Global Maximum/Minimum Example

Problem. Find the maximum and minimum values of

$$
f(x, y)=x y+2 x+y
$$

on the triangular region with vertices $(0,0),(1,0)$ and $(0,2)$.

Solution.

Interior. Since

$$
f_{x}(x, y)=y+2 \quad f_{y}(x, y)=x+1
$$

there are no singular points and the only critical point, $(-1,-2)$, is not in the triangular region.

Side $x=0,0 \leq y \leq 2$. On that side $f(0, y)=y$ and

$$
\min _{0 \leq y \leq 2} f(0, y)=f(0,0)=0 \quad \max _{0 \leq y \leq 2} f(0, y)=f(0,2)=2
$$

Base $y=0,0 \leq x \leq 1$. On that side $f(x, 0)=2 x$ and

$$
\min _{0 \leq x \leq 1} f(x, 0)=f(0,0)=0 \quad \max _{0 \leq x \leq 1} f(x, 0)=f(1,0)=2
$$

Hypotenuse. On that side $y=2-2 x, 0 \leq x \leq 1$ and

$$
f(x, \overbrace{2-2 x}^{y})=x(\overbrace{2-2 x}^{y})+2 x+(\overbrace{2-2 x}^{y})=-2 x^{2}+2 x+2
$$

Write $g(x)=-2 x^{2}+2 x+2$. The maximum and minimum of $g(x)$ for $0 \leq x \leq 1$, and hence the maximum and minimum values of f on the hypotenuse of the triangle, must be achieved either at

- $x=0$, where $f(0,2)=g(0)=2$, or at
- $x=1$, where $f(1,0)=g(1)=2$, or when
- $0=g^{\prime}(x)=-4 x+2$ so that $x=\frac{1}{2}, y=2-2\left(\frac{1}{2}\right)=1$ and

$$
f\left(\frac{1}{2}, 1\right)=g\left(\frac{1}{2}\right)=-2\left(\frac{1}{2}\right)^{2}+2\left(\frac{1}{2}\right)+2=\frac{5}{2}
$$

Candidates. Here are all the candidates for the location of a max or min.

point	$(0,0)$	$(0,2)$	$(1,0)$	$\left(\frac{1}{2}, 1\right)$
value of f	0	2	2	$\frac{5}{2}$
	\min			\max

Finding the Equation of the Line Through (0,2) and (1,0)

Method 1: using $A x+B y=1$.

- Every line in the $x y$-plane has an equation of the form $a x+b y=c$.
- In this case $(0,0)$ is not on the line so that $c \neq 0$ and we can divide the equation by c, giving $\frac{a}{c} x+\frac{b}{c} y=1$. Rename $\frac{a}{c}=A$ and $\frac{b}{c}=B$.
- $(0,2)$ is on the line so that

$$
\left.A x\right|_{x=0}+\left.B y\right|_{y=2}=1 \Longrightarrow B=\frac{1}{2}
$$

- $(1,0)$ is on the line so that

$$
\left.A x\right|_{x=1}+\left.B y\right|_{y=0}=1 \Longrightarrow A=1
$$

- So the line is $x+\frac{y}{2}=1$ or $y=2-2 x$.

Method 2: using $y=m x+b$.
$\circ b$ is the y-intercept, i.e. the y-coordinate of the point on the line where $x=0$. In this case $b=2$.

- m is the slope. In this case $m=\frac{\Delta y}{\Delta x}=\frac{0-2}{1-0}=-2$.
- So the line is $y=2-2 x$.

Method 2: using parameterization.

- $(0,2)$ is one point on the line.
- the vector from $(0,2)$ to $(1,0)$, namely $\langle 1-0,0-2\rangle=\langle 1,-2\rangle$, is a direction vector for the line.
- So the line is $\langle x-0, y-2\rangle=t\langle 1,-2\rangle$ or $x=t, y=2-2 t$.

