A Lightning Fast Review of Eigenvalues and Eigenvectors

Let A be an $n \times n$ matrix. Then, by definition, \vec{v} is an eigenvector of A with eigenvalue λ if and only if

> (i) $\vec{v} \neq \overrightarrow{0}$
> (ii) $A \vec{v}=\lambda \vec{v}$

Fix λ for a moment. Then $(A-\lambda I) \vec{v}=\overrightarrow{0}$ has a nonzero solution \vec{v} if and only if the matrix $A-\lambda I$ fails to have an inverse. This, in turn, is the case if and only if the matrix has determinant zero. Hence the eigenvalues of A are determined by

$$
\operatorname{det}(A-\lambda I)=0
$$

This determinant is a polynomial in λ of degree n. Consequently, it has precisely n roots, counting multiplicity. Given an eigenvalue λ of A the corresponding eigenvectors are found by solving

$$
(A-\lambda I) \vec{v}=\overrightarrow{0}
$$

Each distinct eigenvector has at least one eigenvector. If λ has multiplicity m then λ may have form 1 to m linearly independent eigenvectors.
Example $1 A=\left(\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right)$

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
1 & -\lambda
\end{array}\right)=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)
$$

The eigenvalues of A are $\lambda=-1,2$.
For $\lambda=-1, \quad\left(\begin{array}{cc}1-\lambda & 2 \\ 1 & -\lambda\end{array}\right) \vec{v}=0 \quad \Longrightarrow \quad\left(\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right) \vec{v}=\overrightarrow{0} \quad \Longrightarrow \quad \vec{v}=\operatorname{const}\binom{1}{-1}$
For $\lambda=2, \quad\left(\begin{array}{cc}1-\lambda & 2 \\ 1 & -\lambda\end{array}\right) \vec{v}=0 \quad \Longrightarrow \quad\left(\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right) \vec{v}=\overrightarrow{0} \quad \Longrightarrow \quad \vec{v}=\operatorname{const}\binom{2}{1}$
Example $2 A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

$$
0=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right)=(1-\lambda)^{3}
$$

The eigenvalues of A are $\lambda=1,1,1$. For $\lambda=1$

$$
\left(\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 1-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right) \vec{v}=0 \Longrightarrow\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\overrightarrow{0} \quad \Longrightarrow \quad v_{2}+v_{3}=0
$$

which has general solution $v_{1}=\alpha$, arbitrary, $v_{3}=\beta$, arbitrary, and $v_{2}=-\beta$ or

$$
\vec{v}=\alpha\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+\beta\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

There are two linearly independent eigenvectors of eigenvalue 1 , which can be chosen to be $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$.

Remarks

1) If A is 2×2, then $\operatorname{det}(A-\lambda I)=\lambda^{2}-(\operatorname{tr} A) \lambda+\operatorname{det} A$.

If A is 3×3, then $\operatorname{det}(A-\lambda I)=-\lambda^{3}+(\operatorname{tr} A) \lambda^{2}-\left(\sum_{i=1}^{3} \operatorname{det} M_{i}\right) \lambda+\operatorname{det} A$.
Here $\operatorname{tr} A=\sum_{i=1}^{3} A_{i i}$ is the trace of A and M_{i} is the 2×2 matrix gotten by deleting the $i^{\text {th }}$ row and column from A.
2) If A is triangular (i.e. all entries on one side of the diagonal of A are zero) then the eigenvalues of A are just the diagonal entries of A.
3) If $A_{i j}=\overline{A_{j i}}$ for all $1 \leq i, j \leq n$, (such matrices are called symmetric, or Hermitian or self-adjoint) then all of the eigenvalues of A are real and A has n linearly independent eigenvectors (even if A has multiple eigenvalues).
4) Suppose that the $n \times n$ matrix A has n linearly independent eigenvectors \vec{v}_{i} with corresponding eigenvalues λ_{i}. Define $V=\left(\vec{v}_{1}, \cdots, \vec{v}_{n}\right)$ (i.e. V is the matrix whose $j^{\text {th }}$ column is \vec{v}_{j}) and define Λ to be the diagonal matrix whose (j, j) entry is λ_{j}. Then

$$
A \vec{v}_{j}=\lambda_{j} \vec{v}_{j}, 1 \leq j \leq n
$$

is equivalent to

$$
A V=A\left(\vec{v}_{1}, \cdots, \vec{v}_{n}\right)=\left(A \vec{v}_{1}, \cdots, A \vec{v}_{n}\right)=\left(\lambda_{1} \vec{v}_{1}, \cdots, \lambda_{n} \vec{v}_{n}\right)=V \Lambda
$$

by the definition of matrix multiplication. Hence

$$
A=V \Lambda V^{-1} \quad V^{-1} A V=\Lambda
$$

