Simple ODE Solvers - Derivation

These notes provide derivations of some simple algorithms for generating, numeri-

cally, approximate solutions to the initial value problem

y'(t) = f(t, ()
y(to) = yo

Here f(t,y) is a given function, ¢y is a given initial time and yq is a given initial value for y.

The unknown in the problem is the function y(t). We start with

Euler’s Method

Our goal is to determine (approximately) the unknown function y(t) for ¢t > t,. We
are told explicitly the value of y(tp), namely yo. Using the given differential equation, we can

also determine exactly the instantaneous rate of change of y at time tg.

y'(to) = f(to, y(to)) = f(to,v0)

If the rate of change of y(t) were to remain f(to,yo) for all time, then y(¢) would be exactly
Yo + f(to, yo) (t —tg). The rate of change of y(¢) does not remain f(to, yo) for all time, but it
is reasonable to expect that it remains close to f (to, yo) for t close to tg. If this is the case,
then the value of y(¢) will remain close to yg + f(to, yo) (t — to) for t close to tg. So pick a

small number h and define
ty =to+h
y1 = yo + f(to,y0) (t1 — to) = yo + f(to, yo)h
By the above argument
y(t1) =

Now we start over. We now know the approximate value of y at time ¢;. If y(1) were exactly
Y1, then the instantaneous rate of change of y at time t; would be exactly f(¢1,y1). If this
rate of change were to persist for all future time, y(t) would be exactly vy + f(t1,31)(t —t1) .

@ Joel Feldman. 1999. All rights reserved. 1

As y(t1) is only approximately y; and as the rate of change of y(¢) varies with ¢, the rate of
change of y(t) is only approximately f(¢1,y;) and only for ¢ near ¢;. So we approximate y(t)
by y1 + f(tl,yl)(t —t1) for t bigger than, but close to, t;. Defining

to=t1 +h=1ty+2h

y2 = y1+ f(t1,01) (e —t1) = v + f(t1, 1) R
we have

y(ta) ~ y2

We just repeat this argument ad infinitum. Define, for n =0,1,2,3,---

t, = to +nh

Suppose that, for some value of n, we have already computed an approximate value y,, for
y(t,). Then the rate of change of y(t) for ¢ close to t,, is f (¢, y(t)) = f(tn, y(tn)) = f(tn, yn)
and, again for ¢ close to t,, y(t) = yn + f(tn, yn)(t — t,). Hence

y(tn—l—l) X UYn+l = Yn T f(tna yn)h (Eul)

This algorithm is called Euler’s Method. The parameter h is called the step size.
Here is a table applying a few steps of Euler’s method to the initial value problem

y'=-2t+y

y(0) =3
with step size h = 0.1. For this initial value problem
flt,y) =2t +y

to=0

Yo =3
Of course this initial value problem has been chosen for illustrative purposes only. The exact

solution is, easily, y(t) = 2 + 2t + €.

tn Yn f(tn,yn) = =2t +yn Yn+1 = Yn + f(tn, yn) x h

0.0 | 3.000 | —2%0.0+ 3.000 = 3.000 | 3.000 + 3.000 % 0.1 = 3.300
0.1 | 3.300 | —2%0.1+3.300=3.100 | 3.300 + 3.100 % 0.1 = 3.610
0.2 | 3.610 | —2%0.2+3.610=3.210 | 3.610+ 3.210% 0.1 = 3.931
0.3 | 3.931 | —2%0.3+3.931 =3.331 | 3.931 +3.331 %x0.1 = 4.264
04 | 4264 | —2x0.4+4.264 = 3.464 | 4.264 + 3.464 % 0.1 = 4.611
0.5 | 4.611

U W~ O3

@ Joel Feldman. 1999. All rights reserved. 2

The Improved Euler’s Method

Euler’s method is one algorithm which generates approximate solutions to the initial
value problem
y'(t) = f(t,y(t))
y(to) = o
In applications, f(t¢,y) is a given function and ty and yo are given numbers. The function
y(t) is unknown. Denote by ¢(t) the exact solution for this initial value problem. In other

words ¢(t) is the function that obeys
¢ (t) = f(t, (1))
¢(to) = Yo
exactly.
Fix a step size h and define t,, = tg + nh. We now derive another algorithm that

generates approximate values for ¢ at the sequence of equally spaced time values tg, t1, ta, - -

We shall denote the approximate values y, with

Yn = Sp(tn)

By the fundamental theorem of calculus and the differential equation, the exact solution

obeys

tn+1

Pltar) = pltn) + [¢/(0)
t?L
tn+1
—olt)+ [F(t (o)

t?L

Fix any n and suppose that we have already found wo, y1, -+, yn. Our algorithm for

computing y,+1 will be of the form

tn+1
Yn+1 = Yn + approximate value for / f (t, 90(15)) dt
t

In fact Euler’s method is of precisely this form. In Euler’s method, we approximate

f(t,(t)) for t,, <t < 41 by the constant f(¢n,yn). Thus

trn41 tnt1
Euler’s approximate value for / f(t, gp(t)) dt = / f(tn, yn) dt = f(tn, yn)h
t t

n n

@ Joel Feldman. 1999. All rights reserved. 3

The area of the complicated region 0 <y < f(t, gp(t)), tn, <t <t,y+1 (represented by the
shaded region under the parabola in the left half of the figure below) is approximated by the
area of the rectangle 0 <y < f(tn,yn), t, <t <t,+1 (the shaded rectangle in the right
half of the figure below).

f(tnso(tn)) f(tn, o(tn))
— F(t,o(t) — F(t ot
Fltnmn) — (- 9(0) Fltmn) — (- 0(0)

tn tna1 tn, tnt1
Our second algorithm, the improved Euler’s method, gets a better approximation
by attempting to approximate by the trapezoid on the right below rather than the rectangle
on the right above. The exact area of this trapezoid is the length h of the base multiplied

f(tntrs o(tngr)) — _ F(tnrts ptntn)) — -

F (b olt) f(t o)) Pl lta) £t (1))

tn tn_|_1 tn tn—l—l
by the average, [f (tn, P(tn)) + f(tnt1, @(tnt1))], of the heights of the two sides. Of course

we do not know ¢(t,,) or ¢(t,+1) exactly. Recall that we have already found yo, - - -, y, and
are in the process of finding y,11. So we already have an approximation for ¢(¢,), namely

Yn, but not for ¢(¢,,41). Improved Euler uses

P(tni1) = @(tn) + @ (tn)h = Y + f(tn, yn)h
in approximating 1[f (tn, ¢(tn)) + f (tnt1, ¢(tns1))]. Altogether

tn41
Improved Euler’s approximate value for / f(t,p(t)) dt
t

n

—1 [f(tn,yn) + f(tn+1,yn + f<tmy”)h>}h

so that the improved Euler’s method algorithm is

y(tn-i-l) N Yn+1 = Yn + % [f (tna yn) + f(tn—l—byn + f(tn, yn)h’>:| h (ImpEuD

@ Joel Feldman. 1999. All rights reserved. 4

Here are the first two steps of the improved Euler’s method applied to
y = —2t+y
y(0) =3
with A = 0.1. In each step we compute f(t,,y,), followed by y,, + f(t,, yn)h, which we denote
Jnt1, followed by f(tni1, Gn+1), followed by Y1 = yn + 5 [f (tn, Yn) + f (tns1, Gng1) | b

to=0 yo=3 — f(to,yo) = —2%0+3=3
— J1=3+3%01=33
— f(ti, 1) = —2%01+33=31
— y1 =3+ 3[3+3.1] 0.1 =3.305
t1 =01 y; =3305 = f(t1,y1)=—2%0.1+3.305=3.105
= §2 = 3.305 + 3.105 % 0.1 = 3.6155
— f(ta, o) = —2% 0.2 + 3.6155 = 3.2155
— y2 = 3.305 + 2[3.105 + 3.2155] 0.1 = 3.621025

Here is a table which gives the first five steps.

no| tn Yn f@nyyn) | Untr | ftng1,0n41) | Yntr
0 0.0 | 3.000 3.000 3.300 3.100 3.305
1 0.1 | 3.305 3.105 3.616 3.216 3.621
2 0.2 | 3.621 3.221 3.943 3.343 3.949
3 0.3 | 3.949 3.349 4.284 3.484 4.291
4 0.4 | 4.291 3.491 4.640 3.640 4.647
5 0.5 | 4.647

The Runge-Kutta Method

The Runge-Kutta algorithm is similar to the Euler and improved Euler methods in

that it also uses, in the notation of the last section,

tn+1
Yn+1 = Yn + approximate value for / f(t,o(t)) dt
t

n

@ Joel Feldman. 1999. All rights reserved. 5

But rather than approximating Lt:“ f (t, go(t)) dt by the area of a rectangle, as does Euler,
or by the area of a trapezoid, as does improved Euler, it approximates by the area under a
parabola. That is, it uses Simpson’s rule. According to Simpson’s rule (if you don’t know

Simpson’s rule, just take my word for it)

tn+h
/t F(t (1)) di ~ b [f(tn, 0(tn)) +Af (b + 2, 0(tn + 2)) + f(tn + by o(tn + h))}

As we don’t know ¢(t,,), ¢(t, + &) or ¢(t, + h), we have to approximate them as well. The

Runge-Kutta algorithm, incorporating all these approximations, is

k1= f(tn, Yn)

ko= f(tn+ 2hoyn + L2ky 1)
kn,3 = f(tn + 3hyn + Skno) (RK)
kna = f(tn + R, yn + hkn3)

Yntl = Yn + % [kn,l + 2kn,2 + 2kn,3 + kn,4]

Here are the first two steps of the Runge-Kutta algorithm applied to

y' = -2t +y

@ Joel Feldman. 1999. All rights reserved. 6

with h = 0.1.

to=0 Yo =3

— ko1=f(0,3)=-2%0+3=3

= Yo + 2koy =3+0.05%3 =3.15

— ko2 = f(0.05,3.15) = =2 % 0.05 4 3.15 = 3.05

— Yo + 2koo = 3+ 0.05 x 3.05 = 3.1525

— kos = f(0.05,3.1525) = —2 % 0.05 + 3.1525 = 3.0525

= Yo + hko3 = 3+ 0.1 % 3.0525 = 3.30525

— koa = f(0.1,3.30525) = —2 % 0.1 + 3.30525 = 3.10525

= y1 =3+ %13 + 2% 3.05 + 2 % 3.0525 + 3.10525] = 3.3051708
t1 =01 g =3.3051708

ki1 = f(0.1,3.3051708) = —2 % 0.1 4+ 3.3051708 = 3.1051708
Y1+ %kl,l = 3.3051708 + 0.05 * 3.1051708 = 3.4604293
k12 = f(0.15,3.4604293) = —2 % 0.15 + 3.4604293 = 3.1604293
Y1+ %kl’g = 3.3051708 + 0.05 * 3.1604293 = 3.4631923
ki3 = f(0.15,3.4631923) = —2 % 0.15 + 3.4631923 = 3.1631923

y1 + hk13 = 3.3051708 + 0.1 * 3.4631923 = 3.62149

k14 = £(0.2,3.62149) = —2 % 0.2 + 3.62149 = 3.22149

e

y2 = 3.3051708 + % [3.1051708 4 2 x 3.1604293+
+ 2% 3.1631923 + 3.22149] = 3.6214025

1o =0.2 yo =3.6214025

and here is a table giving the first five steps. The intermediate data is only given to three

decimal places even though the computation has been done to many more.

@ Joel Feldman. 1999. All rights reserved. 7

o | Yn | Kn1 | Uni | kn2 | Yn2 | K3 | Un3 | kna Yn+1

0.0 3.000] 3.000 | 3.150 | 3.050 | 3.153 | 3.053 | 3.305 | 3.105 | 3.305170833
0.113.305]3.105 | 3.460 | 3.160 | 3.463 | 3.163 | 3.621 | 3.221 | 3.621402571
0.2]3.621]3.221 | 3.782 | 3.282 | 3.786 | 3.286 | 3.950 | 3.350 | 3.949858497
0.313.95013.350|4.117 | 3.417 | 4.121 | 3.421 | 4.292 | 3.492 | 4.291824240
0.414.29213.492 | 4.466 | 3.566 | 4.470 | 3.570 | 4.649 | 3.649 | 4.648720639
0.54.648

TR W N R O

These notes have, hopefully, motivated the Euler, improved Euler and Runge-Kutta
algorithms. So far we not attempted to see how efficient and how accurate the algorithms
are. A first look at those questions is provided in the notes “Simple ODE Solvers — Error

Behaviour”.

@ Joel Feldman. 1999. All rights reserved. 8

