nondefective computer chips

Poisson Distribution

Experiment obeys: count the number of occurrences of some event in a specified time interval or in a specified region of space where:

- (1) the events occur at a point in time or space
- (2) the number of events occurring in one region is independent of the number occurring in any disjoint region
- (3) the probability of more than one event occurring at the same point is negligible
- (4) the probability of n events in region #1 is the same as the probability of n events in region #2, when the regions have the same size

Random variable: number of events occurring in the given time interval or region of space

Probability distribution: $p(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$ where λ is the average number of events in the given region Mean and variance: $\mu = \lambda$, $\sigma^2 = \lambda$

Example: telephone calls arriving at a switchboard in a specified one hour period

Hypergeometric Distribution

Experiment obeys: (1) a random sample of size n is selected from N items

(2) there are k items of one type (called successes) and N - k items of another type (called failures) **Random variable:** number of successes selected

Random variable: number of successes selected **Probability distribution:** $h(x; N, n, k) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n-x}}$

Mean and variance: $\mu = n \frac{k}{N}$, $\sigma^2 = \frac{N-n}{N-1} n \frac{k}{N} \left(1 - \frac{k}{N}\right)$ Example: selecting a random sample of 5 spark plugs from a batch of 40 of which 3 are defective