Periodic Extensions

If a function $f(x)$ is only defined for $0<x<\ell$ we can get many Fourier expansions for f by using the following

Main Idea If $F(x)$ is periodic of period 2ℓ (and hence has a Fourier series expansion) and if

$$
\begin{aligned}
& f(x)=F(x) \text { for } 0<x<\ell \text { then, for all } x \text { between } 0 \text { and } \ell, \\
& \qquad \begin{aligned}
f(x) & =F(x) \\
& =\text { Fourier series for } F(x)
\end{aligned}
\end{aligned}
$$

Motivated by this observation we define $F(x)$ to be a periodic extension of $f(x)$ if

$$
\begin{aligned}
& \text { i) } F(x)=f(x) \text { for } 0<x<\ell \\
& \text { ii) } F(x) \text { is periodic of period } 2 \ell
\end{aligned}
$$

There are many periodic extensions of $f(x)$. Most of them are pretty useless. For example define $g(x)=1$ for $0<x<\pi$. We are not defining $g(x)$ for $x \geq \pi$ or $x \leq 0$. Then

$$
G(x)= \begin{cases}1 & \text { if } 2 n \pi \leq x<(2 n+1) \pi \text { for some integer } n \\ -x+(2 n+2) \pi & \text { if }(2 n+1) \pi \leq x<(2 n+2) \pi \text { for some integer } n\end{cases}
$$

is a periodic extension of g. Its graph is drawn in the figure at the end of this handout.

There are two periodic extensions for $f(x)$ that are very useful. Given $f(x)$ defined for $0<x<\ell$ we define its even periodic extension $F^{e}(x)$ by
a) $F^{e}(x)=f(x)$ for $0<x<\ell$
b) $F^{e}(x)$ is even (This fixes $F^{e}(x)$ for $-\ell<x<0$.)
c) $F^{e}(x)$ has period 2ℓ (This fixes $F^{e}(x)$ for all remaining x 's, except $x=n \pi$.)
and we define its odd periodic extension $F^{o}(x)$ by
a) $F^{o}(x)=f(x)$ for $0<x<\ell$
b) $F^{o}(x)$ is odd
c) $F^{o}(x)$ has period 2ℓ

By the Main Idea we have, for all $0<x<\ell$

$$
\begin{aligned}
f(x) & =F^{e}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{k \pi x}{\ell}\right) \\
& =F^{o}(x)=\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{k \pi x}{\ell}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{k}=\frac{2}{\ell} \int_{0}^{\ell} F^{e}(x) \cos \left(\frac{k \pi x}{\ell}\right) d x=\frac{2}{\ell} \int_{0}^{\ell} f(x) \cos \left(\frac{k \pi x}{\ell}\right) d x \\
& b_{k}=\frac{2}{\ell} \int_{0}^{\ell} F^{o}(x) \sin \left(\frac{k \pi x}{\ell}\right) d x=\frac{2}{\ell} \int_{0}^{\ell} f(x) \sin \left(\frac{k \pi x}{\ell}\right) d x
\end{aligned}
$$

For example consider, again, the function $g(x)$ which is only defined for $0<x<\pi$ and takes the value $g(x)=1$ for all $0<x<\pi$. The even and odd periodic extensions, $G^{e}(x)$ and $G^{o}(x)$ of this function are graphed on the next page. Both $G^{e}(x)$ and $G^{o}(x)$ take the value 1 for all $0<x<\pi$. Both $G^{e}(x)$ and $G^{o}(x)$ have period 2π. But $G^{e}(x)$ is an even function while $G^{o}(x)$ is an odd function. Because it is an even periodic function, $G^{e}(x)$ has the Fourier series expansion

$$
G^{e}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{k \pi x}{\ell}\right)
$$

with

$$
a_{k}=\frac{2}{\pi} \int_{0}^{\pi} 1 \cos \left(\frac{k \pi x}{\ell}\right) d x= \begin{cases}2 & \text { if } k=0 \\ 0 & \text { if } k \neq 0\end{cases}
$$

That is,

$$
G^{e}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{k \pi x}{\ell}\right)=1 \quad \text { (surprise!) }
$$

Because it is an odd periodic function, $G^{o}(x)$ has the Fourier series expansion

$$
G^{o}(x)=\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{k \pi x}{\ell}\right)
$$

with

$$
b_{k}=\frac{2}{\pi} \int_{0}^{\pi} 1 \sin \left(\frac{k \pi x}{\ell}\right) d x= \begin{cases}0 & \text { if } k \text { is even } \\ \frac{4}{k \pi} & \text { if } k \text { is odd }\end{cases}
$$

That is

$$
G^{o}(x)=\sum_{\substack{k=1 \\ k \text { odd }}}^{\infty} \frac{4}{k \pi} \sin \left(\frac{k \pi x}{\ell}\right)
$$

For all $0<x<\pi$ we have both

$$
\begin{aligned}
& g(x)=G^{e}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos \left(\frac{k \pi x}{\ell}\right)=1 \\
& g(x)=G^{o}(x)=\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{k \pi x}{\ell}\right)=\sum_{\substack{k=1 \\
k \text { odd }}}^{\infty} \frac{4}{k \pi} \sin \left(\frac{k \pi x}{\ell}\right)
\end{aligned}
$$

vfill

