Complex Numbers and Exponentials

A complex number is nothing more than a point in the $x y$-plane. The sum and product of two complex numbers $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is defined by

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) & =\left(x_{1} x_{2}-y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)
\end{aligned}
$$

respectively. It is conventional to use the notation $x+i y$ (or in electrical engineering country $x+j y)$ to stand for the complex number (x, y). In other words, it is conventional to write x in place of $(x, 0)$ and i in place of $(0,1)$. In this notation, The sum and product of two complex numbers $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$ is given by

$$
\begin{aligned}
z_{1}+z_{2} & =\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right) \\
z_{1} z_{2} & =x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+x_{2} y_{1}\right)
\end{aligned}
$$

Addition and multiplication of complex numbers obey the familiar algebraic rules

$$
\begin{array}{rlrl}
z_{1}+z_{2} & =z_{2}+z_{1} & z_{1} z_{2} & =z_{2} z_{1} \\
z_{1}+\left(z_{2}+z_{3}\right) & =\left(z_{1}+z_{2}\right)+z_{3} & z_{1}\left(z_{2} z_{3}\right) & =\left(z_{1} z_{2}\right) z_{3} \\
0+z_{1} & =z_{1} & 1 z_{1} & =z_{1} \\
z_{1}\left(z_{2}+z_{3}\right) & =z_{1} z_{2}+z_{1} z_{3} & \left(z_{1}+z_{2}\right) z_{3} & =z_{1} z_{3}+z_{2} z_{3}
\end{array}
$$

The negative of any complex number $z=x+i y$ is defined by $-z=-x+(-y) i$, and obeys $z+(-z)=0$. The inverse of any complex number $z=x+i y$, other than 0 , is defined by $\frac{1}{z}=\frac{x}{x^{2}+y^{2}}+\frac{-y}{x^{2}+y^{2}} i$ and obeys $\frac{1}{z} z=1$. The complex number i has the special property

$$
i^{2}=(0+1 i)(0+1 i)=(0 \times 0-1 \times 1)+i(0 \times 1+1 \times 0)=-1
$$

The absolute value, or modulus, $|z|$ of $z=x+i y$ is given by

$$
|z|=\sqrt{x^{2}+y^{2}}=z \bar{z}
$$

where $\bar{z}=x-i y$ is called the complex conjugate of z. It is just the distance between z and
the origin. We have

$$
\begin{aligned}
\left|z_{1} z_{2}\right| & =\sqrt{\left(x_{1} x_{2}-y_{1} y_{2}\right)^{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right)^{2}} \\
& =\sqrt{x_{1}^{2} x_{2}^{2}-2 x_{1} x_{2} y_{1} y_{2}+y_{1}^{2} y_{2}^{2}+x_{1}^{2} y_{2}^{2}+2 x_{1} y_{2} x_{2} y_{1}+x_{2}^{2} y_{1}^{2}} \\
& =\sqrt{x_{1}^{2} x_{2}^{2}+y_{1}^{2} y_{2}^{2}+x_{1}^{2} y_{2}^{2}+x_{2}^{2} y_{1}^{2}} \\
& =\sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)} \\
& =\left|z_{1}\right|\left|z_{2}\right|
\end{aligned}
$$

and

$$
z^{-1}=\frac{z^{*}}{|z|^{2}}
$$

for all complex numbers z_{1}, z_{2} and $z \neq 0$.

The Complex Exponential

Definition and Basic Properties. For any complex number $z=x+i y$ the exponential e^{z}, is defined by

$$
e^{x+i y}=e^{x} \cos y+i e^{x} \sin y
$$

For any two complex numbers z_{1} and z_{2}

$$
\begin{aligned}
e^{z_{1}} e^{z_{2}} & =e^{x_{1}}\left(\cos y_{1}+i \sin y_{1}\right) e^{x_{2}}\left(\cos y_{2}+i \sin y_{2}\right) \\
& =e^{x_{1}+x_{2}}\left(\cos y_{1}+i \sin y_{1}\right)\left(\cos y_{2}+i \sin y_{2}\right) \\
& =e^{x_{1}+x_{2}}\left\{\left(\cos y_{1} \cos y_{2}-\sin y_{1} \sin y_{2}\right)+i\left(\cos y_{1} \sin y_{2}+\cos y_{2} \sin y_{1}\right)\right\} \\
& =e^{x_{1}+x_{2}}\left\{\cos \left(y_{1}+y_{2}\right)+i \sin \left(y_{1}+y_{2}\right)\right\} \\
& =e^{\left(x_{1}+x_{2}\right)+i\left(y_{1}+y_{2}\right)} \\
& =e^{z_{1}+z_{2}}
\end{aligned}
$$

so that the familiar multiplication formula also applies to complex exponentials. For any complex number $a=\alpha+i \beta$ and real number t

$$
e^{a t}=e^{\alpha t+i \beta t}=e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)]
$$

so that the derivative with respect to t

$$
\begin{aligned}
\frac{d}{d t} e^{a t} & =\alpha e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)]+e^{\alpha t}[-\beta \sin (\beta t)+i \beta \cos (\beta t)] \\
& =(\alpha+i \beta) e^{\alpha t}[\cos (\beta t)+i \sin (\beta t)] \\
& =a e^{a t}
\end{aligned}
$$

is also the familiar one.

Relationship with \sin and \cos. When θ is a real number

$$
\begin{aligned}
e^{i \theta} & =\cos \theta+i \sin \theta \\
e^{-i \theta} & =\cos \theta-i \sin \theta
\end{aligned}
$$

are complex numbers of modulus one. Solving for $\cos \theta$ and $\sin \theta$ (by adding and subtracting the two equations)

$$
\begin{aligned}
& \cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right) \\
& \sin \theta=\frac{1}{2 i}\left(e^{i \theta}-e^{-i \theta}\right)
\end{aligned}
$$

These formulae make it easy derive trig identities. For example

$$
\begin{aligned}
\cos \theta \cos \phi & =\frac{1}{4}\left(e^{i \theta}+e^{-i \theta}\right)\left(e^{i \phi}+e^{-i \phi}\right) \\
& =\frac{1}{4}\left(e^{i(\theta+\phi)}+e^{i(\theta-\phi)}+e^{i(-\theta+\phi)}+e^{-i(\theta+\phi)}\right) \\
& =\frac{1}{4}\left(e^{i(\theta+\phi)}+e^{-i(\theta+\phi)}+e^{i(\theta-\phi)}+e^{i(-\theta+\phi)}\right) \\
& =\frac{1}{2}(\cos (\theta+\phi)+\cos (\theta-\phi))
\end{aligned}
$$

Polar Coordinates. Let $z=x+i y$ be any complex number. Writing x and y in polar coordinates in the usual way gives

$$
x+i y=r \cos \theta+i r \sin \theta=r e^{i \theta}
$$

In particular

$$
\begin{array}{rlrl}
1 & =e^{i 0} & =e^{2 \pi i}=e^{2 k \pi i} & \\
\text { for } k=0, \pm 1, \pm 2, \cdots \\
-1 & =e^{i \pi}=e^{3 \pi i}=e^{(1+2 k) \pi i} & & \text { for } k=0, \pm 1, \pm 2, \cdots \\
i & =e^{i \pi / 2}=e^{\frac{5}{2} \pi i}=e^{\left(\frac{1}{2}+2 k\right) \pi i} & & \text { for } k=0, \pm 1, \pm 2, \cdots \\
-i & =e^{-i \pi / 2}=e^{\frac{3}{2} \pi i}=e^{\left(-\frac{1}{2}+2 k\right) \pi i} & & \text { for } k=0, \pm 1, \pm 2, \cdots
\end{array}
$$

The polar coordinate representation makes it easy to find square roots, third roots and so on. Fix any positive integer n. The $n^{\text {th }}$ roots of unity are, by definition, all solutions z of

$$
z^{n}=1
$$

Writing $z=r e^{i \theta}$

$$
r^{n} e^{n \theta i}=1 e^{0 i}
$$

The polar coordinates (r, θ) and $\left(r^{\prime}, \theta^{\prime}\right)$ represent the same point in the $x y$-plane if and only if $r=r^{\prime}$ and $\theta=\theta^{\prime}+2 k \pi$ for some integer k. So $z^{n}=1$ if and only if $r^{n}=1$, i.e. $r=1$, and $n \theta=2 k \pi$ for some integer k. The $n^{\text {th }}$ roots of unity are all complex numbers $e^{2 \pi i \frac{k}{n}}$ with k integer. There are precisely n distinct $n^{\text {th }}$ roots of unity because $e^{2 \pi i \frac{k}{n}}=e^{2 \pi i \frac{k^{\prime}}{n}}$ if and only if $2 \pi \frac{k}{n}-2 \pi i \frac{k^{\prime}}{n}=2 \pi \frac{k-k^{\prime}}{n}$ is an integer multiple of 2π. That is, if and only if $k-k^{\prime}$ is an integer multiple of n. The are n distinct nth roots of unity are

$$
1, e^{2 \pi i \frac{1}{n}}, e^{2 \pi i \frac{2}{n}}, e^{2 \pi i \frac{3}{n}}, \cdots, e^{2 \pi i \frac{n-1}{n}}
$$

