
Simple ODE Solvers - Error Behaviour

These notes provide an introduction to the error behaviour of Euler’s Method, the

improved Euler’s method and the Runge–Kutta algorithm for generating approximate solu-

tions to the initial value problem

y′(t) = f
(

t, y(t)
)

y(t0) = y0

Here f(t, y) is a given function, t0 is a given initial time and y0 is a given initial value for y.

The unknown in the problem is the function y(t).

Two obvious considerations in deciding whether or not a given algorithm is of any

practical value are (a) the amount of computational effort required to execute the algorithm

and (b) the accuracy that this computational effort yields. For algorithms like our simple

ODE solvers, the bulk of the computational effort usually goes into evaluating the function

f(t, y). Euler’s method uses one evaluation of f(t, y) for each step; the improved Euler’s

method uses two evaluations of f per step; the Runge–Kutta algorithm uses four evaluations

of f per step. So Runge–Kutta costs four times as much work per step as does Euler. But

this fact is extremely deceptive because, as we shall see, you typically get the same accuracy

with a few steps of Runge–Kutta as you do with hundreds of steps of Euler.

To get a first impression of the error behaviour of these methods, we apply them to

a problem that we know the answer to. The solution to the first order constant coefficient

linear initial value problem
y′(t) = y − 2t

y(0) = 3

is

y(t) = 2 + 2t+ et

In particular, the exact value of y(1), to ten decimal places, is 6.7182818285. The following

table lists the error in the approximate value for this number generated by our three methods

applied with three different step sizes. It also lists the number of evaluations of f required

to compute the approximation.

c© Joel Feldman. 2000. All rights reserved. 1



Euler Improved Euler Runge–Kutta

steps error #evals error #evals error #evals

5 2.3× 10−1 5 1.6× 10−2 10 3.1× 10−5 20

50 2.7× 10−2 50 1.8× 10−4 100 3.6× 10−9 200

500 2.7× 10−3 500 1.8× 10−6 1000 3.6× 10−13 2000

Observe

• Using 20 evaluations of f worth of Runge–Kutta gives an error 90 times smaller

than 500 evaluations of f worth of Euler.

• With Euler’s method, decreasing the step size by a factor of ten appears to reduce

the error by about a factor of ten.

• With improved Euler, decreasing the step size by a factor of ten appears to reduce

the error by about a factor of one hundred.

• With Runge–Kutta, decreasing the step size by a factor of ten appears to reduce

the error by about a factor of about 104.

So it looks like

approx value of y(1) given by Euler with step size h ≈ y(1) +KEh

approx value of y(1) given by improved Euler with step size h ≈ y(1) +KIEh
2

approx value of y(1) given by Runge–Kutta with step size h ≈ y(1) +KRKh4

with some constants KE , KIE and KRK . To test these conjectures further, I have applied

our three methods with about ten different step sizes of the form 1
2m with m integer. On the

next page are three graphs, one for each method. Each contains a plot of log2 en, the (base 2)

logarithm of the error for step size 1
n , against the logarithm (of base 2) of n. The logarithm

of base 2 is used because log2 2
m = m is nice and simple.

Notice that if, for some algorithm,

approx value of y(1) with step size h = y(1) +Khk

then the error with step size 1
n is en = K 1

nk and obeys log2 en = log2 K − k log2 n . The

graph of log2 en against log2 n is a straight line of slope −k.

On each of the three graphs, I have also plotted a straight line, chosen by linear

c© Joel Feldman. 2000. All rights reserved. 2



Error in the approximation, with step size 1
n
, to y(1) where y′(t) = y − 2t, y(0) = 3

■

■

■

■

■

■

■

■

■

■

■

■

Y = log2 en

1 2 3 4 5 6 7 8 9 10 11 12 13

-13
-12

-11
-10
-9
-8
-7

-6
-5

-4
-3

-2
-1

x = log2 n

Y = 0.414− 0.998x

Euler

■

■

■

■

■

■

■

■

■

■

■

■

■

Y = log2 en

1 3 5 7 9 11 13

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

x = log2 n

Y = −1.180− 1.997x

Improved Euler

■

■

■

■

■

■

■

■

■

■

Y = log2 en

1 3 5 7 9 11 13

-41

-39

-37

-35

-33

-31

-29

-27

-25

-23

-21

-19

-17

-15

-13

-11

-9

-7

-5

-3

-1 x = log2 n

Y = −5.508− 3.997x

Runge Kutta

c© Joel Feldman. 2000. All rights reserved. 3



regression to best fit the data. (No, linear regression is not part of this course.) It sure looks

like k = 1 for Euler, k = 2 for improved Euler and k = 4 for Runge–Kutta.

This procedure can still be used even if we do not know the exact value of y(1). Call

Ah the approximate value with step size h and call A the (unknown) exact value. If

Ah = A+Khk (1)

with K and k constant (but also unknown), then plotting

log(Ah − Ah/2) = log
(

Khk −K
(

h
2

)k)
= logK

(

1− 1
2k

)

+ k logh (2)

against logh also gives a straight line of slope k.

So far we have only looked at the error in the approximate value of y(tf ) as a

function of the step size h with tf held fixed. The graphs below illustrate how the error

■ ■ ■ ■ ■ ■ ■
■

■
■

■
■

■

■

■

■

■

■

■

■

■

■

■

■

■

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

1.0

2.0

3.0

4.0

t

100 e(t) Error in the y(t) generated by improved Euler
with step size .1 applied to y′ = y − 2t, y(0) = 3

■

■

■

■

■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■

■

■

■

■

■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

■
■

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-9

-8

-7

-6

-5

-4

-3

-2

-1

t

log e(t)

c© Joel Feldman. 2000. All rights reserved. 4



behaves as a function of tf , with h held fixed. The error grows exponentially with t, at least

for this example.

Local Truncation Error for Euler’s Method

We now try develop some understanding as to why we got the above experimental

results. We start with the error generated by a single step of Euler’s method, under the

assumptions that we start the step with the exact solution and that there is no roundoff

error. This is called the local truncation error for Euler’s method. So suppose that we

are solving an initial value problem with differential equation

y′(t) = f(t, y)

Denote by φ(t) the exact solution to the initial value problem. So, in particular, φ(t) obeys

φ′(t) = f
(

t, φ(t)
)

for all t. Suppose further that we have already found yn and that, by some miracle, yn = φ(tn).

Now execute one more step of Euler’s method with step size h:

yn+1 = yn + hf
(

tn, yn
)

Because we are assuming that yn = φ(tn)

yn+1 = φ(tn) + hf
(

tn, φ(tn)
)

Because φ(t) is the exact solution φ′(tn) = f
(

tn, φ(tn)
)

and

yn+1 = φ(tn) + hφ′(tn)

The error in yn+1 is, by definition φ(tn+1) − yn+1. Taylor expanding φ(tn+1) = φ(tn + h)

about tn

φ(tn + h) = φ(tn) + φ′(tn)h+ 1
2φ

′′(tn)h
2 + 1

3!φ
′′′(tn)h

3 + · · ·

c© Joel Feldman. 2000. All rights reserved. 5



so that

error = φ(tn+1)− yn+1

=
[

φ(tn) + φ′(tn)h+ 1
2φ

′′(tn)h
2 + 1

3!φ
′′′(tn)h

3 + · · ·
]

−
[

φ(tn) + hφ′(tn)
]

= 1
2
φ′′(tn)h

2 + 1
3!
φ′′′(tn)h

3 + · · ·

(3)

So we conclude that the local truncation error for Euler’s method is some unknown constant

(we usually don’t know the value of 1
2φ

′′(tn) because we don’t usually know the solution φ(t)

of the differential equation) times h2 plus smaller terms that are proportional to hr with

r ≥ 3. This conclusion is typically written

Local truncation error for Euler’s method = Kh2 +O(h3) (4)

The symbol O(h3) is used to designate any function that, for small h, is bounded by a constant

times h3.

To get from an initial time t = t0 to a final time t = tf using steps of size h requires

(tf − t0)/h steps. If each step were to introduce an error Kh2 + O(h3), then the final error

in the approximate value of y(tf ) would be K(tf − t0)h + O(h2). This is consistent with

the experimental data for the dependence of error on step size with tf held fixed, shown

on the first graph of page three. It is not consistent with the experimental data on page

four, which shows exponential, rather than linear, growth in tf − t0. We can get some rough

understanding of this exponential growth as follows. The general solution to y′ = y − 2t is

y = 2+2t+ c0e
t. The arbitrary constant, c0, is to be determined by initial conditions. When

y(0) = 3, c0 = 1. At the end of step 1, we have computed an approximation y1 to y(h). This

y1 is not exactly 2 + 2h+ eh. Instead, it is a number that differs from 2 + 2h+ eh by O(h2).

We chose to write this number as 2 + 2h + (1 + ǫ)eh with ǫ of order of magnitude h2. If we

were to make no further errors we would end up with the solution to

y′ = y − 2t, y(h) = 2 + 2h+ (1 + ǫ)eh

which is
y(t) = 2 + 2t+ (1 + ǫ)et = 2 + 2t+ et + ǫet

= φ(t) + ǫet

So, once as error has been introduced, the natural time evolution of the solutions to this

differential equation cause the error to grow exponentially. Other differential equations with

c© Joel Feldman. 2000. All rights reserved. 6



other time evolution characteristics will exhibit different tf dependence of errors. In the next

section, we show that, for many differential equations, errors grow at worst exponentially

with tf .

Global Truncation Error for Euler’s Method

Suppose once again that we are applying Euler’s method with step size h to the

initial value problem

y′(t) = f(t, y)

y(0) = y0

Denote by φ(t) the exact solution to the initial value problem and by yn the approximation

to φ(tn), tn = t0 + nh, given by n steps of Euler’s method (applied without roundoff error).

The error in yn is φ(tn) − yn and is called the global truncation error at time tn. The

word “truncation” is supposed to signify that this error is due solely to Euler’s method and

does not include any effects roundoff error. We now derive a bound on the global truncation

error.

Define

εn = φ(tn)− yn

The first half of the derivation is to find a bound on εn+1 in terms of εn.

εn+1 = φ(tn+1)− yn+1

= φ(tn+1)− yn − hf(tn, yn)

= [φ(tn)− yn] + h[f
(

tn, φ(tn)
)

− f(tn, yn)] + [φ(tn+1)− φ(tn)− hf
(

tn, φ(tn)
)

]

(5)

The first [· · ·] is exactly εn. The third [· · ·] is exactly the local truncation error. Assuming

that |φ′′(t)| ≤ A for all t of interest we have that

∣

∣φ(tn+1)− φ(tn)− hf
(

tn, φ(tn)
)
∣

∣ ≤ Ah2

To see this, just use the Taylor expansion with remainder, φ(tn+1) = φ(tn)+φ′(tn)h+
1
2φ

′′(t̃)h2

for some tn < t̃ < tn+1, in place of φ(tn+1) = φ(tn)+φ′(tn)h+ 1
2φ

′′(tn)h
2 + 1

3!φ
′′′(tn)h

3 + · · ·

c© Joel Feldman. 2000. All rights reserved. 7



in (3). Finally, by the mean value theorem,

|f
(

tn, φ(tn)
)

− f(tn, yn)| =
∣

∣

∂f
∂y

(

tn, ỹ)
)
∣

∣ |φ(tn)− yn| for some ỹ between yn and φ(tn)

=
∣

∣

∂f
∂y

(

tn, ỹ)
)
∣

∣ |εn|

≤ B|εn|

assuming that
∣

∣

∂f
∂y

(

t, y)
)
∣

∣ ≤ B for all t and y of interest. Substituting into (5) gives

|εn+1| ≤ (1 +Bh)|εn|+ Ah2 (6n)

Hence the total error εn+1 consists of two parts. One part is the local truncation error, which

is no more than Ah2 and which is present even if we start the step with no error at all, i.e.

with εn = 0. The other part is due to the combined error from all previous steps. At the

beginning of step number n + 1, the combined error is |εn|. During the step, this error gets

magnified by no more than a factor of 1 +Bh.

The second half of the derivation is to repeatedly apply (6n) with n = 0, 1, 2, · · ·.

By definition φ(t0) = y0 so that ε0 = 0, so

(60) =⇒ |ε1| ≤ (1 +Bh)|ε0|+ Ah2 = Ah2

(61) =⇒ |ε2| ≤ (1 +Bh)|ε1|+ Ah2 = (1 +Bh)Ah2 +Ah2

(62) =⇒ |ε3| ≤ (1 +Bh)|ε2|+ Ah2 = (1 +Bh)2Ah2 + (1 +Bh)Ah2 +Ah2

Continuing in this way

|εn| ≤ (1 +Bh)n−1Ah2 + · · ·+ (1 +Bh)Ah2 + Ah2 =
n−1
∑

m=0

(1 +Bh)mAh2

Applying
n−1
∑

m=0
arj = rn−1

r−1 a with a = Ah2 and r = 1 +Bh gives

|εn| ≤
(1 +Bh)n − 1

(1 +Bh)− 1
Ah2 =

A

B

[

(1 +Bh)n − 1
]

h

Setting x = Bh in

x ≥ 0 =⇒ 1 + x ≤ 1 + x+ 1
2
x2 + 1

3!
x3 + · · · = ex

gives (1 +Bh)n ≤ eBhn = eB(tn−t0) since tn = t0 + nh and we arrive at the conclusion

|εn| ≤
A
B

[

eB(tn−t0) − 1]h

which is of the form K(tf )h
k with k = 1 and the coefficient K(tf ) growing exponentially

with tf − t0 as our experimental data suggested.

c© Joel Feldman. 2000. All rights reserved. 8


