Triple Integral Example

In this example, we find the mass of the part of the first octant that is inside the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, if the density is $\rho(x, y, z)=x y$.

- Slice the solid into horizontal plates by inserting many planes of constant z, with the various values of z differing by $\mathrm{d} z$.

- Each plate has thickness dz, and
- has z almost constant throughout the plate (it only varies by $\mathrm{d} z$), and
- has (x, y) running over $x \geq 0, y \geq 0, x^{2}+y^{2} \leq a^{2}-z^{2}$.
- The bottom plate starts at $z=0$ and the top plate ends at $z=a$.
- Concentrate on any one plate. Subdivide it into long thin "square" beams by inserting many planes of constant y, with the various values of y differing by $\mathrm{d} y$.

- Each beam has cross-sectional area $\mathrm{d} y \mathrm{~d} z$, and
- has y and z essentially constant throughout the beam, and
- has x running over $0 \leq x \leq \sqrt{a^{2}-y^{2}-z^{2}}$.
- The leftmost beam has $y=0$ and the rightmost beam has $y=\sqrt{a^{2}-z^{2}}$.
- Concentrate on any one beam. Subdivide it into tiny approximate "cubes" by inserting many planes of constant x, with the various values of x differing by $\mathrm{d} x$.

- Each cube has volume $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$, and
- has x, y and z all essentially constant throughout the cube.
- The first cube has $x=0$ and the last cube has $x=\sqrt{a^{2}-y^{2}-z^{2}}$.
- Now we can build up the mass.
- Concentrate on one approximate cube, say the cube containing the point (x, y, z).
* That cube has volume essentially $\mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ and
* essentially has density $\rho(x, y, z)=x y$ and so
* essentially has mass $\rho(x, y, z) \mathrm{d} V=x y \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$.
- To get the mass of any one beam, say the beam in the figure above, we just add up the masses of the approximate cubes in that beam, by integrating x from its smallest value on the beam, namely 0 , to its largest value on the beam, namely $\sqrt{a^{2}-y^{2}-z^{2}}$. The mass of the beam is thus

$$
\mathrm{d} y \mathrm{~d} z \int_{0}^{\sqrt{a^{2}-y^{2}-z^{2}}} \mathrm{~d} x x y
$$

- To get the mass of any one plate, say the plate in the figure above, we just add up the masses of the beams in that plate, by integrating y from its smallest value on the plate, namely 0 , to its largest value on the plate, namely $\sqrt{a^{2}-z^{2}}$. The mass of the plate is thus

$$
\mathrm{d} z \int_{0}^{\sqrt{a^{2}-z^{2}}} \mathrm{~d} y \int_{0}^{\sqrt{a^{2}-y^{2}-z^{2}}} \mathrm{~d} x x y
$$

- To get the mass of the whole solid, we just add up the masses of the plates that it contains, by integrating z from its smallest value, namely 0 , to its largest value on the solid, namely a.

The mass of the solid is thus

$$
\begin{aligned}
\int_{0}^{a} \mathrm{~d} z \int_{0}^{\sqrt{a^{2}-z^{2}}} \mathrm{~d} y \int_{0}^{\sqrt{a^{2}-y^{2}-z^{2}}} \mathrm{~d} x x y & =\int_{0}^{a} \mathrm{~d} z \int_{0}^{\sqrt{a^{2}-z^{2}}} \mathrm{~d} y y\left[\int_{0}^{\sqrt{a^{2}-y^{2}-z^{2}}} x \mathrm{~d} x\right] \\
& =\int_{0}^{a} \mathrm{~d} z \int_{0}^{\sqrt{a^{2}-z^{2}}} \mathrm{~d} y \frac{y}{2}\left(a^{2}-y^{2}-z^{2}\right) \\
& =\int_{0}^{a} \mathrm{~d} z\left[\int_{0}^{\sqrt{a^{2}-z^{2}}}\left\{\frac{\left(a^{2}-z^{2}\right)}{2} y-\frac{y^{3}}{2}\right\} \mathrm{d} y\right] \\
& =\int_{0}^{a} \mathrm{~d} z \overbrace{\left\{\frac{\left(a^{2}-z^{2}\right)^{2}}{4}-\frac{\left(a^{2}-z^{2}\right)^{2}}{8}\right\}}^{\frac{1}{8}\left(a^{2}-z^{2}\right)^{2}} \\
& =\frac{1}{8} \int_{0}^{a}\left[a^{4}-2 a^{2} z^{2}+z^{4}\right] \mathrm{d} z \\
& =\frac{1}{8}\left[a^{5}-\frac{2}{3} a^{5}+\frac{1}{5} a^{5}\right] \\
& =\frac{a^{5}}{8} \frac{15-10+3}{15} \\
& =\frac{a^{5}}{15}
\end{aligned}
$$

