
II. Linear Systems of Equations

§II.1 The Definition

We are shortly going to develop a systematic procedure which is guaranteed to find every solution to
every system of linear equations. The fact that such a procedure exists makes systems of linear equations very
unusual. If you pick a system of equations at random (i.e. not from a course or textbook) the odds are that
you won’t be able to solve it. Fortunately, it is possible to use linear systems to approximate many real world
situations. So linear systems are not only easy, but useful. We start by giving a formal definition of “linear
system of equations”. Then we develop the systematic procedure, which is called Gaussian elimination.
Then we consider applications to loaded cables and to finding straight lines (and other curves) that best fit
experimental data.

Definition II.1 A system of linear equations is one which may be written in the form

a11x1 + a12x2 + · · ·+ a1nxn = b1 (1)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (2)

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm (m)

Here, all of the coefficients aij and all of the right hand sides bi are assumed to be known constants. All of
the xi’s are assumed to be unknowns, that we are to solve for. Note that every left hand side is a sum of
terms of the form constant× x1

i .

§II.2 Solving Linear Systems of Equations

We now introduce, by way of several examples, the systematic procedure for solving systems of linear
equations.

Example II.2 Here is a system of three equations in three unknowns.

x1+ x2 + x3 = 4 (1)

x1+2x2 +3x3 = 9 (2)

2x1+3x2 + x3 = 7 (3)

We can reduce the system down to two equations in two unknowns by using the first equation to solve for
x1 in terms of x2 and x3

x1 = 4− x2 − x3 (1’)

and substituting this solution into the remaining two equations

(2) (4− x2 − x3) + 2x2+3x3 = 9 =⇒ x2+2x3 = 5

(3) 2(4− x2 − x3) + 3x2+ x3 = 7 =⇒ x2− x3 = −1

We now have two equations in two unknowns, x2 and x3. We can solve the first of these two equations for
x2 in terms of x3

x2 = 5− 2x3 (2’)
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and substitute the result into the final equation

(5− 2x3)− x3 = −1 =⇒ −3x3 = −6

to get down to one equation in the one unknown x3. We can trivially solve it for x3

x3 = 2

and substitute the result into (2’) to give x2

x2 = 5− 2x3 = 5− 2× 2 = 1

and finally substitute the now known values of x2 and x3 into (1’) to determine x1

x1 = 4− x2 − x3 = 4− 1− 2 = 1

We are going to write down a lot of systems of linear equations, so it pays to set up a streamlined notation
right away. The new notation is gotten by writing the system in the standard form given in Definition II.1
and then dropping all the unknowns, xi, all the + signs and all the = signs. Optionally, you can put the
resulting array of numbers in square brackets and draw a vertical line where the = signs used to be.









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

∣

∣

∣

∣

∣

∣

∣

∣

b1
b2
...
bm









This whole beast is called the augmented matrix of the system. The part to the left of the vertical line that
has replaced the equal signs, i.e. the part that contains all of the coefficients arc, is called the coefficient
matrix. Line number r contains equation number r, with all of the unknowns, + signs and = signs dropped.
The usual numbering convention is that the first index in arc gives the row number and the second index
gives the column number.

The basic strategy for solving linear systems is the one we used in Example II.2. We start with m
equations in n unknowns. We use the first equation to eliminate x1 from equations (2) through (m), leaving
m− 1 equations in n− 1 unknowns. And repeat until we run out of either equations or variables. There is a
method for eliminating x1 from equations (2) through (m) that is a bit more efficient than solving equation
(1) for x1 in terms of x2 through xn and substituting the result into the remaining equations. We shall
apply a sequence of “row operations” on our system of equations. Each row operation has the property that
it replaces the original system of equations by another system which has exactly the same set of solutions.
The allowed row operations are
• replace equation (i) by c(i) where c is any nonzero number
• replace equation (i) by (i) +c(j). In words, equation (i) is replaced by equation (i) plus c times equation
(j). Here any j other than i is allowed.

• interchange (i) and (j)
Any (x1, · · · , xn) that satisfies equations (i) and (j) also satisfies c(i) and (i) + c(j). So application of a
row operation does not result in any loss of solutions. Each of these row operations can be reversed by
another row operation and so has does not generate new solutions either. On the other hand, multiplying
an equation by zero destroys it forever, so multiplying an equation by zero (even in some disguised way) is
not a legitimate row operation.

Example II.3 The augmented matrix for the system of equations

2x1+ x2 + 3x3 = 1

4x1+5x2 + 7x3 = 7

2x1−5x2 + 5x3 =−7
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is




2 1 3
4 5 7
2 −5 5

∣

∣

∣

∣

∣

∣

1
7
−7





Ordinary arithmetic errors are a big problem when you do row operations by hand. There is a technique
called “the check column” (that is modeled after the “parity bit” in computer hardware design) which
provides a very effective way to catch mechanical errors. To implement a “check column” you tack onto
the right hand side of the augmented matrix an additional column. Each entry in this check column is the
sum of all the entries in the row of the augmented matrix that is to the left of the check column entry. For
example, the top entry in the check column is 2 + 1 + 3 + 1 = 7.





2 1 3
4 5 7
2 −5 5

∣

∣

∣

∣

∣

∣

1
7
−7





7
23
−5

To use the check column you just perform the same row operations on the check column as you do on the
augmented matrix. After each row operation you check that each entry in the check column is still the sum
of all the entries in the corresponding row of the augmented matrix.

We now want to eliminate the x1’s from equations (2) and (3). That is, we want to make the first entries
in rows 2 and 3 of the augmented matrix zero. We can achieve this by subtracting two times row (1) from
row (2) and subtracting row (1) from row (3).

(1)
(2)− 2(1)
(3)− (1)





2 1 3
0 3 1
0 −6 2

∣

∣

∣

∣

∣

∣

1
5
−8





7
9

−12

Observe that the check column entry 9 is the sum 0 + 3 + 1 + 5 of the entries in the second row of the
augmented matrix. If this were not the case, it would mean that we made a mechanical error. Similarly the
check column entry −12 is the sum 0− 6 + 2− 8.

We have now succeeded in eliminating all of the x1’s from equations (2) and (3). For example, row 2
now stands for the equation

3x2 + x3 = 5

We next use equation (2) to eliminate all x2’s from equation (3).

(1)
(2)

(3) + 2(2)





2 1 3
0 3 1
0 0 4

∣

∣

∣

∣

∣

∣

1
5
2





7
9
6

We can now easily solve (3) for x3, substitute the result back into (2) and solve for x2 and so on:

(3) =⇒ 4x3 = 2 =⇒ x3 = 1
2

(2) =⇒ 3x2 +
1
2 = 5 =⇒ x2 = 3

2

(1) =⇒ 2x1 +
3
2 + 3× 1

2 = 1 =⇒ x1 = −1

This last step is called “backsolving”.
Note that there is an easy way to make sure that we have not made any mechanical errors in deriving

this solution — just substitute the purported solution (−1, 3/2, 1/2) back into the original system:

2(−1)+ 3
2 + 3× 1

2 = 1

4(−1)+5×3
2 + 7× 1

2 = 7

2(−1)− 5×3
2 + 5× 1

2 =−7

and verify that each left hand side really is equal to its corresponding right hand side.

c© Joel Feldman. 2011. All rights reserved. February 28, 2011 Linear Systems of Equations 3



Example II.4

x1 + 2x2 + x3 + 2x4 + x5 = 1

2x1 + 4x2 +4x3 + 6x4 + x5 = 2

3x1 + 6x2 + x3 + 4x4 +5x5 = 4

x1 + 2x2 +3x3 + 5x4 + x5 = 4

has augmented matrix (and check column)







1 2 1 2 1
2 4 4 6 1
3 6 1 4 5
1 2 3 5 1

∣

∣

∣

∣

∣

∣

∣

1
2
4
4







8
19
23
16

Eliminate the x1’s from equations (2), (3) and (4) as usual

(1)
(2)− 2(1)
(3)− 3(1)
(4)− (1)







1 2 1 2 1
0 0 2 2 −1
0 0 −2 −2 2
0 0 2 3 0

∣

∣

∣

∣

∣

∣

∣

1
0
1
3







8
3
−1
8

At this stage x2 no longer appears in any equation other than the first. So we use equation (2) to eliminate
x3, rather than x2, from the subsequent equations.

(1)
(2)

(3) + (2)
(4)− (2)







1 2 1 2 1
0 0 2 2 −1
0 0 0 0 1
0 0 0 1 1

∣

∣

∣

∣

∣

∣

∣

1
0
1
3







8
3
2
5

Equation (3) no longer contains the variable x4 at all. So we cannot use equation (3) to eliminate x4 from
other equations. But equation (4) does contain an x4 and we can use it. To keep the procedure systematic,
we exchange equations (3) and (4).

(1)
(2)
(4)
(3)







1 2 1 2 1
0 0 2 2 −1
0 0 0 1 1
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

1
0
3
1







8
3
5
2

If there were more equations we could use the new equation (3) to eliminate x4 from them. As we are already
in a position to backsolve, we don’t have to.

We now backsolve to generate the full solution. I will do this in two different ways, that lead to same
answer.

I’ll call the first method the “direct method”. It is the method that we used in Example II.3. We start
with the last equation, solving for the last unknown and working backwards.

(4) =⇒ x5 = 1

(3) =⇒ x4 + 1 = 3 =⇒ x4 = 2

(2) =⇒ 2x3 + 2× 2− 1 = 0 =⇒ x3 = − 3
2

(1) =⇒ x1 + 2x2 −
3
2 + 2× 2 + 1 = 1 =⇒ x1 + 2x2 = − 5

2

This is now one equation in the two unknowns x1 and x2. We can view it as determining x1 in terms of x2,
with no restriction placed on x2 at all.

x2 = t, arbitrary

x1 = − 5
2 − 2t
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Of course, we could also view x1 as the free variable with x2 determined in terms of x1. Our final answer

x1 = − 5
2 − 2t

x2 = t, arbitrary

x3 = − 3
2

x4 = 2

x5 = 1

contains one free parameter.
I’ll call the second backsolving method the “row reduction method”. In it we use row operations to try

and convert the equations into the form x5 = ∗, x4 = ∗ and so on, where ∗ represents some number. At the
present time our augmented matrix is







1 2 1 2 1
0 0 2 2 −1
0 0 0 1 1
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

1
0
3
1







8
3
5
2

Equation (4) is already in the form x5 = ∗, so there is no need to touch it. We start by using (4) to eliminate
all x5’s from equations (1), (2) and (3).

(1)− (4)
(2) + (4)
(3)− (4)

(4)







1 2 1 2 0
0 0 2 2 0
0 0 0 1 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

0
1
2
1







6
5
3
2

Equation (3) is now in the form x4 = ∗, so it is in final form. We now use (3) to eliminate all x4’s from
equations (1) and (2).

(1)− 2(3)
(2)− 2(3)

(3)
(4)







1 2 1 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

−4
−3
2
1







0
−1
3
2

Equation (2) is now almost in the form x3 = ∗, but not quite. The only problem is that the coefficient of x3

is 2 instead of 1. So we divide equation (2) by 2.

(1)
(2)/2
(3)
(4)







1 2 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

−4
− 3

2
2
1







0
− 1

2
3
2

and then use (2) to eliminate all x3’s from equation (1).

(1)− (2)
(2)
(3)
(4)







1 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

−5/2
−3/2
2
1







1/2
−1/2
3
2

We can now read off the solution from the augmented matrix.







1 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

−5/2
−3/2
2
1







=⇒ x2 = t, x1 = − 5
2 − 2t

=⇒ x3 = − 3
2

=⇒ x4 = 2
=⇒ x5 = 1
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Example II.5 In this example, we just check that x1 = −5/2− 2t, x2 = t, x3 = −3/2, x4 = 2, x5 = 1
really does solve the system of equations of Example II.4 for all values of t. To do so, we substitute the
claimed solution back into the original equations.

(

− 5
2 − 2t

)

+ 2t− 3
2 + 2× 2 + 1 = 1

2
(

− 5
2 − 2t

)

+ 4t+4
(

−3
2

)

+ 6× 2 + 1 = 2

3
(

− 5
2 − 2t

)

+ 6t− 3
2 + 4× 2 + 5 = 4

(

− 5
2 − 2t

)

+ 2t+3
(

−3
2

)

+ 5× 2 + 1 = 4

Clean up the left hand sides by collecting together all of the constant terms and all of the t terms

(− 5
2 − 3

2 + 2× 2 + 1)+ (−2 + 2)t = 1 (1’)

(−2× 5
2 − 4× 3

2 + 6× 2 + 1)+ (−2× 2 + 4)t = 2 (2’)

(−3× 5
2 − 3

2 + 4× 2 + 5)+ (−3× 2 + 6)t = 4 (3’)

(− 5
2 − 3× 3

2 + 5× 2 + 1)+ (−2 + 2)t = 4 (4’)

and simplifying
1+0t = 1

2+0t = 2

4+0t = 4

4+0t = 4

The left hand sides do indeed equal the right hand sides for all values of t. In particular, the net coefficient
of t on the left hand side of every equation is zero. A better organized way to make this same check, which
also tells us something about the nature of the general solution, is the following. Write the solution with all
of the unknowns combined into a single vector

[x1, x2, x3, x4, x5] =
[

− 5
2 − 2t, t,− 3

2 , 2, 1
]

Separate the terms in the solution containing t’s from those that don’t, using the usual rules for adding
vectors and multiplying vectors by numbers.

[x1, x2, x3, x4, x5] =
[

− 5
2 , 0,−

3
2 , 2, 1

]

+ t
[

− 2, 1, 0, 0, 0
]

(a) This must be a solution for all t. In particular, when t = 0 this must be a solution. So substitution of
[x1, x2, x3, x4, x5] =

[

− 5
2 , 0,−

3
2 , 2, 1

]

into the left hand sides of the original system (which gives precisely
the constant terms on the left hand sides of (1’)–(4’)) must match the right hand sides of the original
system.

(b) Second, I claim that substitution of the coefficients of t in the purported general solution (in this
example, substitution of [x1, x2, x3, x4, x5] =

[

− 2, 1, 0, 0, 0
]

) into the left hand sides of the original
system must yield zero. That is, the coefficients of t in the purported general solution must give a
solution of the “associated homogeneous system” (the system you get when you put zeros on the right
hand side)

x1 + 2x2 + x3 + 2x4 + x5 = 0

2x1 + 4x2 + 4x3 + 6x4 + x5 = 0

3x1 + 6x2 + x3 + 4x4 + 5x5 = 0

x1 + 2x2 + 3x3 + 5x4 + x5 = 0

To see that this is the case, imagine that [x1, x2, x3] = [1, 2, 3] + t[4, 5, 6] is a solution of the equation
c1x1 + c2x2 + c3x3 = 7 for all values of t. Then we must have

c1(1 + 4t) + c2(2 + 5t) + c3(3 + 6t) = 7
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or, equivalently,
(c11 + c22 + c33) + (c14 + c25 + c36)t = 7

for all values of t. This forces
(c14 + c25 + c36) = 0

But c14+ c25+ c36 is precisly what you get when you substitute [x1, x2, x3] = [4, 5, 6] into the left hand
side of the equation c1x1 + c2x2 + c3x3 = 7.

The technique used in Example II.4 is called Gaussian elimination. The example was rigged to
illustrate every scenario that can arise during execution of the general algorithm. Here is a flow chart
showing the general algorithm. We use e to stand for “equation number” and v to stand for “variable
number”.

Let v be the smallest index
such that xv has nonzero

coefficient in an
equation (e′) with e′ ≥ e.

Does the variable xv

have nonzero coefficient
in equation (e)?

no(2)

Interchange equation (e)
with a later equation in which
xv has nonzero coefficient.

Set e = 1.

yes Does any variable xv have
nonzero coefficient in any
equation (e′) with e′ ≥ e?

Use (i) → (i) + ci(e)
to eliminate xv from every
equation (i) with i > e.

yes

Backsolve.
no(1)

Increase e by 1.
Is (e) the

last equation?

yesno

Imagine that we are in the midst of applying Gaussian elimination, as in the above flow chart, and that we
have finished dealing with rows 1, · · · , e− 1. These rows will not change during the rest of the elimination
process. Denote by Me the matrix consisting of those rows of the current coefficient matrix having index at
least e. For example, if the augmented matrix now looks like





∗ ∗ ∗
0 0 ∗
0 ∗ ∗

∣

∣

∣

∣

∣

∣

∗
∗
∗





and e = 2 (in other words, we are about to start work on row 2) then

Me =

[

0 0 ∗
0 ∗ ∗

]

The flow chart (starting with the entry that says “Does any variable xv have nonzero coefficient in any
equation (e′) with e′ ≥ e?”) now tells us to
• first check to see if Me is identically zero. For example, if the full augmented matrix is now





∗ ∗ ∗
0 0 0
0 0 0

∣

∣

∣

∣

∣

∣

∗
0
0



 or even





∗ ∗ ∗
0 0 0
0 0 0

∣

∣

∣

∣

∣

∣

∗
∗
∗





and e = 2, this is the case. If so, we terminate Gaussian elimination and backsolve. This is the branch
labelled “no(1)” in the flow chart. If not, we

• determine the first variable xv that has nonzero coefficient in Me. For example, if Me =

[

0 0 ∗
0 ∗ ∗

]

,

then v = 2.
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• If necessary (this is the branch labelled no(2) in the flow chart), we exchange rows to ensure that xv

has nonzero coefficient in row (e). For example, if Me =

[

0 0 ∗
0 ∗ ∗

]

, we exchange rows. In computer

implementations, it is common practice to always move the row with index e′ ≥ e that has the largest
coefficient of xv into row (e). This is called partial pivotting and is used to reduce the damage caused
by round off error.

• We then use row operations to eliminate xv from all rows below row (e).
• Finally, we increase e by one and, if we are not at the bottom row, repeat.

Exercises for §II.2.

1) Find the general solution of each of the following systems, using the method of Example II.2:

(a) x1 + x2 = 1 b) x1 + x2 = 1 c) x1 + x2 = 1

x1 − x2 = −1 −x1 − x2 = −1 −x1 − x2 = 0

2) Solve, using Gaussian elimination,
x1 − 2x2 + 3x3 = 2

2x1 − 3x2 + 2x3 = 2

3x1 + 2x2 − 4x3 = 9

3) Solve, using Gaussian elimination,

2x1 + x2 − x3 = 6

x1 − 2x2 − 2x3 = 1

−x1 +12x2 +8x3 = 7

4) Solve, using Gaussian elimination,
x1 +2x2 +4x3 = 1

x1 + x2 +3x3 = 2

2x1 +5x2 +9x3 = 1

5) Solve, using Gaussian elimination,

3x1 + x2 − x3 + 2x4 = 7

2x1 − 2x2 +5x3 − 7x4 = 1

−4x1 − 4x2 +7x3 − 11x4 = − 13

§II.3 The Form of the General Solution

Example II.3 is typical of most common applications, in that
• the number n of equations is the same as the number m of unknowns,
• the first equation is used to eliminate the first unknown from equations (2) through (n),
• the second equation is used to eliminate the second unknown from equations (3) through (n)
• and so on.

In systems of this type we end up, just before backsolving, with an augmented matrix that looks like





∗ ∗ ∗
0 ∗ ∗
0 0 ∗

∣

∣

∣

∣

∣

∣

∗
∗
∗




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This matrix is triangular. In column number c all entries strictly below row number c are zero. The zeros
reflect the fact that variable number c does not appear in equations (c+1) through (n), because equation
(c) was used to eliminate the variable xc from those equations. Backsolving yields a unique value for each
unknown.

In Example II.4, we had a system of n = 4 equations in m = 5 unknowns and ended up with an
m−n = 1 parameter family of solutions. That is, we could assign an arbitrary value to one of the unknowns
(in Example II.4, to x2). The resulting system of 4 equations in 4 unknowns then had a unique solution.
Typically, given n equations in m unknowns, with m ≥ n, you would expect to be able to assign arbitrary
values to m−n of the unknowns and then use the resulting n equations in n unknowns to uniquely determine
the remaining n unknowns. That is, typically you expect an m−n parameter family of solutions to a system
of n equations in m unknowns.

However “typical” does not mean “universal”. In fact, the following examples show that all logical
possibilities actually occur. Each of the examples has three equations in three unknowns. Each equation
determines a plane, which is sketched in the figure accompanying the example. The point (x, y, z) satisfies
all three equations if and only if it lies on all three planes. The first example has no solution at all. The
second, a 1 parameter family of solutions and the third a 2 parameter family of solutions. The examples have
deliberately been chosen so trivial as to look silly. In the real world they tend to arise in highly disguised
form, in which they do not look at all silly.

x3 = 0, x3 = 1, x1 = 0

No solutions

x1 = 0, x2 = 0, x1 + x2 = 0
Solution: x1 = x2 = 0

x3 = α, arbitrary

x2 = 0, 2x2 = 0, 3x2 = 0
Solution: x1 = α, arbitrary

x2 = 0
x3 = β, arbitrary

There is a fourth example which has a 3 parameter family of solutions, namely 0x1 = 0, 0x2 = 0, 0x3 = 0,
which has general solution x1 = α, x2 = β, x3 = γ with all of α, β, γ arbitrary.

Imagine that you are solving a linear system of equations. You have applied Gaussian elimination and
are about to start backsolving. Denote by mr the index of the first nonzero entry in row r. (We may as well
throw out rows that have no nonzero entries.) In Example II.3, mr = r for all r. But, this is not always the
case. In Example II.4, the final augmented matrix before backsolving was







1 2 1 2 1
0 0 2 2 −1
0 0 0 1 1
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

1
0
3
1







In this example m1 = 1, m2 = 3, m3 = 4, m4 = 5. After eliminating x1 from equations (2) through (4), we
discovered that there were no x2’s in any of the equations (2) through (4). So we ignored variable x2 and
used equation (2) to eliminate x3, rather than x2, from equations (3) and (4). That is why, in this example,
m2 > 2.

The Gaussian elimination algorithm always yields an augmented matrix with

m1 < m2 < m3 · · ·

The equation (j) that we use when backsolving is of the form

axmj
+

∑

n>mj

bnxn = c
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for some constants a, bn, c. Furthermore the coefficient a is always nonzero, becausemj is the column number
of the first nonzero coefficient in row j. Any of the variables xn, n > mj , that have not already been assigned
values in earlier backsolving steps may be assigned arbitrary values. The equation axmj

+
∑

n>mj
bnxn = c

then uniquely determines xmj
. Consequently, all variables other than xm1

, xm2
, · · · are left as arbitrary

parameters. In Example II.4,

(4) =⇒ xm4
= 1

(3) =⇒ xm3
+ 1 = 3 =⇒ xm3

= 2

(2) =⇒ 2xm2
+ 2× 2− 1 = 0 =⇒ xm2

= − 3
2

(1) =⇒ xm1
+ 2x2 −

3
2 + 2× 2 + 1 = 1 =⇒ xm1

+ 2x2 = − 5
2

=⇒ x2 = c, arbitrary

xm1
= − 5

2 − 2c

So the number of free parameters in the solution is the number of variables that are not xmi
’s, which in this

case is one. The general solution is











x1

x2

x3

x4

x5











=











−5/2− 2c
c

−3/2
2
1











=











−5/2
0

−3/2
2
1











+ c











−2
1
0
0
0











We are viewing x1, x2, · · · , x5 as the components of a five dimensional vector. In anticipation of some
definitions that will be introduced in the next chapter, we choose to write the vector as a column, rather
than a row, inside square brackets.

As a second example, supposed that application of Gauss reduction to some system of equations yields





1 1 1 1
0 1 1 1
0 0 0 0

∣

∣

∣

∣

∣

∣

1
1
0





In this example m1 = 1, m2 = 2 and backsolving gives

(2) =⇒ xm2
+ x3 + x4 = 1 =⇒ xm2

= 1− x3 − x4

x4 = c1, arbitrary

x3 = c2, arbitrary

x2 = 1− c1 − c2

(1) =⇒ xm1
+ (1− c1 − c2) + c2 + c1 = 1 =⇒ x1 = xm1

= 0

The general solution is







x1

x2

x3

x4






=







0
1− c1 − c2

c2
c1






=







0
1
0
0






+ c1







0
−1
0
1






+ c2







0
−1
1
0







Definition II.6 The rank of a matrix is the number of nonzero rows in the triangular matrix that results
from Gaussian elimination. That is, if the triangular matrix [R] can be arrived at by applying a sequence of
row operations to the matrix [A], then the rank of [A] is the number of nonzero rows in [R].

Consider any system of linear equations. Denote by [ A | b ] the augmented matrix of the system. In
particular [A ] is the coefficient matrix of the system. There are three possibilities.
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Possibility 1: rank [A ] < rank [ A | b ]

This possibility is illustrated by




1 1 1
0 1 1
0 0 0

∣

∣

∣

∣

∣

∣

1
1
1





The rank of the coefficient matrix, that is the number of nonzero rows to the left of the vertical bar, is
two while the rank of the augmented matrix is three. The third row of the augmented matrix stands for
0x1 + 0x2 + 0x3 = 1, which can never be true. When rank [A ] < rank [ A | b ], the linear system has no
solution at all.

Possibility 2: #unknowns = rank [A ] = rank [ A | b ]

This possibility is illustrated by




1 1 1
0 1 1
0 0 1

∣

∣

∣

∣

∣

∣

1
1
1





for which the number of unknowns, the rank of the coefficient matrix and the rank of the augmented matrix
are all equal to three. Every variable is an xmi

, so the general solution contains no free parameters. There
is exactly one solution.

Possibility 3: #unknowns > rank [A ] = rank [ A | b ]

This possibility is illustrated by




1 1 1 1
0 1 1 1
0 0 0 0

∣

∣

∣

∣

∣

∣

1
1
0





for which the number of unknowns is four while the rank of the coefficient matrix and the rank of the
augmented matrix are both 2. The number of variables that are xmi

’s is ρ = rank [A], so the number of
free parameters in the general solution is n− ρ, the number of unknowns minus rank [A]. In particular, the
system has infinitely many solutions. If we use ~x to denote a column vector with components x1, · · · , xn, the
general solution is of the form

~x = ~u+ c1~v1 + · · ·+ cn−ρ~vn−ρ

where
• c1, · · · , cn−ρ are the arbitrary constants.
• The component ui of ~u is the term in the xi component of the general solution that is not multiplied by
any arbitrary constant. ~u is called a particular solution of the system. It is the solution you get when
you set all of the arbitrary constants to zero.

• Each component of ~vj is the coefficient of cj in the corresponding component of the general solution. We
claim that substitution of ~vj into the left hand side of each equation in the original system must yield
zero. This is because when ~x = ~u+ cj~vj is substituted back into the left hand side of the original system
of equations (as was done in Example II.5), the resulting left hand sides must match the corresponding
right hand sides for all values of cj . This forces the net coefficient of cj in each resulting left hand side
to be zero.

Example II.7 The coefficient and augmented matrices for the system

x1 + x2 + x3 + x4 = 2

2x1 + 3x2 + 4x3 + 2x4 = 5

3x1 + 4x2 + 5x3 + 3x4 = 7

are




1 1 1 1
2 3 4 2
3 4 5 3



 and





1 1 1 1
2 3 4 2
3 4 5 3

∣

∣

∣

∣

∣

∣

2
5
7




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respectively. The standard Gaussian elimination row operations

(1)
(2)− 2(1)
(3)− 3(1)





1 1 1 1
0 1 2 0
0 1 2 0

∣

∣

∣

∣

∣

∣

2
1
1





(1)
(2)

(3)− (2)





1 1 1 1
0 1 2 0
0 0 0 0

∣

∣

∣

∣

∣

∣

2
1
0





replace the coefficient and augmented matrices with




1 1 1 1
0 1 2 0
0 0 0 0



 and





1 1 1 1
0 1 2 0
0 0 0 0

∣

∣

∣

∣

∣

∣

2
1
0





respectively, both of which have two rows that contain nonzero entries. So the coefficient and augmented
matrices both have rank 2. As there are four unknowns, x1, · · · , x4, the general solution should contain
4− 2 = 2 free parameters. Backsolving

(2) =⇒ x2 + 2x3 = 1 =⇒ x2 = 1− 2x3, with x3 = c1 arbitrary

(1) =⇒ x1 + (1− 2c1) + c1 + x4 = 2 =⇒ x1 = 1 + c1 − x4, with x4 = c2 arbitrary

confirms that there are indeed two free parameters in the general solution







x1

x2

x3

x4






=







1 + c1 − c2
1− 2c1

c1
c2






=







1
1
0
0






+ c1







1
−2
1
0






+ c2







−1
0
0
1







If we have made no mechanical errors, we should have







x1

x2

x3

x4






=







1
1
0
0






=⇒

x1 + x2 + x3 + x4 = 2
2x1 + 3x2 + 4x3 + 2x4 = 5
3x1 + 4x2 + 5x3 + 3x4 = 7







x1

x2

x3

x4






=







1
−2
1
0






or







−1
0
0
1






=⇒

x1 + x2 + x3 + x4 = 0
2x1 + 3x2 + 4x3 + 2x4 = 0
3x1 + 4x2 + 5x3 + 3x4 = 0

We do.

Exercises for §II.3

1) Consider the three planes

x+ 2y + 5z = 7 2x− y = −1 2x+ y + 4z = k

a) For which values of the parameter k do these three planes have at least one point in common?
a) Determine the common points.

2) A student spends a total of 31 hours per week studying Algebra, Biology, Calculus and Economics. The
student devotes 5 more hours to Algebra than to Biology and Economics combined and 3 fewer hours to
Calculus than to Algebra and Biology combined. What is the maximum number of hours that can be
devoted Economics?

3) Let a, b, c, d, α and β be fixed real numbers. Consider the system of equations

ax+ by = α

cx+ dy = β

For which values of a, b, c, d, α and β is there at least one solution? For which values of a, b, c, d, α
and β is there exactly one solution?
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§II.4 Homogeneous Systems

A system of linear equations is homogeneous if all of the constant terms are zero. That is, in the notation
of Definition II.1, b1 = b2 = · · · = bm = 0. For example, if we replace all of the right hand sides in Example
II.4 by zeros, we get the homogeneous system

x1 + 2x2 + x3 + 2x4 + x5 = 0

2x1 + 4x2 +4x3 + 6x4 + x5 = 0

3x1 + 6x2 + x3 + 4x4 +5x5 = 0

x1 + 2x2 +3x3 + 5x4 + x5 = 0

For a homogeneous system, the last column of the augmented matrix is filled with zeros. Any row operation
applied to the augmented matrix has no effect at all on the last column. So, the final column of the
row reduced augmented matrix [ R | d ] that results from Gaussian elimination is still filled with zeros.
Consequently, the rank of [ A | b ] (i.e. the number of nonzero rows in [ R | d ]) is the same as the rank of
[A] (i.e. the number of nonzero rows in [R]) and Possibility 1 of §II.3 cannot occur. Homogeneous systems
always have at least one solution. This should be no surprise: x1 = x2 = · · · = xn = 0 is always a solution.
For homogeneous systems there are only two possibilities

rank [A] = #unknowns =⇒ the only solution is x1 = x2 = · · · = xn = 0

rank [A] < #unknowns =⇒ #free parameters = #unknowns− rank [A] > 0

=⇒ there are infinitely many solutions.

Exercises for §II.4.

1) Let a, b, c and d be fixed real numbers. Consider the system of equations

ax+ by = 0

cx+ dy = 0

There is always at least one solution to this system, namely x = y = 0. For which values of a, b, c and
d is there at exactly one other solution? For which values of a, b, c and d is there at least one other
solution?

2) Show that if ~x and ~w are any two solutions of a linear system of equations, then ~x − ~w is a solution of
the associated homogeneous system. Show that, if ~u is any solution of the original system, every solution
is of the form ~u+ ~v, where ~v is a solution of the associated homogeneous system.

3 a) Show that if ~v1 and ~v2 are both solutions of a given homogeneous system of equations and if c1 and
c2 are numbers then c1~v1 + c2~v2 is also a solution.

b) Show that if ~v1, · · · , ~vk are all solutions of a given homogeneous system of equations and if c1, · · · , ck
are numbers then c1~v1 + · · ·+ ck~vk is also a solution.

4) Express the general solution of the system of equations given in Exercise 5 of §II.2 in the form ~x =
~u+ c1~v1 + c2~v2 with the first component of ~v1 being 0 and the second component of ~v2 being 0. Express
the general solution in the form ~x = ~u + d1 ~w1 + d2 ~w2 with the first two components of ~w1 being equal
and the first two components of ~w2 being negatives of each other. Express ~w1 and ~w2 in terms of ~v1 and
~v2. Express c1 and c2 in terms of d1 and d2.

§II.5 The Loaded Cable

The loaded cable is a typical of a large class of physical systems which can, under suitable conditions, be
well described by a linear system of equations. Consider a cable stretched between two points a distance nδ
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apart. Suppose that n− 1 weights, w1, w2, · · · , wn−1, are hung at regular intervals along the cable. These
weights could form a bridge for example, or they could be used to approximate a continuous loading of the
cable.

w1 wi−1 wi wi+1 wn−2 wn−1

iδ δ

nδ

Assume that the cable is in equilibrium, the weight of the cable itself may be neglected (or is included
in the wi’s) and that the cable has not been distorted too much away from horizontal. Then the tension T
in the cable will be (essentially) uniform along its length and there must be no net vertical component of
force acting on the point from which wi is hung. There are three forces acting on that point. The first is

θi

T

T

wi

xi−1

xi
xi+1

δ δ

the tension in the part of the cable between wi−1 and wi. This tension pulls to the left in the direction of
that part of the cable. If that part of the cable is at an angle θi below horizontal the vertical component
of its tension has magnitude T sin θi and points upward. The second force is the tension in the part of the
cable between wi and wi+1. This tension pulls to the right in the direction of that part of the cable. If that
part of the cable is at an angle θi+1 below horizontal the vertical component of its tension has magnitude
T sin θi+1 and points downward. The third force is the weight wi itself, which acts downward. So to have
no net vertical force we need

T sin θi = wi + T sin θi+1

Fix some horizontal line and define xi to be the vertical distance from the horizontal line to the point on the
cable at which wi is attached. Then tan θi = (xi − xi−1)/δ. Thanks to the “small amplitude” hypothesis,
cos θi ≈ 1 so that sin θi ≈

sin θi
cos θi

= tan θi =
xi−xi−1

δ
so that the force balance equation approximates to

T
xi − xi−1

δ
= wi + T

xi+1 − xi

δ

which in turn simplifies to

T
xi−1 − 2xi + xi+1

δ
= −wi

=⇒ xi−1 − 2xi + xi+1 = −
wiδ

T

Suppose that the left and right hand ends of the cable are fastened at height 0. Then the last equation even
applies at the ends i = 1, n− 1 if we set x0 = xn = 0. Thus the system of equations determining the cable
configuration is

x0 = 0, xi−1 − 2xi + xi+1 = −
wiδ

T
for i = 1, · · · , n− 1 , xn = 0

c© Joel Feldman. 2011. All rights reserved. February 28, 2011 Linear Systems of Equations 14



In particular, when n = 5

x0 = 0

x0 − 2x1+ x2 = −
w1δ

T
(i = 1)

x1 − 2x2+ x3 = −
w2δ

T
(i = 2)

x2 − 2x3+ x4 = −
w3δ

T
(i = 3)

x3 − 2x4+x5 = −
w4δ

T
(i = 4)

x5 = 0

or, if we simplify by substituting x0 = x5 = 0 into the remaining equations

−2x1+ x2 = −
w1δ

T
(i = 1)

x1 − 2x2+ x3 = −
w2δ

T
(i = 2)

x2 − 2x3+ x4 = −
w3δ

T
(i = 3)

x3 − 2x4 = −
w4δ

T
(i = 4)

As a concrete example, suppose that wjδ/T = 1 for all j. Then the augmented matrix is







−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2

∣

∣

∣

∣

∣

∣

∣

−1
−1
−1
−1







−2
−1
−1
−2

Gaussian elimination gives

(1)
(2) + 1

2 (1)
(3)
(4)







−2 1 0 0
0 − 3

2 1 0
0 1 −2 1
0 0 1 −2

∣

∣

∣

∣

∣

∣

∣

−1
− 3

2
−1
−1







−2
−2
−1
−2

(1)
(2)

(3) + 2
3 (2)

(4)







−2 1 0 0
0 − 3

2 1 0
0 0 − 4

3 1
0 0 1 −2

∣

∣

∣

∣

∣

∣

∣

−1
− 3

2
−2
−1







−2
−2
−7/3
−2

(1)
(2)
(3)

(4) + 3
4 (3)







−2 1 0 0
0 − 3

2 1 0
0 0 − 4

3 1
0 0 0 − 5

4

∣

∣

∣

∣

∣

∣

∣

−1
− 3

2
−2
− 5

2







−2
−2
−7/3
−11/4

and backsolving gives x4 = 2, x3 = 3, x2 = 3 and x1 = 2.

Exercises for §II.5.

1) Consider a system of n masses coupled by springs as in the figure

x2 xnx1 kn+1k2k1
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The masses are constrained to move horizontally. The distance from mass number j to the left hand wall
is xj . The jth spring has natural length ℓj and spring constant kj . According to Hooke’s law (which
Hooke published as an anagram in 1676 – he gave the solution to the anagram in 1678) the force exerted
by spring number j is kj times the extension of spring number j, where the extension of a spring is its
length minus its natural length. The distance between the two walls is L. Give the system of equations
that determine the equilibrium values of x1, · · · , xj . (This problem will get more interesting once we
introduce time dependence later in the course. Then, for large n, the system models a bungee chord.)

2) Consider the electrical network in the figure

V

I1 I2 In

R1 R2 Rn

r1 r2 rn

Assume that the DC voltage V is given and that the resistances R1, · · · , Rn and r1, · · · , rn are given. Find
the system of equations that determine the currents I1, · · · , In. You will need the following experimental
facts. (a) The voltage across a resistor of resistance R that is carrying current I is IR. (b) The net
current entering any node of the circuit is zero. (c) The voltage between any two points is independent
of the path used to travel between the two points. (This problem will get more interesting once we have
introduced time dependence, capacitors and inductors, later in the course.)

§II.6 Resistor Networks

We now give a more systematic treatment of circuit problems like that in Exercise 2 of §II.5. By
definition, a resistor network is an electrical circuit that consists only of wires, resistors, voltage sources and
current sources. Resistor networks are a special case of the much more interesting and much more useful
“linear circuits”. Linear circuits may contain capacitors and inductors as well as resistors and voltage and
current sources. We’ll consider such circuits in §IV.

◦ A resistor is drawn
R

. If the current through the resistor is i amps and the resistance of the
resistor is R Ohms, then the voltage drop across the resistor (in the direction of the current) is v = iR.

◦ A voltage source is drawn V . The voltage increase across the source, from the short side to the
long side, is always V , regardless of the current flowing through the source.

◦ A current source is drawn
I
. The current flowing through the source, in the direction of the

arrow, is always I, regardless of the voltage across the source.

In addition to these circuit element characterstics, there two “conservation laws” which determine the be-
haviour of resistor networks.

◦ Kirchhoff’s current law says that the sum of all currents flowing into any junction in the circuit must
equal the sum of all currents flowing out of that same junction.

◦ Kirchhoff’s voltage law says that the sum of all voltage drops around any closed loop in the circuit must
be zero.

Here is an example which gives all of the equations arising from the application of these circuit element laws
and Kirchhoff’s laws to a specific circuit. We won’t solve any equations in this example, because there is a
more efficient way to formulate the equations that we’ll get to shortly.
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Example II.8 Consider the resistor network of

4A

V1

2Ω

I2, V2

2Ω

I3, V3

5Ω

I4, V4

3ΩI6, V6
10V

I5
10V

I7

4A 2Ω

2Ω 5Ω

3Ω
10V 10V

Note that here

◦ V2, V3, V4 and V6 are the voltage drops in the direction of the arrow while

◦ V1 is the voltage increase in the direction of the arrow.

The circuit element laws for this circuit are

I2 = 4 V2 = 2I2 V3 = 2I3 V4 = 5I4 V6 = 3I6

Kirchoff’s current laws for the circuit are

I5 = I3 + 4 I3 = I4 + I6 I2 + I4 = I7 I6 + I7 = I5

Kirchhoff’s voltage laws for the three loops in the figure on the right above are

−V1 + V2 − V4 − V3 = 0 10 + V3 + V6 = 0 − V6 + V4 − 10 = 0

To get the signs right in such equations, pretend that you are walking around a loop in the direction specified
for the loop and record the voltage drop the you encounter as you pass through each circuit element. For
example, for the first loop,

◦ V1 was defined to be the voltage increase in the direction of the loop and so contributes −V1 to the
equation

◦ V2 was defined to be the voltage drop in the direction of the loop and so contributes +V2 to the equation

◦ V4 was defined to be the voltage drop the direction opposite to the loop and so contributes −V4 to the
equation and

◦ V3 was defined to be the voltage drop the direction opposite to the loop and so contributes −V3 to the
equation.

We have found twelve equations in the unkowns I2, I3, I4, I5, I6, I7, V1, V2, V4 and V6. Of course many of
the equations are pretty trivial. There is a more efficient way to formulate the equations that substantially
reduces the number of equations and unknowns and, in particular, eliminates the trivial equations. We
consider it in the next example.

Example II.9 In this example, we apply the method of current loops to formulate the equations for the
circuit of Example II.8. To do so, we select a complete set of loops for the circuit as in the right hand figure
of Example II.8. We imagine that there is a current flowing around each of the loops. Because of the current
source, the current flowing in the top loop must be 4A. We just give names, say i1 and i2 to the currents
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in the other two loops. In the notation of Example II.8, the net current flowing through the 3Ω resistor,

4A

i1 i2

4A 2Ω

2Ω 5Ω

3Ω

v1

10V 10V

for example, is I6 = i1 − i2. Because the currents i1, i2 and 4A are flowing around closed loops, Kirchhoff’s
current laws are automatically satisfied. Kirchhoff’s voltage laws are

−V1 + 2× 4 + 5(4− i2) + 2(4− i1) = 0 10 + 2(i1 − 4) + 3(i1 − i2) = 0 3(i2 − i1) + 5(i2 − 4)− 10 = 0

or
V1 + 2i1 + 5i2 = 36

5i1 − 3i2 = −2

−3i1 + 8i2 = 30

This gives the augmented matrix and upper triangular form





1 2 5
0 5 −3
0 −3 8

∣

∣

∣

∣

∣

∣

36
−2
30









1 2 5
0 5 −3
0 0 31

∣

∣

∣

∣

∣

∣

36
−2
144





5(3) + 3(2)

Backsolving gives

i2 =
144
31 = 4.6452A i1 = 1

5

(

− 2 + 3× 144
31

)

= 370
155 = 2.3871A V1 = 36− 2× 370

155 − 5× 144
31 = 8V

§II.7 Linear Regression

Imagine an experiment in which you measure one quantity, call it y, as a function of a second quantity,
say x. For example, y could be the current that flows through a resistor when a voltage x is applied to it.
Suppose that you measure n data points (x1, y1), · · · , (xn, yn) and that you wish to find the straight line
y = mx + b that fits the data best. If the data point (xi, yi) were to land exactly on the line y = mx + b

x

y

(xn, yn)

(x1, y1)

(xi, yi)

yi −mxi − b

xi

mxi + b

yi
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we would have yi = mxi + b. If it doesn’t land exactly on the line, the vertical distance between (xi, yi) and
the line y = mx + b is |yi − mxi − b|. That is the discrepancy between the measured value of yi and the
corresponding idealized value on the line is |yi −mxi − b|. One measure of the total discrepancy for all data
points is

∑n
i=1 |yi −mxi − b|. A more convenient measure, which avoids the absolute value signs, is

D(m, b) =

n
∑

i=1

(yi −mxi − b)2

We will now find the values of m and b that give the minimum value of D(m, b). The corresponding line
y = mx+ b is generally viewed as the line that fits the data best.

You learned in your first Calculus course that the value of m that gives the minimum value of a function
of one variable f(m) obeys f ′(m) = 0. The analogous statement for functions of two variables is the following.
First pretend that b is just a constant and compute the derivative of D(m, b) with respect to m. This is
called the partial derivative of D(m, b) with respect to m and denoted ∂D

∂m
(m, b). Next pretend that m is

just a constant and compute the derivative of D(m, b) with respect to b. This is called the partial derivative
of D(m, b) with respect to b and denoted ∂D

∂b
(m, b). If (m, b) gives the minimum value of D(m, b), then

∂D
∂m

(m, b) = ∂D
∂b

(m, b) = 0

For our specific D(m, b)

∂D
∂m

(m, b) =

n
∑

i=1

2(yi −mxi − b)(−xi)

∂D
∂b

(m, b) =
n
∑

i=1

2(yi −mxi − b)(−1)

It is important to remember here that all of the xi’s and yi’s here are given numbers. The only unknowns
are m and b. The two partials are of the forms

∂D
∂m

(m, b) = 2cxxm+ 2cxb − 2cxy
∂D
∂b

(m, b) = 2cxm+ 2nb− 2cy

where the various c’s are just given numbers whose values are

cxx =

n
∑

i=1

x2
i cx =

n
∑

i=1

xi cxy =

n
∑

i=1

xiyi cy =

n
∑

i=1

yi

So the value of (m, b) that gives the minimum value of D(m, b) is determined by

cxxm+ cxb = cxy (1)

cxm+ nb = cy (2)

This is a system of two linear equations in the two unknowns m and b, which is easy to solve:

n(1)− cx(2) : [ncxx − c2x]m = ncxy − cxcy =⇒ m =
ncxy − cxcy
ncxx − c2x

cx(1)− cxx(2) : [c2x − ncxx]b = cxcxy − cxxcy =⇒ b =
cxxcy − cxcxy
ncxx − c2x

Exercises for §II.6.

1) Consider the problem of finding the parabola y = ax2 + mx + b which best fits the n data points
(x1, y1), · · · , (xn, yn). Derive the system of three linear equations which determine a,m, b. Do not
attempt to solve them.
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§II.8 Worked Problems

Questions

1) For each of the following systems of linear equations, find the general solution in parametric form. Give
a geometric interpretation.

(a) x+ 4y = 5
2x+ 7y = 6

(b) 2x+ 4y = −12
6x+ 12y = −24

(c) x+ 3y = 3
2x+ 6y = 6

(d) 3x+ 2y = 1
4x+ 5y = 6

2) For each of the following systems of linear equations, find the general solution in parametric form. Give
a geometric interpretation.

(a) x+ 3y + 4z = 2
3x+ 8y + 12z = 5

(b) 3x+ 2y − z = −2
6x+ 4y − 2z = 5

(c) x+ 2y + 3z = 2
4x+ 10y + 6z = 4

(d) 2x+ 3y + z = 0
4x+ 6y + 3z = 8

3) For each of the following systems of linear equations, find the general solution in parametric form. Give
a geometric interpretation.

(a) x + 4z = 1

2x+ 2y + 4z = 2
2x− 2y + 8z = 6

(b) x+ 2y + 4z = 1

2x+ 3y + 7z = 5
5x+ 5y + 15z = 9

(c) 3x+ 4y + 2z = 1

6x+ 12y + 5z = 4
3x+ 8y + 3z = 3

(d) x+ y + z = 2

x+ 2y − z = 4
x+ y + 2z = 4

(e) x+ 3y + 3z = 5

2x+ 6y + 3z = 7
x+ 3y − 3z = 2

4) Find the general solution for each of the following systems of linear equations.

(a) x1 + 3x2 + x3 + x4 = 1

− 2x1 − 5x2 − x3 − 5x4 = 1

(b) x1 + 3x2 + 2x3 + x4 = 1

x1 + 3x2 + x3 + 2x4 = 1
x1 + 4x2 + x3 + 3x4 = 2

(c) x1 + 3x2 + x3 + 7x4 = 5

3x1 + 9x2 + x3 + 11x4 = 17
2x1 + 6x2 + 2x3 + 14x4 = 10

(d) x1 + 5x2 + 3x3 + 2x4 + 3x5 = 1

2x1 + 10x2 + 6x3 + 5x4 + 5x5 = 4

(e) 2x1 + 4x2 + 2x3 + 2x4 + x5 = 18

4x1 + 8x2 + 6x3 + 3x5 = 44

− 2x1 − 4x2 + 2x3 − 10x4 + 2x5 = 2

(f) x1 + x2 + x3 + x4 = 14

x1 + x2 − x3 − x4 = −4

x1 − x2 + x3 − x4 = −2
x1 − x2 − x3 + x4 = 0

(g) x1 + x3 + 3x4 = 2

x1 + 2x2 + 3x3 + 2x4 = 4

3x1 + 2x2 + 7x3 = 1
x1 + 3x3 − 5x4 = 8

(h) x1 + 2x2 + x3 + 2x4 + 3x5 = 0

2x1 + 5x2 + 2x3 + 5x4 + 7x5 = 1

x1 + 3x2 + x3 + 3x4 + 4x5 = 1
x1 + x2 + x3 + x4 + x5 = 0

5) Construct the augmented matrix for each of the following linear systems of equations. In each case
determine the rank of the coefficient matrix, the rank of the augmented matrix, whether or not the
system has any solutions, whether or not the system has a unique solution and the number of free
parameters in the general solution.
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(a) 2x1 + 3x2 = 3

4x1 + 5x2 = 5

(b) 2x1 + 3x2 + 4x3 = 3

2x1 + x2 − x3 = 1
6x1 + 5x2 + 2x3 = 5

(c) x1 + 3x2 + 4x3 = 1

2x1 + 2x2 − x3 = 1
4x1 + 5x2 + 2x3 = 5

(d) 2x1 + x2 + x3 = 2

2x1 + 2x2 − x3 = 1
6x1 + 4x2 + x3 = 4

(e) x1 − x2 + x3 + 2x4 + x5 = −1

− x1 + 3x2 + 2x3 + x4 + x5 = 2

2x1 + 5x3 + 7x4 + 4x5 = −1
− x1 + 5x2 + 5x3 + 4x4 + 3x5 = 3

(f) x1 + x2 + x3 + 3x4 = 2

x1 + 2x2 + 3x3 + 2x4 = 4

x1 + 2x3 + 2x4 = 2
x1 + 5x2 + 3x3 + 3x4 = 0

6) Consider the system of equations
x1+ x2 + 2x3 = q

x2 + x3 + 2x4 = 0

x1+ x2 + 3x3 + 3x4 = 0

2x2 + 5x3 + px4 = 3

For which values of p and q does the system have
(i) no solutions
(ii) a unique solution
(iii) exactly two solutions
(iv) more than two solutions?

7) In the process of photsynthesis plants use energy from sunlight to convert carbon dioxide and water into
glucose and oxygen. The chemical equation of the reaction is of the form

x1CO2 + x2H2O → x3O2 + x4C6H12O6

Determine the possible values of x1, x2, x3 and x4.

8) The average hourly volume of traffic in a set of one way streets is given in the figure

310

x4

390

450

x2

480

520 x3 600

640x1610

A

B C

D

Determine x1, x2, x3 and x4.

9) The following table gives the number of milligrams of vitamins A, B, C contained in one gram of each
of the foods F1, F2, F3, F4. A mixture is to be prepared containing precisely 14 mg. of A, 29 mg. of
B and 23 mg. of C. Find the greatest amount of F2 that can be used in the mixture.
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F1 F2 F3 F4

A 1 1 1 1
B 1 3 2 1
C 4 0 1 1

10) State whether each of the following statments is true or false. In each case give a brief reason.

a) If A is an arbitrary matrix such that the system of equations A~x = ~b has a unique solution for

~b =





1
2
3



, then the system has a unique solution for any three component column vector ~b.

b) Any system of 47 homogeneous equations in 19 unknowns whose coefficient matrix has rank greater
than or equal to 8 always has at least 11 independent solutions.

11) Find the current through the resistor R2 in the electrical network below. All of the resistors are 10 ohms
and both the voltages are 5 volts.

R1

R2

R3 R4

V1 V2

i1 i2

i3

12) Two weights with masses m1 = 1 gm and m2 = 3 gm are strung out between three springs, attached
to floor and ceiling, with spring constants k1 = g dynes/cm, k2 = 2g dynes/cm and k3 = 3g dynes/cm.
The gravitational constant is g = 980 cm/sec2. Each weight is a cube of volume 1 cm3.
a) Suppose that the natural lengths of the springs are ℓ1 = 10 cm, ℓ2 = 15 cm and ℓ3 = 15 cm and that

the distance between floor and ceiling is 50 cm. Determine the equilibrium positions of the weights.
b) The bottom weight is pulled down and held 1 cm from its equilibrium position. Find the displacement

of the top weight.

Solutions

1) For each of the following systems of linear equations, find the general solution in parametric form. Give
a geometric interpretation.

(a) x+ 4y = 5
2x+ 7y = 6

(b) 2x+ 4y = −12
6x+ 12y = −24

(c) x+ 3y = 3
2x+ 6y = 6

(d) 3x+ 2y = 1
4x+ 5y = 6

Solution. a) Mutiplying equation (1) by 2 and subtracting equation (2) gives (2x+8y)−(2x+7y) = 10−6
or y = 4 . Substituting this into equation (2) gives 2x+28 = 6 or x = −11 . In this problem, x+4y = 5

is the equation of a line and 2x+7y = 6 is the equation of a second line. The two lines cross at (−11, 4).
b) Multipying equation (1) by 3 gives 6x+ 12y = −36 which contradicts the requirement from equation

(2) that 6x + 12y = −24. No (x, y) satisfies these equations. In this problem, 2x + 4y = −12 is the

equation of a line and 6x + 12y = −24 is the equation of a second parallel line that does not intersect
the first.

c) Multipying equation (1) by 2 gives 2x+6y = 6 which is identical to equation (2). The two equations
are equivalent. If we assign any value t to y, then x = 3 − 3t satisfies both equations. The general

solution is [x, y] = [3− 3t, 3t] for all t ∈ IR . In this problem, x + 3y = 6 is the equation of a line and

2x + 6y = 6 is a second equation for the same line. The intersection of the two is the same line once
again.
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d) Multiplying the first equation by 4 and the second by 3 gives

12x+ 8y = 4 12x+ 15y = 18

Subtracting the first equation from the second gives 7y = 14 or y = 2 . Substituting y = 2 into

3x + 2y = 1 gives 3x + 4 = 1 or x = −1 . As in part a, we have been given two lines that intersect a
one point, which in this case is (−1, 2).

2) For each of the following systems of linear equations, find the general solution in parametric form. Give
a geometric interpretation.

(a) x+ 3y + 4z = 2
3x+ 8y + 12z = 5

(b) 3x+ 2y − z = −2
6x+ 4y − 2z = 5

(c) x+ 2y + 3z = 2
4x+ 10y + 6z = 4

(d) 2x+ 3y + z = 0
4x+ 6y + 3z = 8

Solution. a) Multiplying equation (1) by 3 gives 3x + 9y + 12z = 6. Subtracting equation (2) from
this gives y = 1. Substituting y = 1 into x + 3y + 4z = 2 gives x + 4z = −1. We are free to assign
z any value t at all. Once we have done so, x + 4z = −1 fixes x = −1 − 4t. The general solution is

[x, y, z] = [−1− 4t, 1, t] for all t ∈ IR . To check this, substitute it into the original equations:

x+ 3y + 4z = (−1− 4t) + 3 + 4t = 2

3x+ 8y + 12z = 3(−1− 4t) + 8 + 12t = 5

for all t as desired. In this problem x+ 3y + 4z = 2 is the equation of a plane and 3x+ 8y + 12z = 5 is
the equation of a second plane. The two planes intersect in a line, which passes through (−1, 1, 0) (the
solution when t = 0) and which has direction vector [−4, 0, 1] (the coefficient of t).
b) Multiplying equation (1) by 2 gives 6x + 4y − 2z = −4, which contradicts the second equation.

No [x, y, z] satisfies both equations. In this problem the two equations represent two planes that are

parallel and do not intersect.
c) Multiplying equation (1) by 4 gives 4x + 8y + 12z = 8. Subtracting equation (2) from this gives
−2y + 6z = 4. Hence the original system of equations is equivalent to

x+ 2y + 3z = 2

−2y + 6z = 4

Assign z any value t at all. With this value of z, −2y+6z = 4 fixes y = 3t− 2 and x+2y+3z = 2 forces

x+2(3t− 2)+ 3t = 2 or x = 6− 9t. The general solution is [x, y, z] = [6− 9t,−2 + 3t, t] for all t ∈ IR .

To check this, substitute it into the original equations:

x+ 2y + 3z = (6− 9t) + 2(−2 + 3t) + 3t = 2

4x+ 10y + 6z = 4(6− 9t) + 10(−2 + 3t) + 6t = 4

for all t as desired. In this problem we have been given two planes that intersect in a line, which passes
through (6,−2, 0) (the solution when t = 0) and which has direction vector [−9, 3, 1] (the coefficient of
t).
d) Multiplying equation (1) by 2 gives 4x + 6y + 2z = 0. Subtracting this from equation (2) gives
z = 8. Substituting this back into equation (1) gives 2x + 3y = −8. We may assign y any value, t we

like, provided we set x = −4− 3
2 t. The general solution is [x, y, z] = [−4− 3

2 t, t, 8] for all t ∈ IR . Once

again, we have been given two planes that intersect in a line, this time passing through (−4, 0, 8) with
direction vector [−3/2, 1, 0].

3) For each of the following systems of linear equations, find the general solution in parametric form. Give
a geometric interpretation.
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(a) x + 4z = 1

2x+ 2y + 4z = 2
2x− 2y + 8z = 6

(b) x+ 2y + 4z = 1

2x+ 3y + 7z = 5
5x+ 5y + 15z = 9

(c) 3x+ 4y + 2z = 1

6x+ 12y + 5z = 4
3x+ 8y + 3z = 3

(d) x+ y + z = 2

x+ 2y − z = 4
x+ y + 2z = 4

(e) x+ 3y + 3z = 5

2x+ 6y + 3z = 7
x+ 3y − 3z = 2

Solution. a) We are given three equations in three unknowns. Note that the unknown y does not
appear in the first equation. Furthermore, we can construct a second equation in x and z by adding
together the second and third equations, which yields 4x+ 12z = 8. We now have the system

x+ 4z = 1

4x+ 12z = 8

of two equations in two unknowns. We can eliminate the unknown z from these two equations by
subtracting three times the first (3x+ 12z = 3) from the second, which gives x = 5. Substituting x = 5
into x+ 4z = 1 gives z = −1 and substituting x = 5, z = −1 into 2x+ 2y + 4z = 2 gives y = −2. The

solution is [5,−2,−1] . To check, sub back into the original equations

5 + 4(−1) = 1

2(5) + 2(−2) + 4(−1) = 2

2(5)− 2(−2) + 8(−1) = 6

Each of the three given equations specifies a plane. The three planes have a single point of intersection,
namely (5,−2,−1).
b) We are given three equations in three unknowns. We can eliminate the unknown x from equation (2)
by subtracting from it 2 times equation (1) and we can eliminate the unknown x from equation (3) by
subtracting from it 5 times equation (1):

(2)− 2(1) : −y − z = 3

(3)− 5(1) : −5y − 5z = 4

It is impossible to satisfy these two equations because 5 times the first is −5y − 5z = 15, which flatly

contradicts the second. No (x, y, z) satisfies all three given equations . The three planes do not have

any point in common.
c) We are given three equations in three unknowns. We can eliminate the unknown x from equation (2)
by subtracting from it 2 times equation (1) and we can eliminate the unknown x from equation (3) by
subtracting from it equation (1):

(2)− 2(1) : 4y + z = 2

(3)− (1) : 4y + z = 2

Any z = t satisfies both of these equations provided we take y = 1
2 − 1

4 t. Subbing these values of y
and z into the first equation gives 3x + (2 − t) + 2t = 1 or x = − 1

3 − 1
3 t. The general solution is

[x, y, x] = [− 1
3 − 1

3 t,
1
2 − 1

4 t, t] for all t ∈ IR . The three planes intesect in a line. Check:

3
(

− 1
3 − 1

3 t
)

+ 4
(

1
2 − 1

4 t
)

+ 2t = 1

6
(

− 1
3 − 1

3 t
)

+ 12
(

1
2 − 1

4 t
)

+ 5t = 4

3
(

− 1
3 − 1

3 t
)

+ 8
(

1
2 − 1

4 t
)

+ 3t = 3

d) We now switch to the augmented matrix notation of §II.2.





1 1 1
1 2 −1
1 1 2

∣

∣

∣

∣

∣

∣

2
4
4





(1)
(2)− (1)
(3)− (1)





1 1 1
0 1 −2
0 0 1

∣

∣

∣

∣

∣

∣

2
2
2




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The three equations now are x + y + z = 2, y − 2z = 2, z = 2. Substituting z = 2 into y − 2z = 2
gives y = 6 and substituting y = 6, z = 2 into x + y + z = 2 gives x = −6. The only solution is
x = −6, y = 6, z = 2 . To check, substitute back into the original equations:

x+ y + z = −6 + 6 + 2 = 2

x+ 2y − z = −6 + 12− 2 = 4

x+ y + 2z = −6 + 6 + 4 = 4

e)




1 3 3
2 6 3
1 3 −3

∣

∣

∣

∣

∣

∣

5
7
2





(1)
(2)− 2(1)
(3)− (1)





1 3 3
0 0 −3
0 0 −6

∣

∣

∣

∣

∣

∣

5
−3
−3





The last two equations, −6z = −3 and −3z = −3, cannot be simultaneously satisfied. There is
no solution .

4) Find the general solution for each of the following systems of linear equations.

(a) x1 + 3x2 + x3 + x4 = 1

− 2x1 − 5x2 − x3 − 5x4 = 1

(b) x1 + 3x2 + 2x3 + x4 = 1

x1 + 3x2 + x3 + 2x4 = 1
x1 + 4x2 + x3 + 3x4 = 2

(c) x1 + 3x2 + x3 + 7x4 = 5

3x1 + 9x2 + x3 + 11x4 = 17
2x1 + 6x2 + 2x3 + 14x4 = 10

(d) x1 + 5x2 + 3x3 + 2x4 + 3x5 = 1

2x1 + 10x2 + 6x3 + 5x4 + 5x5 = 4

(e) 2x1 + 4x2 + 2x3 + 2x4 + x5 = 18

4x1 + 8x2 + 6x3 + 3x5 = 44

− 2x1 − 4x2 + 2x3 − 10x4 + 2x5 = 2

(f) x1 + x2 + x3 + x4 = 14

x1 + x2 − x3 − x4 = −4

x1 − x2 + x3 − x4 = −2
x1 − x2 − x3 + x4 = 0

(g) x1 + x3 + 3x4 = 2

x1 + 2x2 + 3x3 + 2x4 = 4

3x1 + 2x2 + 7x3 = 1
x1 + 3x3 − 5x4 = 8

(h) x1 + 2x2 + x3 + 2x4 + 3x5 = 0

2x1 + 5x2 + 2x3 + 5x4 + 7x5 = 1

x1 + 3x2 + x3 + 3x4 + 4x5 = 1
x1 + x2 + x3 + x4 + x5 = 0

Solution. a)

[

1 3 1 1
−2 −5 −1 −5

∣

∣

∣

∣

1
1

]

(1)
(2) + 2(1)

[

1 3 1 1
0 1 1 −3

∣

∣

∣

∣

1
3

]

We now backsolve. We may assign x4 = s, x3 = t with s, t arbitrary. Then

x2 + t− 3s = 3 =⇒ x2 = 3 + 3s− t

x1 + 3(3 + 3s− t) + t+ s = 1 =⇒ x1 = −8− 10s+ 2t

The general solution is x1 = −8− 10s+ 2t, x2 = 3 + 3s− t, x3 = t, x4 = s for all s, t ∈ IR . To check,
substitute back into the original equations:

x1 + 3x2 + x3 + x4 = (−8− 10s+ 2t) + 3(3 + 3s− t) + t+ s = 1

−2x1 − 5x2 − x3 − 5x4 = −2(−8− 10s+ 2t)− 5(3 + 3s− t)− t− 5s = 1

b)




1 3 2 1
1 3 1 2
1 4 1 3

∣

∣

∣

∣

∣

∣

1
1
2





(1)
(2)− (1)
(3)− (1)





1 3 2 1
0 0 −1 1
0 1 −1 2

∣

∣

∣

∣

∣

∣

1
0
1





(1)
(3)
(2)





1 3 2 1
0 1 −1 2
0 0 −1 1

∣

∣

∣

∣

∣

∣

1
1
0




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We now backsolve. We may assign x4 = t with t arbitrary. Then

−x3 + t = 0 =⇒ x3 = t

x2 − t+ 2t = 1 =⇒ x2 = 1− t

x1 + 3(1− t) + 2t+ t = 1 =⇒ x1 = −2

The general solution is x1 = −2, x2 = 1− t, x3 = t, x4 = t for all t ∈ IR .

c)




1 3 1 7
3 9 1 11
2 6 2 14

∣

∣

∣

∣

∣

∣

5
17
10





(1)
(2)− 3(1)
(3)− 2(1)





1 3 1 7
0 0 −2 −10
0 0 0 0

∣

∣

∣

∣

∣

∣

5
2
0





We now backsolve. We may assign x2 = t, x4 = s with s, t arbitrary. Then

−2x3 − 10s = 2 =⇒ x3 = −1− 5s

x1 + 3t+ (−1− 5s) + 7s = 5 =⇒ x1 = 6− 2s− 3t

The general solution is x1 = 6− 2s− 3t, x2 = t, x3 = −1− 5s, x4 = s for all s, t ∈ IR .

d)
[

1 5 3 2 3
2 10 6 5 5

∣

∣

∣

∣

1
4

]

(1)
(2)− 2(1)

[

1 5 3 2 3
0 0 0 1 −1

∣

∣

∣

∣

1
2

]

We now backsolve. We may assign x5 = s with s arbitrary. Then, the last equation

x4 − x5 = 2 =⇒ x4 = 2 + s

Now, we may assign x3 = t, x2 = u with t, u arbitrary. Then, the first equation

x1 + 5u+ 3t+ 2(2 + s) + 3s = 1 =⇒ x1 = −3− 5s− 3t− 5u

All together x1 = −3− 5s− 3t− 5u, x2 = u, x3 = t, x4 = 2 + s, x5 = s .

e)




2 4 2 2 1
4 8 6 0 3
−2 −4 2 −10 2

∣

∣

∣

∣

∣

∣

18
44
2





(1)
(2)− 2(1)
(3) + (1)





2 4 2 2 1
0 0 2 −4 1
0 0 4 −8 3

∣

∣

∣

∣

∣

∣

18
8
20





(1)
(2)

(3)− 2(2)





2 4 2 2 1
0 0 2 −4 1
0 0 0 0 1

∣

∣

∣

∣

∣

∣

18
8
4





We now backsolve. The last equation forces x5 = 4. Substituting this into the middle equation gives 2x3−
4x4+4 = 8. So we may assign x4 = s, arbitrary and then x3 = 2+2s. Subbing, the now known values of
x3, x4, x5 into the first equation gives 2x1+4x2+2(2+2s)+2s+4 = 18. So we may assign x2 = t, arbi-
trary, and then x1 = 5− 3s− 2t. All together x1 = 5− 3s− 2t, x2 = t, x3 = 2 + 2s, x4 = s, x5 = 4 .

f)






1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

∣

∣

∣

∣

∣

∣

∣

14
−4
−2
0







(1)
(2)− (1)
(3)− (1)
(4)− (1)







1 1 1 1
0 0 −2 −2
0 −2 0 −2
0 −2 −2 0

∣

∣

∣

∣

∣

∣

∣

14
−18
−16
−14







(1)
(3)
(2)
(4)







1 1 1 1
0 −2 0 −2
0 0 −2 −2
0 −2 −2 0

∣

∣

∣

∣

∣

∣

∣

14
−16
−18
−14







(1)
(2)
(3)

(4)− (2)







1 1 1 1
0 −2 0 −2
0 0 −2 −2
0 0 −2 2

∣

∣

∣

∣

∣

∣

∣

14
−16
−18
2







(1)
(2)
(3)

(4)− (3)







1 1 1 1
0 −2 0 −2
0 0 −2 −2
0 0 0 4

∣

∣

∣

∣

∣

∣

∣

14
−16
−18
20






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We now backsolve. The last equation, 4x4 = 20, forces x4 = 5. Then the third equation, −2x3 − 2x4 =
−18 or −2x3−10 = −18 forces x3 = 4. Then the second equation −2x2−2x4 = −16 or −2x2−10 = −16
forces x2 = 3. Finally, the first equation x1 + x2 + x3 + x4 = 14 or x1 + 3 + 4 + 5 = 14 forces x1 = 2.
All together x1 = 2, x2 = 3, x3 = 4, x4 = 5 .

g)






1 0 1 3
1 2 3 2
3 2 7 0
1 0 3 −5

∣

∣

∣

∣

∣

∣

∣

2
4
1
8







(1)
(2)− (1)
(3)− 3(1)
(4)− (1)







1 0 1 3
0 2 2 −1
0 2 4 −9
0 0 2 −8

∣

∣

∣

∣

∣

∣

∣

2
2
−5
6







(1)
(2)

(3)− (2)
(4)







1 0 1 3
0 2 2 −1
0 0 2 −8
0 0 2 −8

∣

∣

∣

∣

∣

∣

∣

2
2
−7
6







The last two equations cannot be simultaneously satisfied. So there is no solution .

h)






1 2 1 2 3
2 5 2 5 7
1 3 1 3 4
1 1 1 1 1

∣

∣

∣

∣

∣

∣

∣

0
1
1
0







(1)
(2)− 2(1)
(3)− (1)
(4)− (1)







1 2 1 2 3
0 1 0 1 1
0 1 0 1 1
0 −1 0 −1 −2

∣

∣

∣

∣

∣

∣

∣

0
1
1
0







(1)
(2)

(3)− (2)
(4) + (2)







1 2 1 2 3
0 1 0 1 1
0 0 0 0 0
0 0 0 0 −1

∣

∣

∣

∣

∣

∣

∣

0
1
0
1







We now backsolve. The last equation, −x5 = 1, forces x5 = −1. The third equation places absolutely
no restriction on any variable. The second equation x2 + x4 + x5 = 1, or x2 + x4 = 2, allows us to set
x4 = s, arbitrary, and then forces x2 = 2− s. Finally, the first equation x1 + 2x2 + x3 + 2x4 + 3x5 = 0
or x1 + 2(2 − s) + x3 + 2s− 3 = 0, allows us to set x3 = t, arbitrary, and then forces x1 = −1 − t. All

together x1 = −1− t, x2 = 2− s, x3 = t, x4 = s, x5 = −1 for any s, t ∈ IR .

5) Construct the augmented matrix for each of the following linear systems of equations. In each case
determine the rank of the coefficient matrix, the rank of the augmented matrix, whether or not the
system has any solutions, whether or not the system has a unique solution and the number of free
parameters in the general solution.

(a) 2x1 + 3x2 = 3

4x1 + 5x2 = 5

(b) 2x1 + 3x2 + 4x3 = 3

2x1 + x2 − x3 = 1
6x1 + 5x2 + 2x3 = 5

(c) x1 + 3x2 + 4x3 = 1

2x1 + 2x2 − x3 = 1
4x1 + 5x2 + 2x3 = 5

(d) 2x1 + x2 + x3 = 2

2x1 + 2x2 − x3 = 1
6x1 + 4x2 + x3 = 4

(e) x1 − x2 + x3 + 2x4 + x5 = −1

− x1 + 3x2 + 2x3 + x4 + x5 = 2

2x1 + 5x3 + 7x4 + 4x5 = −1
− x1 + 5x2 + 5x3 + 4x4 + 3x5 = 3

(f) x1 + x2 + x3 + 3x4 = 2

x1 + 2x2 + 3x3 + 2x4 = 4

x1 + 2x3 + 2x4 = 2
x1 + 5x2 + 3x3 + 3x4 = 0

Solution. We use [A] to denote the coefficient matrix and [A|b] to denote the augmented matrix.

a)
[

2 3
4 5

∣

∣

∣

∣

3
5

]

(1)
(2)− 2(1)

[

2 3
0 −1

∣

∣

∣

∣

3
−1

]

#unknowns = rank [A] = rank [A|b] = 2. The system has a unique solution.
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b)




2 3 4
2 1 −1
6 5 2

∣

∣

∣

∣

∣

∣

3
1
5





(1)
(2)− (1)
(3)− 3(1)





2 3 4
0 −2 −5
0 −4 −10

∣

∣

∣

∣

∣

∣

3
−2
−4





(1)
(2)

(3)− 2(2)





2 3 4
0 −2 −5
0 0 0

∣

∣

∣

∣

∣

∣

3
−2
0





#unknowns = 3, rank [A] = rank [A|b] = 2. The system has a one parameter family of solutions.

c)




1 3 4
2 2 −1
4 5 2

∣

∣

∣

∣

∣

∣

1
1
5





(1)
(2)− 2(1)
(3)− 4(1)





2 3 4
0 −4 −9
0 −7 −14

∣

∣

∣

∣

∣

∣

1
−1
1





(1)
(2)

(3)− 7
4 (2)





2 3 4
0 −4 −9
0 0 7

4

∣

∣

∣

∣

∣

∣

1
−1
11
4





#unknowns = rank [A] = rank [A|b] = 3. The system has a unique solution.

d)




2 1 1
2 2 −1
6 4 1

∣

∣

∣

∣

∣

∣

2
1
4





(1)
(2)− (1)
(3)− 3(1)





2 1 1
0 1 −2
0 1 −2

∣

∣

∣

∣

∣

∣

2
−1
−2





(1)
(2)

(3)− (2)





2 1 1
0 1 −2
0 0 0

∣

∣

∣

∣

∣

∣

2
−1
−1





rank [A] = 2 < rank [A|b] = 3. The system no solution.

e)







1 −1 1 2 1
−1 3 2 1 1
2 0 5 7 4
−1 5 5 4 3

∣

∣

∣

∣

∣

∣

∣

−1
2
−1
3







(1)
(2) + (1)
(3)− 2(1)
(4) + (1)







1 −1 1 2 1
0 2 3 3 2
0 2 3 3 2
0 4 6 6 4

∣

∣

∣

∣

∣

∣

∣

−1
1
1
2







(1)
(2)

(3)− (2)
(4)− 2(2)







1 −1 1 2 1
0 2 3 3 2
0 0 0 0 0
0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

−1
1
0
0







#unknowns = 5 > rank [A] = rank [A|b] = 2. The system has a three parameter family of solutions.

f)






1 1 1 3
1 2 3 2
1 0 2 2
1 5 3 3

∣

∣

∣

∣

∣

∣

∣

2
4
2
0







(1)
(2)− (1)
(3)− (1)
(4)− (1)







1 1 1 3
0 1 2 −1
0 −1 1 −1
0 4 2 0

∣

∣

∣

∣

∣

∣

∣

2
2
0
−2







(1)
(2)

(3) + (2)
(4)− 4(2)







1 1 1 3
0 1 2 −1
0 0 3 −2
0 0 −6 4

∣

∣

∣

∣

∣

∣

∣

2
2
2

−10







(1)
(2)
(3)

(4) + 2(3)







1 1 1 3
0 1 2 −1
0 0 3 −2
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

2
2
2
−6







rank [A] = 3 < rank [A|b] = 4. The system no solution.
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6) Consider the system of equations
x1+ x2 + 2x3 = q

x2 + x3 + 2x4 = 0

x1+ x2 + 3x3 + 3x4 = 0

2x2 + 5x3 + px4 = 3

For which values of p and q does the system have
(i) no solutions
(ii) a unique solution
(iii) exactly two solutions
(iv) more than two solutions?

Solution.







1 1 2 0
0 1 1 2
1 1 3 3
0 2 5 p

∣

∣

∣

∣

∣

∣

∣

q
0
0
3







(1)
(2)

(3)− (1)
(4)







1 1 2 0
0 1 1 2
0 0 1 3
0 2 5 p

∣

∣

∣

∣

∣

∣

∣

q
0
−q
3







(1)
(2)
(3)

(4)− 2(2)







1 1 2 0
0 1 1 2
0 0 1 3
0 0 3 p− 4

∣

∣

∣

∣

∣

∣

∣

q
0
−q
3







(1)
(2)
(3)

(4)− 3(3)







1 1 2 0
0 1 1 2
0 0 1 3
0 0 0 p− 13

∣

∣

∣

∣

∣

∣

∣

q
0
−q

3 + 3q







The ranks of the coefficient and the augmented matrices are both 4 if p 6= 13. If p = 13, the rank of
the coefficient matrix is 3. In this case, the augmented matrix has rank 3 if 3 + 3q = 0 and 4 otherwise.
There

(i) are no solutions if p = 13, q 6= −1
(ii) is exactly one solution if p 6= 13
(iii) areNEVER exactly two solutions for any linear system
(iv) are infinitely many solutions if p = 13, q = −1

7) In the process of photsynthesis plants use energy from sunlight to convert carbon dioxide and water into
glucose and oxygen. The chemical equation of the reaction is of the form

x1CO2 + x2H2O → x3O2 + x4C6H12O6

Determine the possible values of x1, x2, x3 and x4.

Solution. The same number of carbon atoms must appear on the left hand side of the chemical equation
as on the right. This is the case if and only if

x1 = 6x4

Similarly, the number of oxygen atoms on the two sides must match so that

2x1 + x2 = 2x3 + 6x4

and the number of hydrogen atoms must match so that

2x2 = 12x4

Substituting the first equation 6x4 = x1 into the third gives 2x2 = 2x1 or x1 = x2. Substi-
tuting x2 = x1 and 6x4 = x1 into the middle equation gives 2x1 + x1 = 2x3 + x1 or x1 =
x3. Since one cannot have a negative or fractional number of molecules, the general solution is
x1 = x2 = x3 = 6n, x4 = n, n = 0, 1, 2, 3, · · · .

8) The average hourly volume of traffic in a set of one way streets is given in the figure
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310

x4

390

450

x2

480

520 x3 600

640x1610

A

B C

D

Determine x1, x2, x3 and x4.

Solution. Conservation of cars at the four intersections A, B, C and D imply,

x2 + 520 = x3 + 480

x1 + 450 = x2 + 610

x4 + 640 = x1 + 310

x3 + 390 = x4 + 600

respectively. The augmented matrix for this system is







0 1 −1 0
1 −1 0 0
−1 0 0 1
0 0 1 −1

∣

∣

∣

∣

∣

∣

∣

−40
160
−330
210







(2)
(1)

(3) + (2)
(4)







1 −1 0 0
0 1 −1 0
0 −1 0 1
0 0 1 −1

∣

∣

∣

∣

∣

∣

∣

160
−40
−170
210







(1)
(2)

(3) + (2)
(4)







1 −1 0 0
0 1 −1 0
0 0 −1 1
0 0 1 −1

∣

∣

∣

∣

∣

∣

∣

160
−40
−210
210







(1)
(2)
(3)

(4) + (3)







1 −1 0 0
0 1 −1 0
0 0 −1 1
0 0 0 0

∣

∣

∣

∣

∣

∣

∣

160
−40
−210
0







We may assign x4 = t with t arbitrary (except that all the x’s must be nonnegative integers). Then
◦ equation (3) forces x3 = t+ 210,
◦ equation (2) forces x2 = −40 + x3 = t+ 170 and
◦ equation (1) forces x1 = 160 + x2 = 330 + t.

The general solution is x1 = 330 + t, x2 = t+ 170, x3 = t+ 210, x4 = t, t = 0, 1, 2, 3, · · · . The vari-
able t cannot be determined from the given data. It can be thought of as resulting from a stream of cars
driving around the loop ADCBA.

9) The following table gives the number of milligrams of vitamins A, B, C contained in one gram of each
of the foods F1, F2, F3, F4. A mixture is to be prepared containing precisely 14 mg. of A, 29 mg. of
B and 23 mg. of C. Find the greatest amount of F2 that can be used in the mixture.

F1 F2 F3 F4

A 1 1 1 1
B 1 3 2 1
C 4 0 1 1

c© Joel Feldman. 2011. All rights reserved. February 28, 2011 Linear Systems of Equations 30



Solution. Denote by xi the amount of Fi in the mixture. The problem requires

x1 + x2 + x3 + x4 = 14

x1 + 3x2 + 2x3 + x4 = 29

4x1 + x3 + x4 = 23

Switching to augmented matrix notation




1 1 1 1
1 3 2 1
4 0 1 1

∣

∣

∣

∣

∣

∣

14
29
23





(1)
(2)− (1)
(3)− 4(1)





1 1 1 1
0 2 1 0
0 −4 −3 −3

∣

∣

∣

∣

∣

∣

14
15
−33





(1)
(2)

(3) + 2(2)





1 1 1 1
0 2 1 0
0 0 −1 −3

∣

∣

∣

∣

∣

∣

14
15
−3





The general solution is x4 = t, x3 = 3− 3t, x2 = (15− 3+3t)/2 = 6+3t/2, x1 = 14− (6+3t/2)− (3−
3t)− t = 5 + t/2. As x3 must remain nonegative, t ≤ 1. Consequently, at most 7.5 mg. of F2 may be
used.

10) State whether each of the following statments is true or false. In each case give a brief reason.

a) If A is an arbitrary matrix such that the system of equations A~x = ~b has a unique solution for

~b =





1
2
3



, then the system has a unique solution for any three component column vector ~b.

b) Any system of 47 homogeneous equations in 19 unknowns whose coefficient matrix has rank greater
than or equal to 8 always has at least 11 independent solutions.

Solution. a) This statement is true . The system A~x = ~b has a unique solution for the given ~b if

and only if both the coefficient matrix A and augmented matrix [A|~b] have rank 3. But then both the

coefficient matrix A and the augmented matrix [A|~b] have rank 3 for any ~b.

b) This statement is false . The coefficient matrix could have rank as large as 19. In this event the
system has a unique solution, namely ~x = 0.

11) Find the current through the resistor R2 in the electrical network below. All of the resistors are 10 ohms
and both the voltages are 5 volts.

R1

R2

R3 R4

V1 V2

i1 i2

i3

Solution. Let the currents i1, i2 and i3 be as in the figure. Conservation of current at the top node
forces

i1 + i2 = i3

The voltage across the battery V1 has to be same as the voltage through R1, R2 and R3 and the voltage
across the battery V2 has to be same as the voltage through R2 and R4. In equations

R1i1 +R2i3 +R3i1 = V1

R2i3 +R4i2 = V2

Substituting in the values of the Rj ’s and Vj ’s and cleaning up the equations

20i1 + 10i3 = 5

10i2 + 10i3 = 5

i1+ i2 − i3 = 0
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Subbing i1 = −i2 + i3 into the first equation

−20i2 + 30i3 = 5

10i2 + 10i3 = 5

Adding twice the second equation to the first gives 50i3 = 15 and hence 0.3 amps . For the record,
i1 = 0.1 and i2 = 0.2.

12) Two weights with masses m1 = 1 gm and m2 = 3 gm are strung out between three springs, attached
to floor and ceiling, with spring constants k1 = g dynes/cm, k2 = 2g dynes/cm and k3 = 3g dynes/cm.
The gravitational constant is g = 980 cm/sec2. Each weight is a cube of volume 1 cm3.

k2

k1

k3

m2

m1

a) Suppose that the natural lengths of the springs are ℓ1 = 10 cm, ℓ2 = 15 cm and ℓ3 = 15
cm and that the distance between floor and ceiling is 50 cm. Determine the equilibrium
positions of the weights.

b) The bottom weight is pulled down and held 1 cm from its equilibrium position. Find the
displacement of the top weight.

Solution. a) Denote by x1 and x2 the distances from the centres of the two weights to the
floor. Then the lengths of the three springs are 50−x1− .5, x1−x2−1 and x2− .5 respectively.
So the forces exerted by the three springs are (50 − x1 − .5 − ℓ1)g, 2(x1 − x2 − 1 − ℓ2)g and
3(x2 − .5 − ℓ3)g respectively, with a positive force signifying that the spring is trying to pull
its ends closer together. So m1 has a force of (50 − x1 − .5 − ℓ1)g acting upward on it and
forces of 2(x1 − x2 − 1− ℓ2)g and m1g (gravity) acting downward on it. In equilibrium these
forces must balance. Similarly m2 is subject to an upward force of 2(x1 − x2 − 1 − ℓ2)g and
downward forces of 3(x2 − .5 − ℓ3)g and m2g which must also balance in equilibrium. The
equations encoding force balance in equilibrium are

(50− x1 − .5− ℓ1)g = 2(x1 − x2 − 1− ℓ2)g +m1g

2(x1 − x2 − 1− ℓ2)g = 3(x2 − .5− ℓ3)g +m2g

Substituting in the given values of m1, m2, ℓ1, ℓ2 and ℓ3

(39.5− x1)g = 2(x1 − x2 − 16)g + g

2(x1 − x2 − 16)g = 3(x2 − 15.5)g + 3g

and simplifying
3x1 − 2x2 = 70.5

2x1 − 5x2 = −11.5

Multiplying the first equation by 2 and subtracting from it three times the second gives 11x2 = 2×70.5+
34.5 = 175.5 or x2 ≈ 15.95 . Subbing back into the second equation gives x1 = (5× 175.5/11− 11.5)/2

or x1 ≈ 34.14 .
b) The force balance equation for m1, 3x1 − 2x2 = 70.5 determines x1 in terms of x2 through

x1 = 1
3 (2x2 + 70.5)

If x2 is decreased by 1, x1 is decreased by 2/3 .
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