

Asymptotically stable improper node $\vec{\mathbf{x}} = c_1 \vec{\mathbf{v}}_1 e^{\lambda_1 t} + c_2 \vec{\mathbf{v}}_2 e^{\lambda_2 t}$

with λ_1 , $\lambda_2 < 0$ and $|\lambda_1| < |\lambda_2|$

Unstable, improper node $\vec{\mathbf{x}} = c_1 \vec{\mathbf{v}}_1 e^{\lambda_1 t} + c_2 \vec{\mathbf{v}}_2 e^{\lambda_2 t}$ with λ_1 , $\lambda_2 > 0$ and $|\lambda_1| < |\lambda_2|$

(Unstable) saddle point $\vec{\mathbf{x}} = c_1 \vec{\mathbf{v}}_1 e^{\lambda_1 t} + c_2 \vec{\mathbf{v}}_2 e^{\lambda_2 t}$ with $\lambda_1 > 0$ and $\lambda_2 < 0$

(Stable) centre $\vec{\mathbf{x}} = \vec{\mathbf{a}} \cos \mu t + \vec{\mathbf{b}} \sin \mu t$

Asymptotically stable spiral point $\vec{\mathbf{x}} = e^{\lambda t} \{ \vec{\mathbf{a}} \cos \mu t + \vec{\mathbf{b}} \sin \mu t \}$ with $\lambda < 0$

Unstable spiral point $\vec{\mathbf{x}} = e^{\lambda t} \{ \vec{\mathbf{a}} \cos \mu t + \vec{\mathbf{b}} \sin \mu t \}$ with $\lambda > 0$

Asymptotically stable proper node

$$\vec{\mathbf{x}} = c_1 \vec{\mathbf{v}}_1 e^{\lambda_1 t} + c_2 \vec{\mathbf{v}}_2 e^{\lambda_2 t}$$

with $\lambda_1 = \lambda_2 < 0$

Unstable proper node $\vec{\mathbf{x}} = c_1 \vec{\mathbf{v}}_1 e^{\lambda_1 t} + c_2 \vec{\mathbf{v}}_2 e^{\lambda_2 t}$ with $\lambda_1 = \lambda_2 > 0$

Asymptotically stable improper node

$$\vec{\mathbf{x}} = (c_1 + c_2 t)\vec{\mathbf{v}}_1 e^{\lambda t} + c_2 \vec{\mathbf{v}}_2 e^{\lambda t}$$

with $\lambda < 0$

Unstable improper node $\vec{\mathbf{x}} = (c_1 + c_2 t)\vec{\mathbf{v}}_1 e^{\lambda t} + c_2 \vec{\mathbf{v}}_2 e^{\lambda t}$ with $\lambda > 0$