
Complex Numbers and Exponentials

A complex number is nothing more than a point in the xy–plane. The sum and

product of two complex numbers (x1, y1) and (x2, y2) is defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

(x1, y1) (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

respectively. It is conventional to use the notation x+ iy (or in electrical engineering country

x + jy) to stand for the complex number (x, y). In other words, it is conventional to write

x in place of (x, 0) and i in place of (0, 1). In this notation, The sum and product of two

complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is given by

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = x1x2 − y1y2 + i(x1y2 + x2y1)

Addition and multiplication of complex numbers obey the familiar algebraic rules

z1 + z2 = z2 + z1 z1z2 = z2z1

z1 + (z2 + z3) = (z1 + z2) + z3 z1(z2z3) = (z1z2)z3

0 + z1 = z1 1z1 = z1

z1(z2 + z3) = z1z2 + z1z3 (z1 + z2)z3 = z1z3 + z2z3

The negative of any complex number z = x+ iy is defined by −z = −x + (−y)i, and obeys

z + (−z) = 0. The inverse of any complex number z = x + iy, other than 0, is defined by

1
z
= x

x2+y2 + −y
x2+y2 i and obeys 1

z
z = 1. The complex number i has the special property

i2 = (0 + 1i)(0 + 1i) = (0× 0− 1× 1) + i(0× 1 + 1× 0) = −1

The absolute value, or modulus, |z| of z = x+ iy is given by

|z| =
√

x2 + y2 = zz̄

where z̄ = x− iy is called the complex conjugate of z . It is just the distance between z and
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the origin. We have

|z1z2| =
√

(x1x2 − y1y2)2 + (x1y2 + x2y1)2

=
√

x2
1x

2
2 − 2x1x2y1y2 + y21y

2
2 + x2

1y
2
2 + 2x1y2x2y1 + x2

2y
2
1

=
√

x2
1x

2
2 + y21y

2
2 + x2

1y
2
2 + x2

2y
2
1

=
√

(x2
1 + y21)(x

2
2 + y22)

= |z1||z2|

and

z−1 =
z∗

|z|2

for all complex numbers z1, z2 and z 6= 0 .

The Complex Exponential

Definition and Basic Properties. For any complex number z = x + iy the exponential

ez , is defined by

ex+iy = ex cos y + iex sin y

For any two complex numbers z1 and z2

ez1ez2 = ex1(cos y1 + i sin y1)e
x2(cos y2 + i sin y2)

= ex1+x2(cos y1 + i sin y1)(cos y2 + i sin y2)

= ex1+x2 {(cos y1 cos y2 − sin y1 sin y2) + i(cos y1 sin y2 + cos y2 sin y1)}

= ex1+x2 {cos(y1 + y2) + i sin(y1 + y2)}

= e(x1+x2)+i(y1+y2)

= ez1+z2

so that the familiar multiplication formula also applies to complex exponentials. For any

complex number a = α+ iβ and real number t

eat = eαt+iβt = eαt[cos(βt) + i sin(βt)]
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so that the derivative with respect to t

d
dte

at = αeαt[cos(βt) + i sin(βt)] + eαt[−β sin(βt) + iβ cos(βt)]

= (α+ iβ)eαt[cos(βt) + i sin(βt)]

= aeat

is also the familiar one.

Relationship with sin and cos. When θ is a real number

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ

are complex numbers of modulus one. Solving for cos θ and sin θ (by adding and subtracting

the two equations)

cos θ = 1
2
(eiθ + e−iθ)

sin θ = 1
2i
(eiθ − e−iθ)

These formulae make it easy derive trig identities. For example

cos θ cosφ = 1
4 (e

iθ + e−iθ)(eiφ + e−iφ)

= 1
4 (e

i(θ+φ) + ei(θ−φ) + ei(−θ+φ) + e−i(θ+φ))

= 1
4
(ei(θ+φ) + e−i(θ+φ) + ei(θ−φ) + ei(−θ+φ))

= 1
2

(

cos(θ + φ) + cos(θ − φ)
)

Polar Coordinates. Let z = x + iy be any complex number. Writing x and y in polar

coordinates in the usual way gives

x+ iy = r cos θ + ir sin θ = reiθ

y

x

x+ iy = reiθ

θ

r
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In particular

y

x

π
2

−π
2

π 1=(1,0)(−1,0)=−1

i=(0,1)

−i=(0,−1)

1 = ei0 = e2πi = e2kπi for k = 0,±1,±2, · · ·

−1 = eiπ = e3πi = e(1+2k)πi for k = 0,±1,±2, · · ·

i = eiπ/2 = e
5

2
πi = e(

1

2
+2k)πi for k = 0,±1,±2, · · ·

−i = e−iπ/2 = e
3

2
πi = e(−

1

2
+2k)πi for k = 0,±1,±2, · · ·

The polar coordinate representation makes it easy to find square roots, third roots

and so on. Fix any positive integer n. The nth roots of unity are, by definition, all solutions

z of

zn = 1

Writing z = reiθ

rnenθi = 1e0i

The polar coordinates (r, θ) and (r′, θ′) represent the same point in the xy–plane if and only

if r = r′ and θ = θ′ + 2kπ for some integer k. So zn = 1 if and only if rn = 1, i.e. r = 1, and

nθ = 2kπ for some integer k. The nth roots of unity are all complex numbers e2πi
k

n with k

integer. There are precisely n distinct nth roots of unity because e2πi
k

n = e2πi
k
′

n if and only if

2π k
n − 2πik

′

n = 2π k−k′

n is an integer multiple of 2π. That is, if and only if k− k′ is an integer

multiple of n. The are n distinct nth roots of unity are

1 , e2πi
1

n , e2πi
2

n , e2πi
3

n , · · · , e2πi
n−1

n

y

x
1=e2πi

0

6

e2πi
1

6e2πi
2

6

e2πi
3

6 =−1

e2πi
4

6 e2πi
5

6
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