
IV. Eigenvalues and Eigenvectors

§IV.1 An Electric Circuit – Equations

Consider the electric circuit

V, C R2

L

R1

I1 I

The following are the experimental facts of life that determine the voltages across and currents through
resistors, capacitors and inductances:
• The voltage across a resistor of resistance R is IR, where I is the current flowing through the resistor.
• The voltage across a capacitor of capacitance C is Q/C, where Q is the charge on the capacitor.
• The current through a capacitor is dQ

dt , where Q is the charge on the capacitor.

• The voltage across an inductor of inductance L is L dI
dt , where I is the current flowing through the

inductor.

+ −
V = IR

I

+ −
V = L dI

dt

I

+ −
V = Q

C

I = dQ
dt

The currents and voltages of a circuit built, as in the above example, out of a number of circuit elements are
determined by two other experimental facts of life, called Kirchhoff’s laws. They are
• The voltage between any two points of the circuit is independent of the path used to travel between the
two points.

• The net current entering any given node of the circuit is zero. As we have already observed, in Example
II.9, if one uses current loops, as in the figure above, Kirchhoff’s current law is automatically satisfied.

Let, for the above circuit,

Q = the charge on C

V = Q
C = the voltage across C

I = the loop current through L as in the figure above

I1 = dQ
dt = the loop current through C as in the figure above

By Kirchhoff’s voltage law, applied to the two loops in the figure above,
Q
C +R2(I1 + I) = 0

L
dI

dt
+ IR1 +R2(I1 + I) = 0

Generally the voltage across a capacitor is of greater interest than the charge on the capacitor. So let’s
substitute Q = CV and I1 = dQ

dt = C dV
dt .

V +R2

(
C dV

dt + I
)
= 0

L
dI

dt
+ IR1 +R2

(
C dV

dt + I
)
= 0
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We can also substitute R2

(
C dV

dt + I
)
= −V , from the first equation, into the second equation. So

V +R2

(
C dV

dt + I
)
= 0

L
dI

dt
+ IR1 − V = 0

or
dI

dt
= −R1

L
I +

1

L
V

dV

dt
= − 1

C
I − 1

R2C
V

This is an example of a system of linear first order ordinary differential equations. Furthermore the equations
are homogeneous and have constant coefficients. The significance of each of these adjectives is
• ordinary: The unknowns I and V are functions of a single variable t. Consequently, all derivatives of
these unknowns are ordinary derivatives d

dt rather than partial derivatives ∂
∂t .

• differential: The equations involve derivatives of the unknown functions.
• first order: The order of the highest derivative that appears is one. That is, no dn

dtn with n > 1 appears.
• linear: Each term in the equations is either independent of the unknown functions or is proportional to
the first power of an unknown function (possibly differentiated).

• constant coefficient: Each term in the equations is either independent of the unknowns or is a constant
times the first power of an unknown (possibly differentiated).

• homogeneous: There are no terms in the equations that are independent of the unknowns.
In this chapter, we shall learn how to solve such systems of linear first order ordinary differential equations.

Exercises for §IV.1.

1) Consider a system of n masses coupled by springs as in the figure

x2 xnx1

m2 mnm1

kn+1k2k1

The masses are constrained to move horizontally. The distance from mass number j to the left hand wall
is xj and its mass is mj . The jth spring has natural length ℓj and spring constant kj . This means that
the force exerted by spring number j is kj times the extension of spring number j, where the extension
of a spring is its length minus its natural length. The distance between the two walls is L. Problem 1 of
§II.5 asked for the system of equations that determined the equilibrium values of x1, · · · , xj . Now let the
masses to move. Write down Newton’s law of motion for x1(t), · · · , xj(t).

2) Consider the electrical network in the figure

V

I1 I2 In

R1 R2 Rn

r1 r2 rn

C1 C2 Cn

Assume that the voltage V (t) is given, that the resistances R1, · · · , Rn and r1, · · · , rn are given and
that the capacitances C1, · · · , Cn are given. Find the system of equations that determine the currents
I1, · · · , In.
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§IV.2 The Pendulum – Equations

Model a pendulum by a mass m that is connected to a hinge by an idealized rod that is massless
and of fixed length ℓ. Denote by θ the angle between the rod and vertical. The forces acting on the

θ ℓ

mg

τ

−βℓ dθdt

mass are gravity, which has magnitude mg and direction (0,−1), tension in the rod, whose magnitude τ(t)
automatically adjusts itself so that the distance between the mass and the hinge is fixed at ℓ and whose
direction is always parallel to the rod and possibly some frictional forces, like friction in the hinge and air
resistance. Assume that the total frictional force has magnitude proportional to the speed of the mass and
has direction opposite to the direction of motion of the mass.

We have already seen in Chapter I that this pendulum obeys

mℓ d
2θ

dt2 = −mg sin θ − βℓ dθdt

and that when θ is small, we can approximate sin θ ≈ θ and get the equation

d2θ
dt2 + β

m
dθ
dt +

g
ℓ θ = 0

We can reformulate this second order linear ordinary differential equation by a system of first order equations
simply by introducing the second unknown

s = dθ
dt

Then the second order derivative d2θ
dt2 can be eliminated by replacing it with ds

dt .

dθ
dt = s

ds
dt = − g

ℓ θ −
β
ms

§IV.3 Systems of First Order Constant Coefficient Homogeneous Ordinary Dif-
ferential Equations

Definition IV.1 A system of first order constant coefficient homogeneous ordinary differential equations
(ODE’s) is a family of n ODE’s in n unknown functions x1(t), · · · , xn(t) that can be written in the form

d~x

dt
= A~x(t)

where ~x is the column vector whose ith row is xi(t) and A is an n×n matrix with entries that are constants
independent of t.

Systems of ODE’s tend to arise by some combination of two basic mechanisms. First, the original
problem may involve the rates of change of more than one quantity. For example, in linear circuit problems
one studies the behaviour of complex electrical circuits built from “linear circuit elements” like resistors,
capacitors and inductances. The unknowns are the currents Iℓ in the various branches of the circuit and
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the charges Qj(t) on the various capacitors. The equations come from Kirchhoff’s laws that state the total
voltage around any closed loop in the circuit must be zero and that the total current entering any node of
the circuit must be zero. We have seen an example in §IV.1.

The second mechanism is the conversion of one higher order equation

dnx
dtn (t) = F

(
x(t), x′(t), · · · , dn−1x

dtn−1 (t)
)

into a system of first order equations by the simple expedient of viewing each of the first n− 1 derivatives
as a different unknown function.

xj(t) =
djx
dtj (t), 0 ≤ j ≤ n− 1

For each 0 ≤ j ≤ n− 2
d
dtxj(t) =

d
dt

dj

dtj x(t) =
dj+1

dtj+1 x(t) = xj+1(t)

and for j = n− 1

d
dtxn−1(t) =

d
dt

dn−1

dtn−1x(t) =
dnx
dtn (t) = F

(
x(t), x′(t), · · · , dn−1x

dtn−1 (t)
)

= F
(
x0(t), x1(t), · · · , xn−1(t)

)

So, the system
d
dtx0(t) = x1(t)

...
...

d
dtxn−2(t) = xn−1(t)
d
dtxn−1(t) = F

(
x0(t), x1(t), · · · , xn−1(t)

)

is equivalent to the original higher order system. That is, for each solution of the higher order equation,
there is a corresponding solution of the first order system and vice versa. We have seen an example of this
mechanism in the pendulum problem of §IV.2.

We next attempt to solve
d~x

dt
= A~x(t)

simply by guessing. Recall that ~x(t) is an unknown function of time. For each different value of t, ~x(t)
is a different unknown variable. So we really have infinitely many equations in infinitely many unknowns.
We shall make a guess such that ~x′(t) and A~x(t) have the same time dependence. That is, such that ~x′(t)
is proportional to ~x(t). Then all t’s will cancel out of the equation. The one function whose derivative is
proportional to itself is the exponential, so we guess ~x(t) = eλt~v where λ and ~v are constants to be chosen
so as to give a solution. Our guess is a solution if and only if

d

dt

(
eλt~v

)
= A

(
eλt~v

)

or equivalently

λeλt~v = eλtA~v

Because the derivative of an exponential is proportional to the same exponential, both terms in the equation
are proportional to the same exponential and we can eliminate all t dependence from the equation just by
dividing it by eλt.

λ~v = A~v

As a result, we have to solve for n+1 unknowns λ, ~v rather than for infinitely many unknowns in the form of
n unknown functions, ~x(t). For any λ, ~v = ~0 always a solution. In other words ~x(t) = ~0 is always a solution
of d~x

dt = A~x(t). This solution is pretty useless and is called the trivial solution. We really want nontrivial
solutions. We find them in the next section.
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Exercises for §IV.3.

1) Convert each of the following higher order differential equations into a system of first order equations.
a) y′′ + 6y′ + 5y = 0 b) y(6) − 16y = 0

2) Convert each of the following systems of first order differential equations into a single higher order
equation.

a) ~x′ =

[
0 1
2 3

]
~x b) ~x′ =

[
1 2
3 4

]
~x

§IV.4 Eigenvalues and Eigenvectors

Definition IV.2 Let A be a matrix. An eigenvector of A of eigenvalue λ is a nonzero vector ~v that obeys

A~v = λ~v

Note that any nonzero linear combination s~u+ t~v of eigenvectors of A with (the same) eigenvalue λ is
again an eigenvector of A with eigenvalue λ because

A(s~u+ t~v) = sA~u+ tA~v

= sλ~u+ tλ~v

= λ(s~u+ t~v)

First, let’s concentrate on the problem of determining the unknowns ~v once we know the value of λ.
Once λ is known, we are left with a system of linear equations in the unknowns ~v. We can write this system
in standard form (i.e. a matrix times ~v equals a constant vector) by recalling, from §III.6 on inverse matrices,
that λ~v = λI~v where I is the n× n matrix which has zero in all of its off-diagonal entries and 1 in all of its
diagonal entries.

A~v = λ~v ⇐⇒ A~v = λI~v ⇐⇒ A~v − λI~v = ~0 ⇐⇒ (A− λI)~v = ~0

This is a linear homogeneous system of equations with coefficient matrix A − λI. We know that ~v = ~0
is always a solution. We also know that there is exactly one solution (in this case ~0 ) if and only if the
determinant det(A− λI) 6= 0. Consequently

λ is an eigenvalue of A ⇐⇒ (A− λI)~v = ~0 has a nonzero solution

⇐⇒ det(A− λI) = 0

⇐⇒ λ is a root of CA(λ) = det(A− λI)

Once we have determined the eigenvalues, that is, the roots of CA(λ), which is called the characteristic
polynomial of A, we can find all nontrivial (i.e. not ~0 ) solutions of (A − λI)~v = ~0, that is all eigenvectors,
by Gaussian elimination.

Example IV.3 Let

A =

[
−2 1
1 −2

]

Then λ is an eigenvalue of A if and only if

0 = det(A− λI) = det

[
−2− λ 1

1 −2− λ

]

= (−2− λ)2 − 1 = λ2 + 4λ+ 3 = (λ+ 3)(λ+ 1)
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The eigenvalues are −1 and −3. The eigenvectors of eigenvalue −1 are all nonzero solutions of

[
−2− (−1) 1

1 −2− (−1)

] [
v1
v2

]
=

[
−1 1
1 −1

] [
v1
v2

]
=

[
0
0

]
namely ~v = c

[
1
1

]
, c 6= 0

Similarly, the eigenvectors of eigenvalue −3 are all nonzero solutions of

[
−2− (−3) 1

1 −2− (−3)

] [
v1
v2

]
=

[
1 1
1 1

] [
v1
v2

]
=

[
0
0

]
namely ~v = c

[
1
−1

]
, c 6= 0

To check that these are correct, we just have to verify that

[
−2 1
1 −2

] [
1
1

]
= −1

[
1
1

] [
−2 1
1 −2

] [
1
−1

]
= −3

[
1
−1

]

Example IV.4 Let

A =




3 2 2
1 4 1
−2 −4 −1




Then λ is an eigenvalue of A if and only if

0 = det(A− λI) = det



3− λ 2 2
1 4− λ 1
−2 −4 −1− λ




= (3− λ) det

[
4− λ 1
−4 −1− λ

]
− 2 det

[
1 1
−2 −1− λ

]
+ 2det

[
1 4− λ
−2 −4

]

= (3− λ)[(4 − λ)(−1− λ) + 4]− 2[−1− λ+ 2] + 2[−4 + 2(4− λ)]

= (3− λ)[λ2 − 3λ− 4 + 4]− 2λ+ 6 = (3 − λ)[λ2 − 3λ+ 2] (we wrote −2λ+ 6 = 2(3− λ))

= (3− λ)(λ − 2)(λ− 1)

The eigenvalues are 1, 2 and 3. Here we were able to simplify the problem of finding the roots of det(A−λI)
by recognizing that (λ − 3) was a factor relatively early in the computation. Had we not kept (3 − λ) as a
factor, we would have found that det(A − λI) = −λ3 + 6λ2 − 11λ+ 6. Some useful tricks for finding roots
of poynomials like this are given in Appendix IV.A. In particular, those tricks are used in Example IV.A.4
to find the roots of −λ3 + 6λ2 − 11λ+ 6.

The eigenvectors of eigenvalue 1 are all nonzero solutions of



3− 1 2 2
1 4− 1 1
−2 −4 −1− 1





v1
v2
v3


 =




2 2 2
1 3 1
−2 −4 −2





v1
v2
v3


 =



0
0
0




Row reducing,



1 1 1
0 2 0
0 −2 0

∣∣∣∣∣∣

0
0
0




(1)/2
(2)− (1)/2
(3) + (1)



1 1 1
0 2 0
0 0 0

∣∣∣∣∣∣

0
0
0




(1)
(2)

(3) + (2)
gives ~v = c




1
0
−1


 , c 6= 0

Similarly, the eigenvectors of eigenvalue 2 are all nonzero solutions of



3− 2 2 2
1 4− 2 1
−2 −4 −1− 2





v1
v2
v3


 =




1 2 2
1 2 1
−2 −4 −3





v1
v2
v3


 =



0
0
0



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Row reducing,


1 2 2
0 0 1
0 0 1

∣∣∣∣∣∣

0
0
0




(1)
(2)− (1)
(3) + 2(1)



1 2 2
0 0 1
0 0 0

∣∣∣∣∣∣

0
0
0




(1)
(2)

(3)− (2)
gives ~v = c




2
−1
0


 , c 6= 0

Finally, the eigenvectors of eigenvalue 3 are all nonzero solutions of


3− 3 2 2
1 4− 3 1
−2 −4 −1− 3





v1
v2
v3


 =




0 2 2
1 1 1
−2 −4 −4





v1
v2
v3


 =



0
0
0




Row reducing,


1 1 1
0 1 1
0 −2 −2

∣∣∣∣∣∣

0
0
0




(2)
(1)/2

(3) + 2(2)



1 1 1
0 1 1
0 0 0

∣∣∣∣∣∣

0
0
0




(1)
(2)

(3) + 2(2)
gives ~v = c




0
1
−1


 , c 6= 0

To check that these are correct, observe that



3 2 2
1 4 1
−2 −4 −1






1
0
−1


 = 1




1
0
−1



,




3 2 2
1 4 1
−2 −4 −1






2
−1
0


 = 2




2
−1
0



,


3 2 2
1 4 1
−2 −4 −1






0
1
−1


 = 3




0
1
−1




Example IV.5 Let

A =



3 2 4
2 0 2
4 2 3




Then λ is an eigenvalue of A if and only if

0 = det(A− λI) = det



3− λ 2 4
2 −λ 2
4 2 3− λ




= (3 − λ) det

[
−λ 2
2 3− λ

]
− 2 det

[
2 2
4 3− λ

]
+ 4det

[
2 −λ
4 2

]

= (3 − λ)[−λ(3 − λ)− 4]− 2[6− 2λ− 8] + 4[4 + 4λ]

= (3 − λ)[λ2 − 3λ− 4] + 20λ+ 20 = (3− λ)(λ − 4)(λ+ 1) + 20(λ+ 1)

= (λ + 1)[(3− λ)(λ − 4) + 20] = (λ+ 1)[−λ2 + 7λ+ 8] = (λ+ 1)(−λ+ 8)(λ+ 1)

The eigenvalues are −1 (which is said to have multiplicity two, because it is a double root of the characteristic
polynomial (λ+ 1)(−λ+ 8)(λ+ 1)) and 8. The eigenvectors of eigenvalue 8 are all nonzero solutions of



3− 8 2 4
2 −8 2
4 2 3− 8





v1
v2
v3


 =



−5 2 4
2 −8 2
4 2 −5





v1
v2
v3


 =



0
0
0




Row reducing,


1 −4 1
0 −18 9
0 18 −9

∣∣∣∣∣∣

0
0
0




(2)/2
(1) + 5(2)/2
(3)− 2(2)



1 −4 1
0 −2 1
0 0 0

∣∣∣∣∣∣

0
0
0




(1)
(2)/9

(3) + (2)
gives ~v = c



2
1
2


 , c 6= 0
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The eigenvectors of eigenvalue −1 are all nonzero solutions of



3 + 1 2 4
2 1 2
4 2 3 + 1





v1
v2
v3


 =



4 2 4
2 1 2
4 2 4





v1
v2
v3


 =



0
0
0




Row reducing,



2 1 2
0 0 0
0 0 0

∣∣∣∣∣∣

0
0
0




(1)/2
(2)− (1)/2
(3)− (1)

gives ~v = c




1
−2
0


+ d




0
−2
1


 , c, d not both zero

Checking,



3 2 4
2 0 2
4 2 3





2
1
2


 = 8



2
1
2






3 2 4
2 0 2
4 2 3






1
−2
0


 = −1




1
−2
0






3 2 4
2 0 2
4 2 3






0
−2
1


 = −1




0
−2
1




Observe that in this case our eigenvalue of multiplicity two had two “really different” eigenvectors in the
sense that 


0
−2
1


 6= c




1
−2
0




for all values of c. So, in writing down the general solution, we cannot absorb [0,−2, 1] in c[1,−2, 0] or
vice versa. This is typical, but not universal (as we shall see in §IV.8), behaviour when there are repeated
eigenvalues.

Exercises for §IV.4

1) Find all eigenvalues and eigenvectors of each of the following matrices.

a)

[
0 3
3 0

]
b)

[
−2 −8
4 10

]
c)

[
29 −10
105 −36

]
d)

[
−9 −14
7 12

]

2) Find all eigenvalues and eigenvectors of each of the following matrices.

a)



0 −1 1
1 0 2
2 0 2


 b)



1 1 1
1 0 −2
1 −1 1


 c)



7 −9 −15
0 4 0
3 −9 −11


 d)



31 −100 70
18 −59 42
12 −40 29




3) Find all eigenvalues and eigenvectors of each of the following matrices, without determining explicitly
what the matrix is.
a) A is a 2× 2 matrix that projects onto the line x+ y = 0.
b) B is a 2× 2 matrix that reflects in the line x+ y = 0.
c) C is a 3× 3 matrix that reflects in the plane x+ 2y + 3z = 0.

§IV.5 An Electric Circuit – Solution

Example IV.6 Consider the electric circuit of §IV.1 with C = 2
3 , R1 = 1, R2 = 3

5 and L = 2. These
numbers are chosen to make the numbers in the solution work out nicely. The current I and voltage V then
obey

dI
dt = − 1

2I +
1
2V

dV
dt = − 3

2I − 5
2V

or
d

dt

[
I
V

]
=

[− 1
2

1
2

− 3
2 − 5

2

] [
I
V

]
or

d~x

dt
= A~x
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with

~x =

[
I
V

]
A =

[− 1
2

1
2

− 3
2 − 5

2

]

Try ~x(t) = eλt~v, with the constants λ and ~v to be determined. This guess is a solution if and only if

λeλt~v =

[− 1
2

1
2

− 3
2 − 5

2

]
eλt~v

Dividing both side of the equation by eλt gives

λ~v =

[− 1
2

1
2

− 3
2 − 5

2

]
~v or

([− 1
2

1
2

− 3
2 − 5

2

]
− λ

[
1 0

0 1

])
~v = ~0 or

[− 1
2 − λ 1

2

− 3
2 − 5

2 − λ

]
~v = ~0

This system of equations always has the trivial solution ~v = ~0. It has a solution with ~v 6= ~0 if and only if

det

[− 1
2 − λ 1

2

− 3
2 − 5

2 − λ

]
= 0

Evaluating the determinant (
− 1

2 − λ
) (

− 5
2 − λ

)
+ 1

2 × 3
2 = 0

and simplifying
λ2 + 3λ+ 5

4 + 3
4 = (λ+ 1)(λ+ 2) = 0

we conclude that the eigenvalues of A are −1 and −2.
The eigenvectors of A of eigenvalue −1 consist of all nonzero solutions of

[− 1
2 − (−1) 1

2

− 3
2 − 5

2 − (−1)

]
~v = ~0

Simplifying, applying Gaussian elimination and backsolving

[ 1
2

1
2

− 3
2 − 3

2

]
~v = ~0

(1)
(2) + 3(1)

[ 1
2

1
2

0 0

]
~v = ~0

v2 = c1, arbitrary
v1 = −v2 = −c1

~v = c1

[
−1
1

]

Similarly, the eigenvectors of A of eigenvalue −2 consist of all nonzero solutions of

[− 1
2 − (−2) 1

2

− 3
2 − 5

2 − (−2)

]
~v = ~0

Again simplifying, applying Gaussian elimination and backsolving

[ 3
2

1
2

− 3
2 − 1

2

]
~v = ~0

(1)
(2) + (1)

[ 3
2

1
2

0 0

]
~v = ~0

v2 = c2, arbitrary
v1 = − 1

3v2 = − 1
3c2

~v = c2

[
−1/3
1

]

Note that, for both λ = −1 and λ = −2, the matrix resulting from applying Gaussian elimination to A− λI
(i.e. the second matrix in each of the two above computations) has a row of zeros. This ensures that there
is a nonzero solution ~v. We know that there must be nonzero solutions, because det(A − λI) = 0 for both
λ = −1 and λ = −2. If, in computing eigenvectors, you do not find a row of zeros after performing Gaussian
elimination, then the only solution is ~v = ~0 (which is not a legal eigenvector) and you must have made a
mechanical error somewhere.

We started this example looking for solutions of d~x
dt = A~x(t) of the form ~x(t) = eλt~v. We have found

that

λ = −1 ~v =

[
−1
1

]
λ = −2 ~v =

[
−1/3
1

]
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both give solutions. Note that, if ~u(t) and ~v(t) both solve d~x
dt = A~x(t), then so does the linear combination

c1~u(t) + c2~v(t) for any values of the constants c1 and c2 because

d

dt

(
c1~u(t) + c2~v(t)

)
= c1

d~u(t)

dt
+ c2

d~v(t)

dt

‖ ‖

A
(
c1~u(t) + c2~v(t)

)
= c1 A~u(t) + c2 Av(t)

(IV.1)

So we conclude that

~x(t) = c1e
−t

[
−1
1

]
+ c2e

−2t

[
−1/3
1

]
=⇒ d~x

dt
=

[− 1
2

1
2

− 3
2 − 5

2

]
~x(t)

At this stage we have a two parameter family of solutions to the differential equation. (We shall see in §IV.9
that there aren’t any other solutions.) The values of the parameters c1 and c2 cannot be determined by the
differential equation itself. Usually they are determined by initial conditions. Suppose, for example, that we
are told that

~x(0) =

[
I(0)
V (0)

]
=

[
0
2

]

In order for our solution to satisfy this iniitial condition, the parameters c1, c2 must obey

[
0
2

]
= ~x(0) = c1e

−0

[
−1
1

]
+ c2e

−2×0

[
−1/3
1

]
= c1

[
−1
1

]
+ c2

[
−1/3
1

]
=

[
−1 −1/3
1 1

] [
c1
c2

]

This is a linear system of equations that can be solved by Gaussian elimination, or by simply observing that
the first equation forces c2 = −3c1 and the second equation forces c1 + c2 = 2 so that c1 = −1 and c2 = 3.
So the solution of the initial value problem

d~x

dt
=

[− 1
2

1
2

− 3
2 − 5

2

]
~x(t), ~x(0) =

[
0
2

]

is

~x(t) = −e−t

[
−1
1

]
+ 3e−2t

[
−1/3
1

]
= −e−t

[
−1
1

]
+ e−2t

[
−1
3

]

With this choice of initial conditions, we are starting with a charge on the capacitor (since V (0) = 2) and
no current flowing (since I(0) = 0). Our solution shows that as time progresses the capacitor discharges
exponentially quickly through the circuit.

Example IV.7 Once again consider the electric circuit of §IV.1 but this time with C = R1 = R2 = L = 1.
The current I and voltage V then obey

dI
dt = −I + V
dV
dt = −I − V

or
d

dt
~x(t) = A ~x(t) with A =

[
−1 1
−1 −1

]
, ~x =

[
I
V

]

We first find the eigenvalues, of course.

det(A−λI) = det

[
−1− λ 1
−1 −1− λ

]
= (λ+1)2+1 = 0 ⇐⇒ (λ+1)2 = −1 ⇐⇒ λ+1 = ±i ⇐⇒ λ = −1±i

so the eigenvalues of A are −1 + i and −1 − i, with i being the “imaginary” number
√
−1. Despite their

(inappropriate) name, imaginary numbers arise over and over in the real world. If you are not comfortable
with them, you should review their definition and properties now. These are given in Appendix B.
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The eigenvectors of eigenvalue λ = −1 + i are the nonzero solutions of

(A− λI
)∣∣

λ=−1−i
~v = ~0 ⇐⇒ det

[
−1− (−1 + i) 1

−1 −1− (−1 + i)

]
~v = ~0

⇐⇒ det

[
−i 1
−1 −i

]
~v = ~0 ⇐⇒ ~v = c

[
1
i

]
, c 6= 0

We could now repeat this (easy) computation with λ = −1− i. But there’s an even easier way. If A is
any square matrix with real entries (as is the case in this example) and ~v is an eigenvector of A with complex
eigenvalue λ, then, by definition

A~v = λ~v

Take the complex conjugate of both sides. Since A has real entries, the complex conjugate of A is again A.
So

A~v = λ̄ ~v

As ~v is a nonzero vector, this says, by definition, that the complex conjugate of ~v is an eigenvector of A
of eigenvalue λ̄. So we may conclude, without any computation, that, in this example, the eigenvectors of
eigenvalue −1− i = −1 + i are

~v = c

[
1
−i

]
, c 6= 0

At this point, we have found that

e(−1+i)t

[
1
i

]
and e(−1−i)t

[
1
−i

]

both solve d
dt~x = A~x. By the linearity argument of (IV.1),

~x(t) = c1e
(−1+i)t

[
1
i

]
+ c2e

(−1−i)t

[
1
−i

]
obeys

d~x

dt
=

[
−1 1
−1 −1

]
~x(t)

for all c1 and c2. This is in fact the general solution. (An argument justifying this is given in §CH.9.)
At first site, this general solution looks bizarre. It is complex, while I(t) and V (t) are both certainly

real quantities. Here is why this is not a contradiction. When one chooses a real valued initial condition, the
constants c1 and c2 necessarily take values (note that c1 and c2 are allowed to be complex) such that ~x(t) is
also real valued. Here is an example. Suppose that, as in Example IV.6,

~x(0) =

[
I(0)
V (0)

]
=

[
0
2

]

In order for our solution to satisfy this iniitial condition, the parameters c1, c2 must obey

[
0
2

]
= ~x(0) = c1

[
1
i

]
+ c2

[
1
−i

]
=

[
1 1
i −i

] [
c1
c2

]

The first equation forces c2 = −c1 and the second equation forces ic1− ic2 = 2 so that 2ic1 = 2 and c1 = −i,
c2 = i. So the solution of the initial value problem

d~x

dt
=

[
−1 1
−1 −1

]
~x(t), ~x(0) =

[
0
2

]

is

~x(t) = −ie(−1+i)t

[
1
i

]
+ ie(−1−i)t

[
1
−i

]
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While this still looks complex, it isn’t, because the two terms are complex conjugates of each other. It is not
hard to simplify the answer and eliminate all

√
−1’s:

~x(t) = −ie(−1+i)t

[
1
i

]
+ ie(−1−i)t

[
1
−i

]
= e−t

[
−i(eit − e−it)
eit + e−it

]

Now we just either have to remember that eit = cos t + i sin t and e−it = cos t − i sin t or remember that
sin t = 1

2i

(
eit − e−it

)
and cos t = 1

2

(
eit + e−it

)
. Using either gives

~x(t) = 2e−t

[
sin t
cos t

]

With this choice of initial conditions, we are again starting with a charge on the capacitor (since V (0) = 2)
and no current flowing (since I(0) = 0). This time while the capacitor discharges exponentially quickly
through the circuit, the voltage oscillates.

Example IV.8 Let’s return to the general solution

~x(t) = c1e
(−1+i)t

[
1
i

]
+ c2e

(−1−i)t

[
1
−i

]

of Example IV.7. In this example we shall see that it is possible to rewrite it so that no
√
−1 appears. Start

by writing

~v1(t) = e(−1+i)t

[
1
i

]
~v2(t) = e(−1−i)t

[
1
−i

]

and noting that ~v1 and ~v2 are complex conjugates of each other. So if we use ~r(t) and ~s(t) to denote the real
and imaginary parts, respectively, of ~v1, (we’ll compute them explicitly shortly) then

~v1(t) = ~r(t) + i ~s(t) ~v2(t) = ~r(t)− i ~s(t)

and the general solution is

~x(t) = c1
[
~r(t) + i ~s(t)

]
+ c2

[
~r(t)− i ~s(t)

]
= (c1 + c2)~r(t) + (ic1 − ic2)~s(t)

= d1~r(t) + d2~s(t)

where d1 = c1 + c2 and d2 = i(c1 − c2) are arbitrary constants, just as c1 and c2 were arbitrary constants.
Do not fall into the trap of thinking that c1 and c2 are real constants so that d2 is necessarily imaginary. As
pointed out in the last example c1 and c2 are arbitrary complex constants. Whenever there are real initial
conditions c1 and c2 will be complex in a way that leads to d1 and d2 being real. For example, in Example
IV.7, we had c1 = −i and c2 = i, so that d1 = 0 and d2 = 2.

Now let’s find ~r(t) and ~s(t) for the v1(t) above. Recall that ~r(t) and ~s(t) are the real and imaginary
parts of ~v1(t). As

~v1(t) = e(−1+i)t

[
1
i

]
= e−t

[
cos t+ i sin t

] [ 1
i

]
= e−t

[
cos t+ i sin t
i cos t− sin t

]
= e−t

[
cos t
− sin t

]
+ ie−t

[
sin t
cos t

]

we have that

~r(t) = e−t

[
cos t
− sin t

]
~s(t) = e−t

[
sin t
cos t

]

and the general solution is

~x(t) = d1e
−t

[
cos t
− sin t

]
+ d2e

−t

[
sin t
cos t

]

c© Joel Feldman. 2011. All rights reserved. March 31, 2011 Eigenvalues and Eigenvectors 12



Exercises for §IV.5

1) Find a function ~x(t) that obeys
a)

x′
1(t) = 3x2(t), x1(0) = 2

x′
2(t) = 3x1(t), x2(0) = 0

b)
x′
1(t) = −2x1(t)− 8x2(t), x1(0) = 4

x′
2(t) = 4x1(t) + 10x2(t), x2(0) = −1

c)
x′
1(t) = −x2(t) + x3(t), x1(0) = 5

x′
2(t) = x1(t) + 2x3(t), x2(0) = −6

x′
3(t) = 2x1(t) + 2x3(t), x3(0) = −7

§IV.6 The Pendulum – Solution

Consider the pendulum of §IV.2 with g
ℓ = 2 and β

m = 2. The angle θ and angular speed s then obey
dθ
dt = s, ds

dt = −2θ− 2s or

d

dt

[
θ
s

]
=

[
0 1
−2 −2

] [
θ
s

]
or

d~x

dt
= A~x

with

~x =

[
θ
s

]
A =

[
0 1
−2 −2

]

Try ~x(t) = eλt~v with the constants λ and ~v to be determined. This guess is a solution if and only if

λeλt~v =

[
0 1
−2 −2

]
eλt~v

Dividing both side of the equation by eλt gives

λ~v =

[
0 1
−2 −2

]
~v or

([
0 1
−2 −2

]
− λ

[
1 0
0 1

])
~v = ~0 or

[
−λ 1
−2 −2− λ

]
~v = ~0

This system of equations always has the trivial solution ~v = ~0. It has a solution with ~v 6= ~0 if and only if

det

[
−λ 1
−2 −2− λ

]
= 0

Evaluating the determinant

(−λ)(−2−λ)−(1)(−2) = λ2+2λ+2 = (λ+1)2+1 = 0 ⇐⇒ (λ+1)2 = −1 ⇐⇒ λ+1 = ±i ⇐⇒ λ = −1±i

so the eigenvalues of A are −1 + i and −1− i.
We next find all eigenvectors of eigenvalue −1 + i. To do so we must solve

[
−λ 1
−2 −2− λ

]

λ=−1+i

~v = ~0 or

[
−(−1 + i) 1

−2 −2− (−1 + i)

]
~v = ~0 or

[
1− i 1
−2 −1− i

]
~v = ~0
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If we not made any mechanical errors, the second row must be a multiple of the first, despite the i’s floating
around. Apply Gaussian elimination as usual

(1)
(2)− −2

1−i (1)

[
1− i 1

−2− −2
1−i(1− i) −1− i− −2

1−i

]
~v = ~0 =⇒

[
1− i 1
0 −1− i− −2

1−i

]
~v = ~0

The secret to simplifying fractions like −2
1−i is to multiply both numerator and denominator by the complex

conjugate of the denominator (which is obtained by replacing every i in the denominator by −i). The new
denominator will be a real number.

[
1− i 1
0 −1− i− −2

1−i
1+i
1+i

]
~v = ~0 =⇒

[
1− i 1
0 −1− i− −2(1+i)

12−i2

]
~v = ~0

=⇒
[
1− i 1
0 −1− i− −2(1+i)

2

]
~v = ~0 =⇒

[
1− i 1
0 0

]
~v = ~0

and the second row vanishes as expected. Backsolving

v2 = γ, arbitrary

v1 = − 1
1−iv2 = − 1+i

(1−i)(1+i)γ = − 1+i
2 γ

~v = γ
2

[
−1− i

2

]

If we have not made any mechanical errors,
[−1−i

2

]
should be an eigenvector of eigenvalue −1 + i (choosing

γ = 2 avoids fractions). That is, we should have

[
0 1
−2 −2

] [
−1− i

2

]
= (−1 + i)

[
−1− i

2

]

The left and right hand sides are both equal to
[

2
−2+2i

]
.

We could now repeat the whole computation with λ = −1− i. As we have seen before, there’s an easier
way. Replace every i in [

0 1
−2 −2

] [
−1− i

2

]
= (−1 + i)

[
−1− i

2

]

by −i. That is, take the complex conjugate.

[
0 1
−2 −2

] [
−1 + i

2

]
= (−1− i)

[
−1 + i

2

]

This is a true equation
(
both sides equal

[
2

−2−2i

] )
and says that

[−1+i
2

]
is an eigenvector of eigenvalue

−1− i.
We started this example looking for solutions of d~x

dt = A~x(t) of the form ~x(t) = eλt~v. We have found
(again choosing γ = 2 so as to avoid fractions) that

λ = −1 + i ~v =

[
−1− i

2

]
λ = −1− i ~v =

[
−1 + i

2

]

both give solutions. By linearity, for any values of c1 and c2,

~x(t) = c1e
(−1+i)t

[
−1− i

2

]
+ c2e

(−1−i)t

[
−1 + i

2

]
=⇒ d~x

dt
=

[
0 1
−2 −2

]
~x(t)

We shall see later that there no other solutions.
Note that the solutions involve exponentials with complex exponents. The definition and main properties

of such exponentials are given in Appendix C. If you are not familiar with complex exponentials, read
Appendix C now. Many people avoid (foolishly – because they can substantially simplify many formulae
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and computations) dealing with complex exponentials. For the benefit of such people, you can always convert
them into sin’s and cos’s, by using

eit = cos t+ i sin t

e−it = cos t− i sin t

We could just substitute in

(−1− i)e(−1+i)t = (−1− i)e−teit = (−1− i)e−t
[
cos t+ i sin t

]
= e−t

[
(−1− i) cos t+ (1− i) sin t

]

2e(−1+i)t = 2e−teit = 2e−t
[
cos t+ i sin t

]
= e−t

[
2 cos t+ 2i sin t

]

(−1 + i)e(−1−i)t = (−1 + i)e−te−it = (−1 + i)e−t
[
cos t− i sin t

]
= e−t

[
(−1 + i) cos t+ (1 + i) sin t

]

2e(−1−i)t = 2e−te−it = 2e−t
[
cos t− i sin t

]
= e−t

[
2 cos t− 2i sin t

]

and collect up terms. But, by thinking a bit before computing, we can save ourselves some work.
In this application, as in most applications, the matrix A contains only real entries. So, just by taking

complex conjugates of both sides of A~v = λ~v (recall that you take complex conjugates by replacing every i
with −i), we see that, if ~v is an eigenvector of eigenvalue λ, then the complex conjugate of ~v is an eigenvector
of eigenvalue λ̄. This is exactly what happened in this example. Our two eigenvalues −1 + i, −1 − i
are complex conjugates of each other, as are the corresponding eigenvectors

[−1−i
2

]
,
[−1+i

2

]
. So our two

solutions

~x+(t) = e(−1+i)t

[
−1− i

2

]
and ~x−(t) = e(−1−i)t

[
−1 + i

2

]

are also complex conjugates of each other. The solution with c1 = c2 = 1
2 (which is gotten by adding the

two together and dividing by two) is thus the real part of ~x+(t) and is purely real. It is

1
2~x+(t) +

1
2~x−(t) =

1
2e

(−1+i)t

[
−1− i

2

]
+ 1

2e
(−1−i)t

[
−1 + i

2

]
= 1

2e
−t

[
−eit − ieit − e−it + ie−it

2eit + 2e−it

]

= e−t

[
− cos t+ sin t

2 cos t

]

In the last step we used
eit + e−it = 2 cos t

eit − e−it = 2i sin t

The solution with c1 = 1
2i and c2 = − 1

2i (which is gotten by subtracting the second solution from the first
and dividing by 2i) is the imaginary part of ~x+(t) and is also purely real. It is

1
2i~x+(t)− 1

2i~x−(t) =
1
2ie

(−1+i)t

[
−1− i

2

]
− 1

2ie
(−1−i)t

[
−1 + i

2

]
= 1

2ie
−t

[
−eit − ieit + e−it − ie−it

2eit − 2e−it

]

= e−t

[
− sin t− cos t

2 sin t

]

We now have two purely real solutions. By linearity, any linear combination of them is also a solution. So,
for any values of a and b

~x(t) = ae−t

[
− cos t+ sin t

2 cos t

]
+ be−t

[
− sin t− cos t

2 sin t

]
=⇒ d~x

dt
=

[
0 1
−2 −2

]
~x(t)

We have not constructed any solutions that we did not have before. We have really just renamed the arbitrary
constants. To see this, just substitute back

~x(t) = ae−t

[
− cos t+ sin t

2 cos t

]
+ be−t

[
− sin t− cos t

2 sin t

]

= a
2

(
~x+(t) + ~x−(t)

)
+ b

2i

(
~x+(t)− ~x−(t)

)
=

(
a
2 + b

2i

)
x+(t) +

(
a
2 − b

2i

)
x−(t)

= c1~x+(t) + c2~x−(t)

with c1 = a
2 + b

2i , c2 = a
2 − b

2i . In most applications, a and b turn out to be real and c1 and c2 turn out to
be complex.
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Exercises for §IV.6

1) Find all eigenvalues and eigenvectors of each of the following matrices.

a)

[
1 −1
1 1

]
b)

[
0 −1
5 2

]
c)

[
cos θ − sin θ
sin θ cos θ

]

2) Find a function ~x(t) that obeys
a)

x′
1(t) = x1(t)− x2(t), x1(0) = 1

x′
2(t) = x1(t) + x2(t), x2(0) = 1

b)

x′
1(t) = −x2(t), x1(0) = 1

x′
2(t) = 5x1(t) + 2x2(t), x2(0) = 1

§IV.7 Matrix Powers

Suppose that we are interested in the long time behaviour of some random walk problem, as in §III.3.
In such a problem, we are given a time zero configuration ~x0 and a transition matrix P . At time n, the
configuration is ~xn = Pn~x0. So to determine the behaviour of ~xn for very large n, we need to be able to
compute the large power Pn of P . Computing Pn by repeated matrix multiplication is extremely demanding.
It is far easier to use eigenvalues and eigenvectors and the following observations:
(a) If ~v is an eigenvector of the matrix A with eigenvalue λ, then An~v = λn~v. Here is how to see that that

is the case.
A~v = λ~v

A2~v = A(A~v) = A(λ~v) = λA~v = λ(λ~v) = λ2~v

A3~v = A(A2~v) = A(λ2~v) = λ2A~v = λ2(λ~v) = λ3~v

...

(b) If B is any m×m matrix, then B =
[
Bê1 Bê2 · · · Bêm

]
. For example

B =



a b c
d e f
g h i


 =⇒ Bê2 =



a b c
d e f
g h i





0
1
0


 =



b
e
h


 = 2nd column of B

Observation (b) says that, to find An, it sufices to find each column vector Anêj . If we can express êj as a
linear combination of eigenvectors, then we can use observation (a) to compute Anêj . Here is am example.

Example IV.9 Let’s compute A10 for the matrix

A =

[
−2 1
1 −2

]

We saw, in Example IV.3, that

[
1
1

]
is an eigenvector of eigenvalue −1 and that

[
1
−1

]
is an eigenvector of

eigenvalue −3. Consequently

A10

[
1
1

]
= (−1)10

[
1
1

]
=

[
1
1

]
A10

[
1
−1

]
= (−3)10

[
1
−1

]
=

[
59049
−59049

]
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Since

ê1 =

[
1
0

]
=

1

2

[
1
1

]
+

1

2

[
1
−1

]
ê1 =

[
1
0

]
=

1

2

[
1
1

]
− 1

2

[
1
−1

]

we have

A10ê1 =
1

2
A10

[
1
1

]
+

1

2
A10

[
1
−1

]
=

1

2

[
1
1

]
+

1

2

[
59049
−59049

]
=

[
29525
−29524

]

A10ê2 =
1

2
A10

[
1
1

]
− 1

2
A10

[
1
−1

]
=

1

2

[
1
1

]
− 1

2

[
59049
−59049

]
=

[
−29524
29525

]

and hence

A10 =
[
A10ê1 A10ê2

]
=

[
29525 −29524
−29524 29525

]

Now, let’s return to studying the long time behaviour of random walks. Let P be any m×m transition
matrix. It turns out that

◦ 1 is always an eigenvalue of P .

◦ Every eigenvalue λ of P obeys |λ| ≤ 1. Usually (but not always), P has eigenvalue 1 with mutliplicity
one and all other eigenvalues of P obey |λ| < 1.

◦ Usually (but not always) every vector ~x0 can be written as a linear combination of eigenvectors.

Suppose that ~v1, ~v2, · · ·, ~vm are eigenvectors of P with eigenvalues λ1, λ2, · · ·, λm respectively. Suppose
further that λ1 = 1 and |λj | < 1 for all j ≥ 2 and that ~x0 = c1~v1 + c2~v2 + · · ·+ cm~vm. Then

~xn = Pn~x0 = c1P
n~v1 + c2P

n~v2 + · · ·+ cmPn~vm = c1λ
n
1~v1 + c2λ

n
2~v2 + · · ·+ cmλn

m~vm

Now λn
1 = 1n = 1 for all n. But for j ≥ 2, λn

j → 0 as n → ∞, since |λj | < 1. Consequently

lim
n→∞

~xn = c1~v1

The constant c1 is determined by the requirement that the sum of the components of every ~xn, and hence of
lim
n→∞

~xn, must be exactly 1. Consequently, we always have the same limit lim
n→∞

~xn = c1~v1, regardless of what

the initial configuration ~x0 was. This limit is called the equilibrium or steady state of the random walk.

§IV.8 Diagonalization

Recall that

λ is an eigenvalue of A ⇐⇒ (A− λI)~v = ~0 has a nonzero solution

⇐⇒ det(A− λI) = 0

⇐⇒ λ is a root of CA(λ) = det(A− λI)

and that CA(λ) is called the characteristic polynomial of A. As its name suggests, the characteristic poly-
nomial of a matrix is always a polynomial. For a general 2× 2 matrix,

A =

[
a11 a12
a21 a22

]
=⇒ CA(λ) = det

[
a11 − λ a12
a21 a22 − λ

]
=

(
a11 − λ

)(
a22 − λ

)
− a12a21

= (−λ)2 −
(
a11 + a22

)
λ− a12a21

c© Joel Feldman. 2011. All rights reserved. March 31, 2011 Eigenvalues and Eigenvectors 17



the characteristic polynomial is always a polynomial of degree two whose term of degree two is always (−λ)2.
For a general 3× 3 matrix

CA(λ) = det



a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33−λ




=
(
a11 − λ

)
det

[
a22 − λ a23
a32 a33 − λ

]
− a12 det

[
a21 a23
a31 a33 − λ

]
+ a13 det

[
a21 a22 − λ
a31 a32

]

=
(
a11 − λ

)
det

[
a22 − λ a23
a32 a33 − λ

]
+ a polynomial of degree 1 in λ

=
(
a11 − λ

)(
a22 − λ

)(
a33 − λ

)
+ a polynomial of degree 1 in λ

= (−λ)3 + a polynomial of degree 2 in λ

For an n× n matrix, expanding as we did for a 3× 3 matrix, yields that

CA(λ) = (−λ)n + a polynomial of degree n− 1 in λ

The (−λ)n comes from multiplying out the product (a11 − λ)(a22 − λ) · · · (ann − λ) of diagonal entries. The
power of λ in all other terms is strictly smaller than n. Every such polynomial can be written in the form

CA(λ) = (−1)n(λ− λ1)
p1 · · · (λ− λk)

pk

where each λi is a real or complex number and each pi is an integer obeying pi ≥ 1, which is called the
multiplicity of λi. Every polynomial of degree n has precisely n roots, counting multiplicity and every n×n
matrix has precisely n eigenvalues, counting multiplicity. There is an appendix to this chapter giving some
tricks that help you find roots of polynomials.

For each different eigenvalue λj we are guaranteed the existence of a corresponding eigenvector, because

det(A− λjI) = 0 =⇒ (A− λjI)~v = ~0 has a nontrivial solution

Let ~vj be an eigenvector of A of eigenvalue λj . We are now going to derive a formula for A that combines
the n equations

A~vj = λj~vj j = 1, 2, · · · , n

into one big equation. We’ll first do a specific example and then derive the formula in general.

Example IV.10 The eigenvalues and eigenvectors of

A =

[
1 3
3 1

]

are

λ1 = 4 ~v1 =

[
1
1

]
λ1 = −2 ~v1 =

[
1
−1

]

That is,

A~v1 =

[
1 3
3 1

] [
1
1

]
=

[
1× 1 + 3× 1
3× 1 + 1× 1

]
= 4

[
1
1

]
A~v2 =

[
1 3
3 1

] [
1
−1

]
=

[
1× 1 + 3× (−1)
3× 1 + 1× (−1)

]
= −2

[
1
−1

]

Let

U = [~v1, ~v2] =

[
1 1
1 −1

]
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be the matrix whose jth column is the jth eigenvector ~vj . Note that the jth column of the product AU is,
by the usual rules of matrix multiplication, A times the jth column of U , which is A~vj = λj~vj .

AU =

[
1 3
3 1

] [
1 1
1 −1

]
=

[
1× 1 + 3× 1 1× 1 + 3× (−1)
3× 1 + 1× 1 3× 1 + 1× (−1)

]
= [A~v1 A~v2] =

[
4× 1 −2× 1
4× 1 −2× (−1)

]

If it weren’t for the eigenvalues 4, −2 multiplying the two columns of the final matrix, the final matrix would
just be U once again. These two eigenvalues can be “pulled out” out the final matrix

[
4× 1 −2× 1
4× 1 −2× (−1)

]
=

[
1 1
1 −1

] [
4 0
0 −2

]

All together [
1 3
3 1

] [
1 1
1 −1

]
=

[
1 1
1 −1

] [
4 0
0 −2

]
or AU = UD

where the columns of U are the eigenvectors of A and D is a diagonal matrix having the eigenvalues of A
running down the diagonal.

Now back to the general case. Let U = [~v1 · · · ~vn] be the n × n matrix whose jth column is the jth

eigenvector ~vj . Then

A~vj = λj~vj for j = 1, · · · , n
=⇒ A[~v1 · · · ~vn] = [A~v1 · · · A~vn] = [λ1~v1 · · · λn~vn]

=⇒ A[~v1 · · · ~vn] = [~v1 · · · ~vn]



λ1 0

. . .

0 λn




=⇒ AU = UD

where D is a diagonal matrix whose (j, j) matrix element is the jth eigenvalue. (WARNING: Be careful that
the eigenvectors and eigenvalues are placed in the same order.) In the event that U is invertible

A = UDU−1 D = U−1AU

As we shall see in the next section, diagonal matrices are easy to compute with and matrices of the
form UDU−1 with D diagonal are almost as easy to compute with. Matrices that can be written in the form
A = UDU−1, with D diagonal, are called diagonalizable. Not all matrices are diagonalizable. For example

A =

[
0 1
0 0

]

which has eigenvalues λ = 0, 0 and eigenvectors c

[
1
0

]
, c 6= 0 is not diagonalizable. But, in practice, most

matrices that you will encounter will be diagonalizable. In particular every n× n matrix that obeys at least
one of the following conditions
• A has no multiple eigenvalues
• Aij = Aji, for all 1 ≤ i, j ≤ n (such matrices are called self–adjoint or hermitian)
• Aij is real and Aij = Aji, for all 1 ≤ i, j ≤ n (such matrices are called real, symmetric)

is diagonalizable.

Exercises for §IV.8

1) Show that

A =

[
0 1
0 0

]

cannot be written in the form UDU−1 with U an invertible 2× 2 matrix and D a diagonal 2× 2 matrix.
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2) Set A = 1
5

[
9 2
2 6

]
.

a) Evaluate A10.
b) Evaluate lim

n→∞
An~v

‖An~v‖ for all vectors ~v 6= ~0.

3) Find all square roots of A = 1
5

[
17 6
6 8

]
. That is, find all matrices B obeying B2 = A.

§IV.9 The General Solution of d~x

dt
= A~x.

We have seen how to guess many solutions of d~x
dt = A~x. In order for guessing to be an efficient method

for finding solutions, you have to know when to stop guessing. You have to be able to determine when you
have found all solutions. There is one system in which it is easy to determine the general solution. When
A = 0, the system reduces to

d~x
dt = ~0

So every component xi is independent of time and the general solution is

~x(t) = ~c

where ~c is a vector of arbitrary constants.
There is a trick which enables us, in principal, to write every system d~x

dt = A~x in the form
d
dt (

−−−−−−−→
something) = ~0. The trick uses the exponential matrix e−At, which is defined by

e−At = I + (−At) + 1
2 (−At)2 + 1

3! (−At)3 + 1
4! (−At)4 + · · ·

The exponential obeys

d
dte

−At = 0 + (−A) + (−At)(−A) + 1
2! (−At)2(−A) + 1

3!(−At)3(−A) + · · ·
=

[
I + (−At) + 1

2 (−At)2 + 1
3! (−At)3 + · · ·

]
(−A)

= −e−AtA = −Ae−At

just as if A were a number. If we multiply both sides of

d~x
dt (t)−A~x(t) = ~0

by e−At, the left hand side

e−At d~x
dt (t)− e−AtA~x(t) = d

dt

(
e−At~x(t)

)

is a perfect derivative. So d~x
dt (t) = A~x(t) is equivalent to d

dt

(
e−At~x(t)

)
= 0, which has general solution

e−At~x(t) = ~c or ~x(t) = eAt~c

If A is an n× n matrix, there are n arbitrary constants in the general solution.
We have now transformed the problem of solving d~x

dt = A~x into the problem of computing eAt. When
A is diagonalizable (and, in practice, A almost always is diagonalizable) it is easy to compute eAt. Suppose
that A = UDU−1 with

U = [~v1 · · · ~vn] D =



λ1 0

. . .

0 λn



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It is trivial to compute the exponential of a diagonal matrix because

D2 =



λ1 0

. . .

0 λn





λ1 0

. . .

0 λn


 =



λ2
1 0

. . .

0 λ2
n




D3 = D2D =



λ2
1 0

. . .

0 λ2
n






λ1 0

. . .

0 λn


 =



λ3
1 0

. . .

0 λ3
n




...

Dk = Dk−1D =



λk−1
1 0

. . .

0 λk−1
n






λ1 0

. . .

0 λn


 =



λk
1 0

. . .

0 λk
n




Every power of a diagonal matrix is gotten by just taking the corresponding powers of the matrix elements
on the diagonal. So, for any function f(x) that is given by the sum of a power series f(x) =

∑∞
k=0 akx

k,

f(D) =

∞∑

k=0

akD
k =

∞∑

k=0

ak



λk
1 0

. . .

0 λk
n


 =




∑∞
k=0 akλ

k
1 0

. . .

0
∑∞

n=0 akλ
k
n


 =



f(λ1) 0

. . .

0 f(λn)




In particular,

eDt =



eλ1t 0

. . .

0 eλnt




For a diagonalizable (though not necessarily diagonal) matrix A,

A2 = AA = UDU−1UDU−1 = UDIDU−1 = UD2U−1

A3 = A2A = UD2U−1UDU−1 = UD2IDU−1 = UD3U−1

...

Ak = Ak−1A = UDk−1U−1UDU−1 = UDk−1IDU−1 = UDkU−1

So, for any function f(x) that is given by the sum of a power series f(x) =
∑∞

k=0 akx
k,

f(A) =

∞∑

k=0

akA
k =

∞∑

k=0

akUDkU−1 = Uf(D)U−1

In particular,

eAt = UeDtU−1 = U



eλ1t 0

. . .

0 eλnt


U−1

We now return to the problem of evaluating the general solution of d~x
dt = A~x, when A is diagonalizable with

eigenvalues λ1, · · · , λn and corresponding eigenvectors ~v1, · · · , ~vn. The general solution is

eAt~c = U



eλ1t 0

. . .

0 eλnt


U−1~c = [~v1 · · · ~vn]



eλ1t 0

. . .

0 eλnt


 ~d
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where ~d = U−1~c is a new vector of arbitrary constants. Multiplying everything out

eAt~c = [~v1 · · · ~vn]



eλ1td1

...
eλntdn


 = d1e

λ1t~v1 + · · ·+ dne
λnt~vn

we conclude that the general solution is a linear combination of n terms (recall that A is n × n) with the
jth term being an arbitrary constant times eλjt~vj where λj and ~vj are the jth eigenvalue and eigenvector,
respectively. This is precisely the form that we found in §IV.5 and §IV.6.

Example IV.11 As we saw in example IV.10, the eigenvalues and eigenvectors of

A =

[
1 3
3 1

]

are

λ1 = 4 ~v1 =

[
1
1

]
λ1 = −2 ~v1 =

[
1
−1

]

Hence A is diagonalizable and

A = UDU−1 with U = [~v1, ~v2] =

[
1 1
1 −1

]
D =

[
λ1 0
0 λ2

]
=

[
4 0
0 −2

]

The exponential of a diagonal matrix is obtained by exponentiating the diagonal entries

eDt =

[
e4t 0
0 e−2t

]

and the exponential of At is obtained by sandwiching eDt between U and U−1

eAt = UeDtU−1 =

[
1 1
1 −1

] [
e4t 0
0 e−2t

] [
1 1
1 −1

]−1

The general solution of d~x
dt = A~x is

~x(t) = eAt~c =

[
1 1
1 −1

] [
e4t 0
0 e−2t

] [
1 1
1 −1

]−1 [
c1
c2

]
=

[
1 1
1 −1

] [
e4t 0
0 e−2t

] [
d1
d2

]

=

[
1 1
1 −1

] [
e4td1
e−2td2

]
=

[
e4td1 + e−2td2
e4td1 − e−2td2

]
=

[
1
1

]
e4td1 +

[
1
−1

]
e−2td2

= d1e
λ1t~v1 + d2e

λ2t~v2

as expected. Here ~c and ~d are both vectors of arbitrary constants with ~d = U−1~c.

Exercises for §IV.9

1) Evaluate eAt for

a) A =

[
0 1
0 0

]
b) A =

[
λ 1
0 λ

]
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§IV.10 Coupled Springs

Consider the following system of three masses coupled by springs

m mm

x2 x3x1

2112

E4−x3E3+x3−x2E2+x2−x1E1+x1

position w.r.t equilibrium

spring constant

To make the numbers work out nicely, I have chosen the three masses equal (say to m) and the four spring
constants to be, in some units, 2, 1, 1, 2 respectively. Furthermore, we use a coordinate system in which xi

is the position of mass number i, relative to its equilibrium position. So, when the system is in equilibrium
x1 = x2 = x3 = 0. Let us denote by Ej , j = 1, 2, 3, 4 the lengths of the four springs at equilibrium and
by ℓj , j = 1, 2, 3, 4 the natural lengths of the four springs. Then the length at time t of the spring joining
the masses at x2 and x3 is x3(t) − x2(t) + E3. The force exerted by an ideal spring is, up to a sign, the
spring constant of the spring times (its length minus its natural length). Newton’s law of motion for this
system (assuming that there are no frictional forces, that the springs are massless and that the masses are
constrained to move horizontally) is thus

mx′′
1 = −2(x1 + E1 − ℓ1) + (x2 − x1 + E2 − ℓ2)

mx′′
2 = −(x2 − x1 + E2 − ℓ2) + (x3 − x2 + E3 − ℓ3)

mx′′
3 = −(x3 − x2 + E3 − ℓ3) + 2(−x3 + E4 − ℓ4)

The easy way to check that the signs are correct here is to pretend that x3 ≫ x2 ≫ x1 ≫ 0 so that all
springs except the last are very stretched out. For example, the second spring tries to pull the x1 mass to
the right (which is consistent with the +(x2 − x1 +E2 − ℓ2) > 0 force term in the first equation) and the x2

mass to the left (which is consistent with the −(x2 − x1 + E2 − ℓ2) < 0 force term in the second equation).
When the system is at rest at equilibrium x1 = x2 = x3 = x′′

1 = x′′
2 = x′′

3 = 0 and the equations of
motion simplify to

0 = −2(E1 − ℓ1) + (E2 − ℓ2)

0 = −(E2 − ℓ2) + (E3 − ℓ3)

0 = −(E3 − ℓ3) + 2(E4 − ℓ4)

so the equilibrium lengths obey 2(E1 − ℓ1) = E2 − ℓ2 = E3 − ℓ3 = 2(E4 − ℓ4). Substituting these into the
full equations of motion causes all of the Ej ’s and ℓj’s to cancel out giving

mx′′
1 = −2x1 + (x2 − x1) = −3x1 + x2

mx′′
2 = −(x2 − x1) + (x3 − x2) = x1 − 2x2 + x3

mx′′
3 = −(x3 − x2)− 2x3 = x2 − 3x3

or m~x′′ = F~x with

~x =



x1

x2

x3


 F =



−3 1 0

1 −2 1

0 1 −3




We could convert this from a second order system into a first order system, but it is not necessary. Let’s
look for solutions of the form ~x(t) = eµt~v with the constants µ and ~v to be determined. Substituting,

~x(t) = eµt~v is a solution ⇐⇒ mµ2eµt~v = Feµt~v for all t ⇐⇒ mµ2~v = F~v

we see that the guess is a nontrivial solution if and only ~v is an eigenvector of F of eigenvalue mµ2.
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We have to find the eigenvalues and eigenvectors of F . Expand det(F−λI) along its first row. Remember
that we wish to find the roots of this polynomial. So we try to express det(F − λI) as a product of factors,
rather than as a polynomial in standard form.

0 = det



−3− λ 1 0

1 −2− λ 1

0 1 −3− λ




=
(
− 3− λ

)
det

[−2− λ 1

1 −3− λ

]
− det

[
1 1

0 −3− λ

]

= −
(
3 + λ

)[
(2 + λ)

(
3 + λ

)
− 1

]
−
(
− 3− λ

)

= −
(
3 + λ

)[
λ2 + 5λ+ 6− 1− 1

]

= −
(
3 + λ

)[
λ2 + 5λ+ 4

]

= −
(
3 + λ

)
(λ+ 4)

(
λ+ 1

)

The eigenvalues are λ = −1, −3, −4. To find the corresponding eigenvectors, we must solve (F − λI)~x = ~0
for ~x.

λ = −1 :


−2 1 0
1 −1 1
0 1 −2

∣∣∣∣∣∣

0
0
0




(1)
2(2) + (1)

(3)



−2 1 0
0 −1 2
0 1 −2

∣∣∣∣∣∣

0
0
0




(1)
(2)

(3) + (2)



−2 1 0
0 −1 2
0 0 0

∣∣∣∣∣∣

0
0
0


 =⇒ ~x = α



1
2
1




λ = −3 :


0 1 0
1 1 1
0 1 0

∣∣∣∣∣∣

0
0
0




(2)
(1)

(3)− (1)



1 1 1
0 1 0
0 0 0

∣∣∣∣∣∣

0
0
0


 =⇒ ~x = β




1
0
−1




λ = −4 :


1 1 0
1 2 1
0 1 1

∣∣∣∣∣∣

0
0
0




(1)
(2)− (1)

(3)



1 1 0
0 1 1
0 1 1

∣∣∣∣∣∣

0
0
0




(1)
(2)

(3)− (2)



1 1 0
0 1 1
0 0 0

∣∣∣∣∣∣

0
0
0


 =⇒ ~x = γ




1
−1
1




For each eigenvalue λ there are two corresponding values of µ, gotten by solving mµ2 = λ. Let’s take
m = 1. The the values of µ that correspond to λ = −1 are the two solutions of µ2 = −1 or µ = ±i. All of
the following are solutions to m~x′′ = F~x

αeit



1
2
1


 α′e−it



1
2
1


 βei

√
3t




1
0
−1


 β′e−i

√
3t




1
0
−1


 γei2t




1
−1
1


 γ′e−i2t




1
−1
1




The general solution is

~x(t) =
(
αeit + α′e−it

)


1
2
1


+

(
βei

√
3t + β′e−i

√
3t
)



1
0
−1


+

(
γei2t + γ′e−i2t

)



1
−1
1




=
(
a cos t+ a′ sin t

)


1
2
1


+

(
b cos(

√
3t) + b′ sin(

√
3t)

)



1
0
−1


+

(
c cos(2t) + c′ sin(2t)

)



1
−1
1



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To convert, for example, from the apparently complex
(
αeit+α′e−it

)
to the apparently real

(
a cos t+a′ sin t

)

we used
αeit + α′e−it = α[cos t+ i sin t] + α′[cos t− i sin t] = (α+ α′) cos t+ i(α− α′) sin t

and renamed the arbitrary constants α+ α′ = a, i(α− α′) = a′.
There are three “modes of oscillation”, with frequencies 1,

√
3 and 2 radians per second. For the first

mode, all three masses are always moving in the same direction, but the middle one has twice the amplitude
of the two outside masses. For the second mode, the middle remains stationary and the outside two are
always moving in opposite directions. For the third mode, all three masses have the same amplitude, but
the middle mass always moves in the opposite direction to the outside two.

§IV.11 Worked Problems

Questions

1) Find the eigenvalues and eigenvectors of

a)

[
0 −2
1 3

]
b)

[
−3 −2
15 8

]
c)

[
3 2
−1 1

]

2) Find the eigenvalues and eigenvectors of

a)



2 1 1
1 2 1
2 2 3


 b)



2 1 0
6 1 −1
0 0 1


 c)



2 0 6
0 3 1
0 0 3




3) Find the functions x1(t) and x2(t) satisfying

a) x′
1(t) = 2x1(t) + 2x2(t) x1(0) = 1

x′
2(t) = 2x1(t)− x2(t) x2(0) = 0

b) x′
1(t) = −2x1(t) + 5x2(t) x1(0) = 1

x′
2(t) = 4x1(t) + 6x2(t) x2(t) = −1

4) Find the functions x1(t), x2(t) and x3(t) satisfying

x′
1(t) = 2x1(t) + x2(t) x1(0) = 1

x′
2(t) = 6x1(t) + x2(t)− x3(t) x2(0) = 2

x′
3(t) = x3(t) x3(0) = 3

5) Find the functions x1(t), x2(t) and x3(t) satisfying

x′
1(t) = 2x1(t)− 6x2(t)− 6x3(t) x1(0) = 0

x′
2(t) = −x1(t) + x2(t) + 2x3(t) x2(0) = 1

x′
3(t) = 3x1(t)− 6x2(t)− 7x3(t) x3(0) = 0

6) Let

A =



−3 0 2
1 −1 0
−2 −1 0




Find the eigenvalues and eigenvectors of A
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7) Consider the differential equation ~x′(t) = A~x(t) with

A =



−3 0 2
1 −1 0
−2 −1 0




Find (a) the general solution and (b) the solution that satisfies the initial conditions x1(0) = 2, x2(0) =
0, x3(0) = −1.

8) State whether each of the following statments is true or false. In each case give a brief reason.

a) The matrix


0 1 0
0 0 1
0 0 0




has no eigenvectors.

b) The vector

[
0
0

]
is an eigenvector of the matrix

[
0 1
1 0

]
.

c) If λ is an eigenvalue of the matrix A, then λ3 is a eigenvalue of the matrix A3.

d) If 0 is an eigenvalue of the matrix A, then A is not invertible.

9) Find, if possible, a matrix A obeying

A3 =

[
−34 −105
14 43

]

10) Find a 3× 3 matrix M having the eigenvalues 1 and 2, such that the eigenspace for λ = 1 is a line whose
direction vector is [2, 0, 1] and the eigenspace for λ = 2 is the plane x− 2y + z = 0.

11) Consider a population which is divided into three types and reproduces as follows:

70% of the offspring of type 1 are type 1, 10% are type 2 and 20% are type 3

10% of the offspring of type 2 are type 1, 80% are type 2 and 10% are type 3

10% of the offspring of type 3 are type 1, 30% are type 2 and 60% are type 3

All three types reproduce at the same rate. Let xi(n) denote the fraction of generation n which is of
type i, for i = 1, 2, 3.

a) Find a matrix A such that ~x(n+ 1) = A~x(n).

b) Find the eigenvalues of A.

c) Is there an equilibrium distribution, i.e. a vector ~x such that ~x(n) = ~x for all n if ~x(0) = ~x? If so,
find it.

12) Consider the following mass-spring system on a frictionless plane. Both masses are 1 kg. and the natural

x1
x2

k1 m1 k2 m2

length of both springs is 1 m. Their spring constants are k1 and k2. Let xi, i = 1, 2 denote the distance
of mass i from the wall at the left.

a) Use Newton’s law to find the equations of motion of the masses.

b) Write these equations as a first order system of differential equations.
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13) The circuit below is known as a twin–T RC network and is used as a filter. Find a system of equations
that determine the various currents flowing in the circuit, asssuming that the applied voltage, V = V (t),
is given.

V

R1 R2

R3C3 RL

C1 C2

Solutions

1) Find the eigenvalues and eigenvectors of

a)

[
0 −2
1 3

]
b)

[
−3 −2
15 8

]
c)

[
3 2
−1 1

]

Solution. a) Call the matrix A. The eigenvalues of this matrix are the solutions of

det(A− λI) = det

[
0− λ −2
1 3− λ

]
= (−λ)(3 − λ)− (−2) = λ2 − 3λ+ 2 = 0

or λ = 1, 2 . The eigenvectors corresponding to λ = 1 are all nonzero solutions of the linear system of
equations

(A− I)~y =

[
−1 −2
1 2

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
2
−1

]
, c 6= 0

and those corresponding to λ = 2 are all nonzero solutions of the linear system of equations

(A− 2I)~y =

[
−2 −2
1 1

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
1
−1

]
, c 6= 0

As a check, note that

[
0 −2
1 3

] [
2
−1

]
= 1

[
2
−1

] [
0 −2
1 3

] [
1
−1

]
= 2

[
1
−1

]

b) Call the matrix A. The eigenvalues of this matrix are the solutions of

det(A− λI) = det

[
−3− λ −2

15 8− λ

]
= (−3− λ)(8 − λ)− (−30) = λ2 − 5λ+ 6 = 0

or λ = 2, 3 . The eigenvectors corresponding to λ = 2 are all nonzero solutions of the linear system of
equations

(A− 2I)~y =

[
−5 −2
15 6

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
2
−5

]
, c 6= 0

and those corresponding to λ = 3 are all nonzero solutions of the linear system of equations

(A− 3I)~y =

[
−6 −2
15 5

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
1
−3

]
, c 6= 0
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As a check, note that

[
−3 −2
15 8

] [
2
−5

]
= 2

[
2
−5

] [
−3 −2
15 8

] [
1
−3

]
= 3

[
1
−3

]

c) Call the matrix A. The eigenvalues of this matrix are the solutions of

det(A− λI) = det

[
3− λ 2
−1 1− λ

]
= (3− λ)(1 − λ)− (−2) = λ2 − 4λ+ 5 = 0

or λ = 1
2 (4±

√
16− 20) = 2± i . The eigenvectors corresponding to λ = 2 + i are all nonzero solutions

of the linear system of equations

(A− (2 + i)I)~y =

[
1− i 2
−1 −1− i

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
1 + i
−1

]
, c 6= 0

I selected

[
1 + i
−1

]
to satisfy the second equation and checked that it also satisfied the first equation. If

it had not satisfied the first equation, the system would not have any nonzero solution. This would have
been a sure sign of a mechanical error.

The matrix A has real entries. Taking the complex conjugate of A~v = λ~v then gives A~̄v = λ̄~̄v. If
~v is an eigenvector of eigenvalue λ, then ~̄v is an eigenvector of eigenvalue λ̄. So the eigenvectors for
λ = 2− i (which is the complex conjugate of 2+ i) should be the complex conjugates of the eigenvectors
for λ = 2 + i. That is

c

[
1− i
−1

]
, c 6= 0

As a check, note that

[
3 2
−1 1

] [
1 + i
−1

]
= (2 + i)

[
1 + i
−1

] [
3 2
−1 1

] [
1− i
−1

]
= (2 − i)

[
1− i
−1

]

2) Find the eigenvalues and eigenvectors of

a)



2 1 1
1 2 1
2 2 3


 b)



2 1 0
6 1 −1
0 0 1


 c)



2 0 6
0 3 1
0 0 3




Solution. a) Call the matrix A. The eigenvalues of this matrix are the solutions of

det(A− λI) = det



2− λ 1 1
1 2− λ 1
2 2 3− λ


 = det




2− λ 1 1
−1 + λ 1− λ 0

−λ2 + 5λ− 4 −1 + λ 0




(1)
(2)− (1)

(3)− (3 − λ)(1)

= det

[
−1 + λ 1− λ

−λ2 + 5λ− 4 −1 + λ

]
= (λ− 1) det

[
1 −1

−λ2 + 5λ− 4 −1 + λ

]

= (λ− 1)[(−1 + λ) + (−λ2 + 5λ− 4)] = (λ− 1)[−λ2 + 6λ− 5] = −(λ− 1)(λ− 1)(λ− 5)

or λ = 1, 1, 5 . The eigenvectors corresponding to λ = 1 are all nonzero solutions of the linear system
of equations

(A−I)~y =



1 1 1
1 1 1
2 2 2





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c1



−1
0
1


+ c2




0
−1
1


, c1 and c2 not both zero
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and those corresponding to λ = 5 are all nonzero solutions of the linear system of equations

(A− 5I)~y =



−3 1 1
1 −3 1
2 2 −2





y1
y2
y3


 =



0
0
0


 =⇒



1 −3 1
0 −8 4
0 8 −4





y1
y2
y3


 =



0
0
0




(2)
(1) + 3(2)
(3)− 2(2)

=⇒



y1
y2
y3


 = c



1
1
2


, c 6= 0

As a check, note that



2 1 1
1 2 1
2 2 3





−1
0
1


 = 1



−1
0
1






2 1 1
1 2 1
2 2 3






0
−1
1


 = 1




0
−1
1






2 1 1
1 2 1
2 2 3





1
1
2


 = 5



1
1
2




b) Call the matrix A. The eigenvalues of this matrix are the solutions of

det(A− λI) = det



2− λ 1 0
6 1− λ −1
0 0 1− λ


 = (1− λ) det

[
2− λ 1
6 1− λ

]

= (1 − λ)[(2 − λ)(1 − λ)− 6] = (1− λ)[λ2 − 3λ− 4] = −(λ− 1)(λ− 4)(λ+ 1)

or λ = −1, 1, 4 . The eigenvectors corresponding to λ = −1 are all nonzero solutions of the linear system
of equations

(A+ I)~y =



3 1 0
6 2 −1
0 0 2





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c




1
−3
0


, c 6= 0

those corresponding to λ = 1 are all nonzero solutions of the linear system of equations

(A− I)~y =



1 1 0
6 0 −1
0 0 0





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c




1
−1
6


, c 6= 0

and those corresponding to λ = 4 are all nonzero solutions of the linear system of equations

(A− 4I)~y =



−2 1 0
6 −3 −1
0 0 −3





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c



1
2
0


, c 6= 0

As a check, note that



2 1 0
6 1 −1
0 0 1






1
−3
0


 = −1




1
−3
0






2 1 0
6 1 −1
0 0 1






1
−1
6


 = 1




1
−1
6






2 1 0
6 1 −1
0 0 1





1
2
0


 = 4



1
2
0




c) Call the matrix A. The eigenvalues of this matrix are the solutions of

det(A− λI) = det



2− λ 0 6
0 3− λ 1
0 0 3− λ


 = (3− λ) det

[
2− λ 0
0 3− λ

]

= (3− λ)(3 − λ)(2 − λ)
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or λ = 2, 3, 3 . The eigenvectors corresponding to λ = 2 are all nonzero solutions of the linear system
of equations

(A− 2I)~y =



0 0 6
0 1 1
0 0 1





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c



1
0
0


, c 6= 0

and those corresponding to λ = 3 are all nonzero solutions of the linear system of equations

(A− 3I)~y =



−1 0 6
0 0 1
0 0 0





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c



0
1
0


, c 6= 0

Note that there is only a one parameter family of eigenvectors of eigenvalue 3, even though 3 was a
double root of det(A− λI). The usual check:



2 0 6
0 3 1
0 0 3





1
0
0


 = 2



1
0
0






2 0 6
0 3 1
0 0 3





0
1
0


 = 3



0
1
0




3) Find the functions x1(t) and x2(t) satisfying

a) x′
1(t) = 2x1(t) + 2x2(t) x1(0) = 1

x′
2(t) = 2x1(t)− x2(t) x2(0) = 0

b) x′
1(t) = −2x1(t) + 5x2(t) x1(0) = 1

x′
2(t) = 4x1(t) + 6x2(t) x2(t) = −1

Solution. a) The system of differential equations is of the form ~x′(t) = A~x(t) with

A =

[
2 2
2 −1

]

The eigenvalues of this matrix are the solutions of

det(A− λI) = det

[
2− λ 2
2 −1− λ

]
= (2− λ)(−1 − λ)− 4 = λ2 − λ− 6 = 0

or λ = −2, 3. The eigenvectors corresponding to λ = −2 are all nonzero solutions of the linear system
of equations

(A+ 2I)~y =

[
4 2
2 1

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
1
−2

]
, c 6= 0

and those corresponding to λ = 3 are all nonzero solutions of the linear system of equations

(A− 3I)~y =

[
−1 2
2 −4

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
2
1

]
, c 6= 0

Consequently [
x1(t)
x2(t)

]
= c1

[
1
−2

]
e−2t + c2

[
2
1

]
e3t

satsifies the differential equations for all values of the constants c1 and c2. To satisfy the initial conditions
we also need

c1

[
1
−2

]
e−2×0 + c2

[
2
1

]
e3×0 =

[
1
0

]
or

[
1 2
−2 1

] [
c1
c2

]
=

[
1
0

]
or

c2 = 2c1
c1 + 2c2 = 5c1 = 1
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So c1 = 1
5 , c2 = 2

5 and the solution is

[
x1(t)
x2(t)

]
= 1

5

[
1
−2

]
e−2t + 2

5

[
2
1

]
e3t

To check, we just sub into the original equations

x′
1(t) = − 2

5e
−2t + 12

5 e
3t

2x1(t) + 2x2(t) = 2
{
1
5e

−2t + 4
5e

3t
}
+ 2

{
− 2

5e
−2t + 2

5e
3t
}
= − 2

5e
−2t + 12

5 e
3t = x′

1(t)

x1(0) =
1
5 + 4

5 = 1

x′
2(t) =

4
5e

−2t + 6
5e

3t

2x1(t)− x2(t) = 2
{
1
5e

−2t + 4
5e

3t
}
−
{
− 2

5e
−2t + 2

5e
3t
}
= 4

5e
−2t + 6

5e
3t = x′

2(t)

x2(0) = − 2
5 + 2

5 = 0

b) The system of differential equations is of the form ~x′(t) = A~x(t) with

A =

[
−2 5
4 6

]

The eigenvalues of this matrix are the solutions of

det(A− λI) = det

[
−2− λ 5

4 6− λ

]
= (−2− λ)(6 − λ)− 20 = λ2 − 4λ− 32 = 0

or λ = −4, 8. The eigenvectors corresponding to λ = −4 are all nonzero solutions of the linear system
of equations

(A+ 4I)~y =

[
2 5
4 10

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
5
−2

]
, c 6= 0

and those corresponding to λ = 8 are all nonzero solutions of the linear system of equations

(A− 8I)~y =

[
−10 5
4 −2

] [
y1
y2

]
=

[
0
0

]
=⇒

[
y1
y2

]
= c

[
1
2

]
, c 6= 0

Consequently [
x1(t)
x2(t)

]
= c1

[
5
−2

]
e−4t + c2

[
1
2

]
e8t

satsifies the differential equations for all values of the constants c1 and c2. To satisfy the initial conditions
we also need

c1

[
5
−2

]
e−4×0 + c2

[
1
2

]
e8×0 =

[
1
−1

]
or

[
5 1
−2 2

] [
c1
c2

]
=

[
1
−1

]

Subtracting the second equation from twice the first gives 12c1 = 3 or c1 = 1
4 . Subbing back into the

second equation gives 2c2 = − 1
2 or c2 = − 1

4 . The solution is

[
x1(t)
x2(t)

]
= 1

4

[
5
−2

]
e−4t − 1

4

[
1
2

]
e8t

To check, we just sub into the original equations

x′
1(t) = −5e−4t − 2e8t

−2x1(t) + 5x2(t) = −2
{
5
4e

−4t − 1
4e

8t
}
+ 5

{
− 2

4e
−4t − 2

4e
8t
}
= −5e−4t − 2e8t = x′

1(t)

x1(0) =
5
4 − 1

4 = 1

x′
2(t) = 2e−4t − 4e8t

4x1(t) + 6x2(t) = 4
{
5
4e

−4t − 1
4e

8t
}
+ 6

{
− 2

4e
−4t − 2

4e
8t
}
= 2e−4t − 4e8t = x′

2(t)

x2(0) = − 2
4 − 2

4 = −1
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4) Find the functions x1(t), x2(t) and x3(t) satisfying

x′
1(t) = 2x1(t) + x2(t) x1(0) = 1

x′
2(t) = 6x1(t) + x2(t)− x3(t) x2(0) = 2

x′
3(t) = x3(t) x3(0) = 3

Solution. The system of differential equations is of the form ~x′(t) = A~x(t) with

A =



2 1 0
6 1 −1
0 0 1




The eigenvalues of this matrix are the solutions of

0 = det(A− λI) = det



2− λ 1 0
6 1− λ −1
0 0 1− λ




Expanding along the third row

0 = det(A− λI) = (1− λ) det

[
2− λ 1
6 1− λ

]

= (1− λ)
[
(2− λ)(1 − λ)− 6

]
= (1− λ)

[
λ2 − 3λ− 4

]

= (1− λ)(λ − 4)(λ+ 1)

or λ = −1, 1, 4. The eigenvectors corresponding to, in order, λ = −1, 1, 4 are all nonzero solutions of the
linear systems of equations

(A+ I)~y =



3 1 0
6 2 −1
0 0 2





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c1




1
−3
0


 , c1 6= 0

(A− I)~y =



1 1 0
6 0 −1
0 0 0





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c2




1
−1
6


 , c2 6= 0

(A− 4I)~y =



−2 1 0
6 −3 −1
0 0 −3





y1
y2
y3


 =



0
0
0


 =⇒



y1
y2
y3


 = c3



1
2
0


 , c3 6= 0

Consequently 

x1(t)
x2(t)
x3(t)


 = c1




1
−3
0


 e−t + c2




1
−1
6


 et + c3



1
2
0


 e4t

satsifies the differential equations for all values of the constants c1, c2 and c3. To satisfy the initial
conditions we also need

c1




1
−3
0


+ c2




1
−1
6


+ c3



1
2
0


 =



1
2
3


 or




1 1 1
−3 −1 2
0 6 0





c1
c2
c3


 =



1
2
3




The last equation forces c2 = 1
2 . Subbing this into the first two equations gives

[
1 1
−3 2

] [
c1
c3

]
=

[
1/2
5/2

]
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Adding three times equation (1) to equation (2) gives 5c3 = 4 or c3 = 4
5 and then equation (1) gives

c1 = − 3
10 . The solution is



x1(t)
x2(t)
x3(t)


 = − 3

10




1
−3
0


 e−t + 1

2




1
−1
6


 et + 4

5



1
2
0


 e4t

To check, we just sub into the original equations

x′
1(t) =

3
10e

−t + 1
2e

t + 16
5 e4t

2x1(t) + x2(t) = 2
{
− 3

10e
−t + 1

2e
t + 4

5e
4t
}
+
{

9
10e

−t− 1
2e

t + 8
5e

4t
}
= 3

10e
−t+ 1

2e
t+ 16

5 e4t = x′
1(t)

x1(0) = − 3
10 + 1

2 + 4
5 = 1

x′
2(t) = − 9

10e
−t − 1

2e
t + 32

5 e
4t

6x1(t) + x2(t)− x3(t) = 6
{
− 3

10e
−t + 1

2e
t + 4

5e
4t
}
+
{

9
10e

−t − 1
2e

t + 8
5e

4t
}
− 3et

= − 9
10e

−t − 1
2e

t + 32
5 e

4t = x′
2(t)

x2(0) =
9
10 − 1

2 + 8
5 = 2

x′
3(t) = 3et

x3(t) = 3et = x′
3(t)

x3(0) = 3

5) Find the functions x1(t), x2(t) and x3(t) satisfying

x′
1(t) = 2x1(t)− 6x2(t)− 6x3(t) x1(0) = 0

x′
2(t) = −x1(t) + x2(t) + 2x3(t) x2(0) = 1

x′
3(t) = 3x1(t)− 6x2(t)− 7x3(t) x3(0) = 0

Solution. The system of differential equations is of the form ~x′(t) = A~x(t) with

A =




2 −6 −6
−1 1 2
3 −6 −7




The eigenvalues of this matrix are the solutions of

0 = det(A− λI) = det



2− λ −6 −6
−1 1− λ 2
3 −6 −7− λ




= det




0 −4− 3λ+ λ2 −2− 2λ
−1 1− λ 2
0 −3− 3λ −1− λ



(1) + (2− λ)(2)

(2)
(3) + 3(2)

= det

[
−4− 3λ+ λ2 −2− 2λ

−3− 3λ −1− λ

]

= (−4− 3λ+ λ2)(−1 − λ)− (−2− 2λ)(−3− 3λ)

= (−4 + λ)(1 + λ)(−1 − λ)− 6(1 + λ)(1 + λ)

= (1 + λ)2[4− λ− 6] = (1 + λ)2[−2− λ]
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or λ = −1,−1,−2. The eigenvectors corresponding to, in order, λ = −1,−2 are all nonzero solutions of
the linear systems of equations

(A+ I)~y =




3 −6 −6
−1 2 2
3 −6 −6





y1
y2
y3


 =



0
0
0


 =⇒



−1 2 2
0 0 0
0 0 0





y1
y2
y3


 =



0
0
0




(2)
(1) + 3(2)
(3) + 3(2)

=⇒



y1
y2
y3


 = c1



2
1
0


+ c2



2
0
1


 , c1, c2 not both zero

(A+ 2I)~y =




4 −6 −6
−1 3 2
3 −6 −5





y1
y2
y3


 =



0
0
0


 =⇒




0 6 2
−1 3 2
0 3 1





y1
y2
y3


 =



0
0
0



(1) + 4(2)

(2)
(3) + 3(2)

=⇒



y1
y2
y3


 = c3




3
−1
3


 , c3 6= 0

Consequently 

x1(t)
x2(t)
x3(t)


 = c1



2
1
0


 e−t + c2



2
0
1


 e−t + c3




3
−1
3


 e−2t

satsifies the differential equations for all values of the constants c1, c2 and c3. To satisfy the initial
conditions we also need

c1



2
1
0


+ c2



1
0
1


+ c3




3
−1
3


 =



0
1
0


 or



2 2 3
1 0 −1
0 1 3





c1
c2
c3


 =



0
1
0


 or



0 0 −1
1 0 −1
0 1 3





c1
c2
c3


 =



−2
1
0




In the last step we replaced (1) by (1)− 2(2)− 2(3). The solution is c3 = 2, c1 = 3, c2 = −6 so



x1(t)
x2(t)
x3(t)


 = 3



2
1
0


 e−t − 6



2
0
1


 e−t + 2




3
−1
3


 e−2t =



−6
3
−6


 e−t +




6
−2
6


 e−2t

To check, we just sub into the original equations

x′
1(t) = 6e−t − 12e−2t

2x1(t)− 6x2(t)− 6x3(t) = 2
{
−6e−t + 6e−2t

}
− 6

{
3e−t − 2e−2t

}
− 6

{
−6e−t + 6e−2t

}
= x′

1(t)

x1(0) = −6 + 6 = 0

x′
2(t) = −3e−t + 4e−2t

−x1(t) + x2(t) + 2x3(t) = −
{
−6e−t + 6e−2t

}
+
{
3e−t − 2e−2t

}
+ 2

{
−6e−t + 6e−2t

}
= x′

2(t)

x2(0) = 3− 2 = 1

x′
3(t) = 6e−t − 12e−2t

3x1(t)− 6x2(t)− 7x3(t) = 3
{
−6e−t + 6e−2t

}
− 6

{
3e−t − 2e−2t

}
− 7

{
−6e−t + 6e−2t

}
= x′

3(t)

x3(0) = −6 + 6 = 0

6) Let

A =



−3 0 2
1 −1 0
−2 −1 0




Find the eigenvalues and eigenvectors of A.
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Solution.

det(A− λI) = det



−3− λ 0 2

1 −1− λ 0
−2 −1 −λ


 = (−3− λ) det

[
−1− λ 0
−1 −λ

]
+ 2det

[
1 −1− λ
−2 −1

]

= (−3− λ)(−1 − λ)(−λ) + 2[−1− 2− 2λ] = −λ3 − 4λ2 − 3λ− 6− 4λ

= −λ3 − 4λ2 − 7λ− 6

By Trick # 1 of Appendix A, any integer root of −λ3 − 4λ2 − 7λ− 6 must divide the constant term −6.
So, the only candidates for integer roots of this polynomial are ±1, ±2, ±3, ±6. Subbing λ = 1 into
−λ3 − 4λ2 − 7λ − 6 gives a sum of four strictly negative terms. So λ = 1 cannot be a root. The same
argument rules out λ = 2, 3. We try the three negative candidates

−λ3 − 4λ2 − 7λ− 6
∣∣
λ=−1

= −2

−λ3 − 4λ2 − 7λ− 6
∣∣
λ=−2

= 0

−λ3 − 4λ2 − 7λ− 6
∣∣
λ=−3

= 6

−λ3 − 4λ2 − 7λ− 6
∣∣
λ=−6

= 108

We have found one root so far, namely λ = −2. To find the other two, factor (λ + 2) out of the
determinant (see Trick # 3 of Appendix A):

det(A− λI) = −λ3 − 4λ2 − 7λ− 6 = (λ+ 2)(−λ2 − 2λ− 3)

The roots of λ2 + 2λ+ 3 are 1
2 (−2±

√
4− 12) so the eigenvalues are −2,−1 +

√
2i,−1−

√
2i.

For λ = −2, A− λI =



−1 0 2
1 1 0
−2 −1 2


 =⇒ eigenvectors c




2
−2
1




For λ = −1 +
√
2i, A− λI =



−2−

√
2i 0 2

1 −
√
2i 0

−2 −1 1−
√
2i


 =⇒ eigenvectors c




√
2i
1

−1 +
√
2i




with c taking any nonzero value as usual. The final eigenvalue and eigenvector may be obtained by
taking complex conjugates of the λ = −1 +

√
2i eigenvalue and eigenvector.

λ1 = −2 ~v1 =




2
−2
1


 λ2 = −1 +

√
2i ~v2 =




√
2i
1

−1 +
√
2i


 λ3 = −1−

√
2i ~v3 =




−
√
2i

1
−1−

√
2i




7) Consider the differential equation ~x′(t) = A~x(t) with

A =



−3 0 2
1 −1 0
−2 −1 0




Find (a) the general solution and (b) the solution that satisfies the initial conditions x1(0) = 2, x2(0) =
0, x3(0) = −1.

Solution 1. (Using complex exponentials) The general solution is, using the eigenvalues and eigenvectors
computed in Problem 6

~x(t) = αe−2t




2
−2
1


+ βe(−1+

√
2i)t




√
2i
1

−1 +
√
2i


+ γe(−1−

√
2i)t




−
√
2i

1
−1−

√
2i




c© Joel Feldman. 2011. All rights reserved. March 31, 2011 Eigenvalues and Eigenvectors 35



To satisfy the initial conditions, we need

~x(0) = α




2
−2
1


+ β




√
2i
1

−1 +
√
2i


+ γ




−
√
2i

1
−1−

√
2i


 =




2
0
−1




We solve for α, β, γ by row reduction as usual




2
√
2i −

√
2i

−2 1 1
1 −1 +

√
2i −1−

√
2i

∣∣∣∣∣∣

2
0
−1






2

√
2i −

√
2i

0 1 +
√
2i 1−

√
2i

0 −2 +
√
2i −2−

√
2i

∣∣∣∣∣∣

2
2
−4




(1)
(2) + (1)
2(3)− (1)



2

√
2i −

√
2i

0 1 1
0 −2 +

√
2i −2−

√
2i

∣∣∣∣∣∣

2
2
−4




(1)
[(2)− (3)]/3

(3)



2

√
2i −

√
2i

0 1 1
0 0 −2

√
2i

∣∣∣∣∣∣

2
2

−2
√
2i




(1)
(2)

(3) + (2−
√
2i)(2)

=⇒ γ = 1, β = 1, α = 1

So

~x(t) = e−2t




2
−2
1


+ e(−1+

√
2i)t




√
2i
1

−1 +
√
2i


+ e(−1−

√
2i)t




−
√
2i

1
−1−

√
2i




We can, if we wish, convert this into trig functions by subbing in

e
√
2 ti = cos(

√
2 t) + i sin(

√
2 t) e−

√
2 ti = cos(

√
2 t)− i sin(

√
2 t)

To do so, we first factor e(−1±
√
2i)t = e−te±

√
2 ti.

~x(t) = e−2t




2
−2
1


+ e−t




√
2ie

√
2 ti

e
√
2 ti

−e
√
2 ti +

√
2ie

√
2 ti


+ e−t




−
√
2ie−

√
2 ti

e−
√
2 ti

−e−
√
2 ti −

√
2ie−

√
2 ti




= e−2t




2
−2
1


+ e−t




√
2ie

√
2 ti −

√
2ie−

√
2 ti

e
√
2 ti + e−

√
2 ti

−e
√
2 ti +

√
2ie

√
2 ti − e−

√
2 ti −

√
2ie−

√
2 ti




= e−2t




2
−2
1


+ e−t




−2
√
2 sin(

√
2 t)

2 cos(
√
2 t)

−2 cos(
√
2 t)− 2

√
2 sin(

√
2 t)




Solution 2. (converting to sin’s and cos’s) The general solution is, using the eigenvalues and eigenvectors
computed in Problem 6,

~x(t) = αe−2t




2
−2
1


+ βe(−1+

√
2i)t




√
2i
1

−1 +
√
2i


+ γe(−1−

√
2i)t




−
√
2i

1
−1−

√
2i




This time, we convert the general solution directly into trig functions. Define two new arbitrary constants
b and c by

β = 1
2 (b +

1
ı c)

γ = 1
2 (b − 1

ı c)
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The definitions are rigged so that the net coefficients of b and c in ~x(t) are precisely the real and imaginary
parts of

e(−1+
√
2i)t




√
2i
1

−1 +
√
2i




respectively, as we see in the second and third lines of

~x(t) = αe−2t




2
−2
1


+ 1

2 (b+
1
ı c)e

(−1+
√
2i)t




√
2i
1

−1 +
√
2i


+ 1

2 (b− 1
ı c)e

(−1−
√
2i)t




−
√
2i

1
−1−

√
2i




= αe−2t




2
−2
1


+ b

1

2


e(−1+

√
2i)t




√
2i
1

−1 +
√
2i


+ e(−1−

√
2i)t




−
√
2i

1
−1−

√
2i






+ c
1

2i


e(−1+

√
2i)t




√
2i
1

−1 +
√
2i


− e(−1−

√
2i)t




−
√
2i

1
−1−

√
2i






= αe−2t




2
−2
1


+ be−t 1

2


[cos(

√
2 t)+i sin(

√
2 t)]




√
2i
1

−1+
√
2i


+ [cos(

√
2 t)− i sin(

√
2 t)]




−
√
2i

1
−1−

√
2i






+ ce−t 1

2i


[cos(

√
2 t) + i sin(

√
2 t)]




√
2i
1

−1 +
√
2i


− [cos(

√
2 t)− i sin(

√
2 t)]




−
√
2i

1
−1−

√
2i






= αe−2t




2
−2
1


+ be−t




−
√
2 sin(

√
2 t)

cos(
√
2 t)

− cos(
√
2 t)−

√
2 sin(

√
2 t)


+ ce−t




√
2 cos(

√
2 t)

sin(
√
2 t)

− sin(
√
2 t) +

√
2 cos(

√
2 t)




To satisfy the initial conditions, we need

~x(0) = α




2
−2
1


+ b




0
1
−1


+ c



√
2
0√
2


 =




2
0
−1




The augmented matrix for this system is




2 0
√
2

−2 1 0
1 −1

√
2

∣∣∣∣∣∣

2
0
−1






2 0

√
2

0 1
√
2

0 −1 2
√
2

∣∣∣∣∣∣

2
2
−2




(1)
(2) + (1)
2(3)− (1)



2 0

√
2

0 1
√
2

0 0 3
√
2

∣∣∣∣∣∣

2
2
0




(1)
(2)

(2) + (3)

so that c = 0, b = 2, α = 1 and

~x(t) = e−2t




2
−2
1


+ 2e−t




−
√
2 sin(

√
2 t)

cos(
√
2 t)

− cos(
√
2 t)−

√
2 sin(

√
2 t)




8) State whether each of the following statments is true or false. In each case give a brief reason.
a) The matrix 


0 1 0
0 0 1
0 0 0




has no eigenvectors.
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b) The vector

[
0
0

]
is an eigenvector of the matrix

[
0 1
1 0

]
.

c) If λ is an eigenvalue of the matrix A, then λ3 is a eigenvalue of the matrix A3.
d) If 0 is an eigenvalue of the matrix A, then A is not invertible.

Solution. a) This statement is false . Every square matrix has at least one eigenvector. For the given
matrix, the vector [1, 0, 0]t is an eigenvector of eigenvalue 0.

b) This statement is false . By definition, the zero vector is never an eigenvector.

c) This statement is true . Let ~v be an eigenvector of A of eigenvalue λ. Then

A3~v = A2(A~v) = A2(λ~v) = λA2~v = λA(A~v) = λA(λ~v) = λ2A~v = λ3~v

which shows that ~v is an eigenvector of A3 of eigenvalue λ3.

d) This statement is true . Let ~v be an eigenvector of A of eigenvalue 0. Then A~v = 0~v = ~0. If A−1

were to exist, then ~v = A−1A~v = A−1~0 = ~0. But ~0 may never be an eigenvector.

9) Find, if possible, a matrix A obeying

A3 =

[
−34 −105
14 43

]

Solution. Call the given matrix B. We shall implement the following strategy. First, we shall diagonalize
B. That is, find matrices U and D, with U invertible and D diagonal so that B = UDU−1. Then we
shall find a matrix F obeying F 3 = D. This will be easy, because D is diagonal. Finally we shall define
A = UFU−1 and observe that, as desired,

A3 =
(
UFU−1

)3
= UFU−1UFU−1UFU−1 = UFIFIFU−1 = UF 3U−1 = UDU−1 = B

To diagonalize B, we find the eigenvalues and eigenvectors of B.

det

[
−34− λ −105

14 43− λ

]
= λ2 − (43− 34)λ+ (−34× 43 + 105× 14) = λ2 − 9λ+ 8 = (λ− 1)(λ− 8)

The eigenvectors of eigenvalue 1 are the nonzero solutions of

[
−35 −105
14 42

] [
x
y

]
=

[
0
0

]

Any nonzero multiple of

[
3
−1

]
is an eigenvector of eigenvalue 1. The eigenvectors of eigenvalue 8 are

the nonzero solutions of [
−42 −105
14 35

] [
x
y

]
=

[
0
0

]

Any nonzero multiple of

[
5
−2

]
is an eigenvector of eigenvalue 8. Denote by

D =

[
1 0
0 8

]
and U =

[
3 5
−1 −2

]

the eigenvalue and eignevector matrices, respectively for B. Then we should have B = UDU−1. As a
check that our eigenvalues and eigenvectors are correct, we compute, using the canned formula

[
a b
c d

]−1

= 1
ad−bc

[
d −b
−c a

]
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for the inverse of a 2× 2 matrix derived in Example III.17, that

U−1 = 1
ad−bc

[
d −b
−c a

]
= −

[
−2 −5
1 3

]
=

[
2 5
−1 −3

]

and hence

UDU−1 =

[
3 5
−1 −2

] [
1 0
0 8

] [
2 5
−1 −3

]

=

[
3 5
−1 −2

] [
2 5
−8 −24

]

=

[
−34 −105
14 43

]
= B

as desired. We finally determine the cube root, by observing that

F =

[
1 0
0 2

]

obeys F 3 = D. Set

A = UFU−1 =

[
3 5
−1 −2

] [
1 0
0 2

] [
2 5
−1 −3

]
=

[
3 5
−1 −2

] [
2 5
−2 −6

]
=

[
−4 −15
2 7

]

To check that this is correct, we multiply out
[
−4 −15
2 7

] [
−4 −15
2 7

] [
−4 −15
2 7

]
=

[
−14 −45
6 19

] [
−4 −15
2 7

]
=

[
−34 −105
14 43

]

10) Find a 3× 3 matrix M having the eigenvalues 1 and 2, such that the eigenspace for λ = 1 is a line whose
direction vector is [2, 0, 1] and the eigenspace for λ = 2 is the plane x− 2y + z = 0.

Solution. The plane x − 2y + z = 0 contains the vectors [1, 1, 1] and [0, 1, 2]. We want [1, 1, 1] and
[0, 1, 2] to be eigenvectors of eigenvalue 2 and [2, 0, 1] to be an eigenvector of eigenvalue 1. Define

D =



2 0 0
0 2 0
0 0 1


 and U =



1 0 2
1 1 0
1 2 1




Then M = UDU−1. To evaluate it, we first find the inverse of U .


1 0 2
1 1 0
1 2 1

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1




(1)
(2)− (1)
(3)− (1)



1 0 2
0 1 −2
0 2 −1

∣∣∣∣∣∣

1 0 0
−1 1 0
−1 0 1




(1)
(2)

(3)− 2(2)



1 0 2
0 1 −2
0 0 3

∣∣∣∣∣∣

1 0 0
−1 1 0
1 −2 1




(1)− 2(3)/3
(2) + 2(3)/3

(3)/3



1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

1/3 4/3 −2/3
−1/3 −1/3 2/3
1/3 −2/3 1/3




Now

M = UDU−1 =
1

3



1 0 2
1 1 0
1 2 1





2 0 0
0 2 0
0 0 1






1 4 −2
−1 −1 2
1 −2 1




=
1

3



1 0 2
1 1 0
1 2 1






2 8 −4
−2 −2 4
1 −2 1




=
1

3




4 4 −2
0 6 0
−1 2 5



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As a check, observe that

1

3




4 4 −2
0 6 0
−1 2 5





2
0
1


 =



2
0
1




and, for any x and y, setting z = −x+ 2y so that (x, y, z) lies on the plane x− 2y + z = 0,

1

3




4 4 −2
0 6 0
−1 2 5






x
y

−x+ 2y


 = 2




x
y

−x+ 2y




11) Consider a population which is divided into three types and reproduces as follows:
70% of the offspring of type 1 are type 1, 10% are type 2 and 20% are type 3
10% of the offspring of type 2 are type 1, 80% are type 2 and 10% are type 3
10% of the offspring of type 3 are type 1, 30% are type 2 and 60% are type 3

All three types reproduce at the same rate. Let xi(n) denote the fraction of generation n which is of
type i, for i = 1, 2, 3.
a) Find a matrix A such that ~x(n+ 1) = A~x(n).
b) Find the eigenvalues of A.
c) Is there an equilibrium distribution, i.e. a vector ~x such that ~x(n) = ~x for all n if ~x(0) = ~x? If so,

find it.

Solution. a) From the reproduction rules

x1(n+ 1) = .7x1(n) + .1x2(n) + .1x3(n)

x2(n+ 1) = .1x1(n) + .8x2(n) + .3x3(n)

x3(n+ 1) = .2x1(n) + .1x2(n) + .6x3(n)

The desired matrix is

A =



.7 .1 .1
.1 .8 .3
.2 .1 .6




b) The eigenvalues are the roots of

det(A− λI) = det



.7− λ .1 .1
.1 .8− λ .3
.2 .1 .6− λ




= (.7− λ) det

[
.8− λ .3
.1 .6− λ

]
− .1 det

[
.1 .3
.2 .6− λ

]
+ .1 det

[
.1 .8− λ
.2 .1

]

= (.7− λ)[(.8 − λ)(.6 − λ)− .03]− .1[.1(.6− λ)− .06] + .1[.01− .2(.8− λ)]

= (.7− λ)[λ2 − 1.4λ+ .45] + .01λ+ .02λ− .015

= −λ3 + 2.1λ2 − 1.4λ+ .3

= −(λ− 1)(λ2 − 1.1λ+ .3)

= −(λ− 1)(λ− .5)(λ− .6)

The eigenvalues are 1, .5, .6 .

c) There is a eigenvector of eigenvalue 1. This vector will not change when multplied by A. The
eigenvector of eigenvalue 1 is a nonzero solution of



−.3 .1 .1
.1 −.2 .3
.2 .1 −.4


~v = ~0 =⇒

(1) + 3(2)
(2)

(3)− 2(2)



0 −.5 1
.1 −.2 .3
0 .5 −1


~v = ~0 =⇒ ~v = α



1
2
1



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The elements of the equilibrium distribution must add up to 1, so we choose α = 1/4 giving



.25
.5
.25


 .

12) Consider the following mass-spring system on a frictionless plane. Both masses are 1 kg. and the natural

x1
x2

k1 m1 k2 m2

length of both springs is 1 m. Their spring constants are k1 and k2. Let xi, i = 1, 2 denote the distance
of mass i from the wall at the left.
a) Use Newton’s law to find the equations of motion of the masses.
b) Write these equations as a first order system of differential equations.

Solution. a) The forces exerted by the two springs are k1(x1−ℓ1) and k2(x2−x1−ℓ2), with ℓ1 = ℓ2 = 1,
so Newton says

x′′
1 = k2(x2 − x1 − 1)− k1(x1 − 1)

x′′
2 = −k2(x2 − x1 − 1)

since m1 = m2 = 1.
b) Define x3 = x′

1 and x4 = x′
2. Then, since x′

3 = x′′
1 and x′

4 = x′′
2 ,

x′
1 = x3

x′
2 = x4

x′
3 = k2(x2 − x1 − 1)− k1(x1 − 1)

x′
4 = −k2(x2 − x1 − 1)

This is a first order system of differential equations. But it is not homogeneous because of the constant
terms, −k2 + k1 and k2 that appear in equations three and four. If you prefer to have a homogeneous
first order system (this is not required by the statement of the problem), just change variables from x1

and x2 to y1 = x1 − 1 and y2 = x2 − 2. These coordinates are the positions of the masses measured
relative to their equilibrium positions. (In equilibrium, x1 = ℓ1 and x2 = ℓ2.) Then,

y′1 = x3

y′2 = x4

x′
3 = k2(y2 − y1)− k1y1

x′
4 = −k2(y2 − y1)

13) The circuit below is known as a twin–T RC network and is used as a filter. Find a system of equations
that determine the various currents flowing in the circuit, asssuming that the applied voltage, V = V (t),
is given.

V

R1 R2

R3C3 RL

C1 C2

0

1 2 3

4
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Solution. Denote by Q1, Q2, Q3 and I1, I2, I3 the charges on and currents flowing (rightward or down-
ward) through the capacitors C1, C2, C3, respectively. These charges and currents are related by

I1 = dQ1

dt I2 = dQ2

dt I3 = dQ3

dt

Denote by i1, i2, i3, iL the currents flowing (rightward or downward) through R1, R2, R3, RL respectively
and by iV the current flowing (upward) through V . Here is a figure showing the currents flowing in the
circuit.

iV

i1 i2

i3I3 iL

I1 I2

0

1 2 3

4

By Kirchhoff’s current law applied at the nodes 0 (actually 0 and the node immediately to its right), 1,
2, 3 and 4 gives

(0) iV = I3 + i3 + iL

(1) iV = I1 + i1

(2) i1 = I3 + i2

(3) iL = I2 + i2

(4) I1 = I2 + i3

We can easily use these equations to express all currents in terms of, for example, i1, i2, i3, iL:

(3) =⇒ I2 = iL − i2

(2) =⇒ I3 = i1 − i2

(4) =⇒ I1 = I2 + i3 = iL − i2 + i3

(1) =⇒ iV = I1 + i1 = iL + i1 − i2 + i3

The one equation that we did not use here, iV = I3 + i3 + iL, is redundent because when you sub in the
formulae for iV and I3 you get iL + i1 − i2 + i3 = i1 − i2 + i3 + iL which is true for all i1, i2, i3, iL.

The voltage between the nodes 0 and 1 is V . It is also (following the path 021) 1
C3

Q3 + i1R1, (following

the path 041) i3R3 +
1
C1

Q1, (following the path 0341) iLRL + 1
C2

Q2 +
1
C1

Q1 and (following the path
0321) iLRL + i2R2 + i1R1. Hence, by Kirchhoff’s voltage law

V = 1
C3

Q3 + i1R1

V = i3R3 +
1
C1

Q1

V = iLRL + 1
C2

Q2 +
1
C1

Q1

V = iLRL + i2R2 + i1R1

To eliminate the Qi’s, apply
d
dt to the first three equations:

dV
dt = 1

C3

dQ3

dt +R1
di1
dt = 1

C3
I3 +R1

di1
dt

dV
dt = R3

di3
dt + 1

C1

dQ1

dt = R3
di3
dt + 1

C1
I1

dV
dt = RL

diL
dt + 1

C2

dQ2

dt + 1
C1

dQ1

dt = RL
diL
dt + 1

C2
I2 +

1
C1

I1

V = iLRL + i2R2 + i1R1

c© Joel Feldman. 2011. All rights reserved. March 31, 2011 Eigenvalues and Eigenvectors 42



Sub in for I1, I2, I3:

R1
di1
dt = − 1

C3
i1 +

1
C3

i2 +
dV
dt

R3
di3
dt = 1

C1
i2 − 1

C1
i3 − 1

C1
iL + dV

dt

RL
diL
dt = − 1

C1
I1 − 1

C2
I2 +

dV
dt = − 1

C1
(iL − i2 + i3)− 1

C2
(iL − i2) +

dV
dt

=
(

1
C1

+ 1
C2

)
i2 − 1

C1
i3 −

(
1
C1

+ 1
C2

)
iL + dV

dt

V = iLRL + i2R2 + i1R1

The current i2 can be eliminated using the last equation i2 = −R1

R2
i1 − RL

R2
iL + 1

R2
V .

di1
dt = − 1

R1C3
i1 +

1
R1C3

(
− R1

R2
i1 − RL

R2
iL + 1

R2
V
)
+ 1

R1

dV
dt

di3
dt = 1

R3C1

(
− R1

R2
i1 − RL

R2
iL + 1

R2
V
)
− 1

R3C1
i3 − 1

R3C1
iL + 1

R3

dV
dt

diL
dt = 1

RL

(
1
C1

+ 1
C2

)(
− R1

R2
i1 − RL

R2
iL + 1

R2
V
)
− 1

RLC1
i3 − 1

RL

(
1
C1

+ 1
C2

)
iL + 1

RL

dV
dt

Finally, collect up terms

di1
dt = −

(
1

R1C3
+ 1

R2C3

)
i1 − RL

R1R2C3
iL + 1

R1R2C3
V + 1

R1

dV
dt

di3
dt = − R1

R2R3C1
i1 − 1

R3C1
i3 −

(
RL

R2R3C1
+ 1

R3C1

)
iL + 1

R2R3C1
V + 1

R3

dV
dt

diL
dt = − R1

R2RL

(
1
C1

+ 1
C2

)
i1 − 1

RLC1
i3 −

(
1
R2

+ 1
RL

)(
1
C1

+ 1
C2

)
iL + 1

R2RL

(
1
C1

+ 1
C2

)
V + 1

RL

dV
dt
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Appendix IV.A Roots of Polynomials

Here are some tricks for finding roots of polynomials that work well on exams and homework assignments,
where polynomials tend to have integer coefficients and lots of integer, or at least rational roots.

Trick # 1

If r or −r is an integer root of a polynomial anx
n + · · · + a1x + a0 with integer coefficients, then r is

a factor of the constant term a0.
To see that this is true, just observe that for any root ±r

an(±r)n + · · · + a1(±r) + a0 = 0 =⇒ a0 = −
[
an(±r)n + · · · + a1(±r)

]

Every term on the right hand side is an integer times a strictly positive power of r. So the right hand side,
and hence the left hand side, is some integer times r.

Example IV.A.1 P (λ) = λ3 − λ2 + 2.
The constant term in this polynomial is 2 = 1× 2. So the only candidates for integer roots are ±1, ±2.

Trying each in turn

P (1) = 2 P (−1) = 0 P (2) = 6 P (−2) = −10

so the only integer root is −1.

Trick # 2

If b/d or −b/d is a rational root in lowest terms (i.e. b and d are integers with no common factors) of
a polynomial anx

n + · · · + a1x + a0 with integer coefficients, then the numerator b is a factor of the
constant term a0 and the denominator d is a factor of an.

For any root ±b/d
an(±b/d)n + · · · + a1(±b/d) + a0 = 0

Multiply through by dn

a0d
n = −

[
an(±b)n + an−1d(±b)n−1 + · · · + a1d

n−1(±b)
]

Every term on the right hand side is an integer times a strictly positive power of b. So the right hand side is
some integer times b. The left hand side is dna0 and d does not contain any factor that is a factor of b. So
a0 must be some integer times b. Similarly, every term on the right hand side of

an(±b)n = −
[
an−1d(±b)n−1 · · · + a1d

n−1(±b) + a0d
n
]

is an integer times a strictly positive power of d. So the right hand side is some integer times d. The left
hand side is an(±b)n and b does not contain any factor that is a factor of d. So an must be some integer
times d.

Example IV.A.2 P (λ) = 2λ2 − λ− 3.
The constant term in this polynomial is 3 = 1 × 3 and the coefficient of the highest power of λ is

2 = 1× 2. So the only candidates for integer roots are ±1, ±3 and the only candidates for fractional roots
are ± 1

2 , ± 3
2 .

P (1) = −2 P (−1) = 0 P
(
± 3

)
= 18∓ 3− 3 6= 0 P

(
± 1

2 ) =
1
2 ∓ 1

2 − 3 6= 0 P
(
± 3

2 ) =
9
2 ∓ 3

2 − 3

so the roots are −1 and 3
2 .

Trick # 3

Once you have found one root r of a polynomial, you can divide by λ−r, using the long division algorithm
you learned in public school, but with 10 replaced by λ, to reduce the degree of the polynomial by one.
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Example IV.A.3 P (λ) = λ3 − λ2 + 2.

We have already determined that −1 is a root of this polynomial. So we divide λ3−λ2+2
λ+1 .

λ2 − 2λ+ 2

λ+ 1 λ3 − λ2 + 2

λ3 + λ2

−2λ2

−2λ2 − 2λ

2λ+ 2

2λ+ 2

0

The first term, λ2, in the quotient is chosen so that when you multiply it by the denominator, λ2(λ + 1) =
λ3 + λ2, the leading term, λ3, matches the leading term in the numerator, λ3 − λ2 + 2, exactly. When you
subtract λ2(λ+ 1) = λ3 + λ2 from the numerator λ3 − λ2 + 2 you get the remainder −2λ2 + 2. Just like in
public school, the 2 is not normally “brought down” until it is actually needed. The next term, −2λ, in the
quotient is chosen so that when you multiply it by the denominator, −2λ(λ + 1) = −2λ2 − 2λ, the leading
term −2λ2 matches the leading term in the remainder exactly. And so on. Note that we finally end up with
a remainder 0. Since −1 is a root of the numerator, λ3 − λ2 + 2, the denominator λ− (−1) must divide the
numerator exactly.

Here is an alternative to long division that involves more writing. In the previous example, we know

that λ3−λ2+2
λ+1 must be a polynomial (since −1 is a root of the numerator) of degree 2. So

λ3 − λ2 + 2

λ+ 1
= aλ2 + bλ+ c

for some, as yet unknown, coefficients a, b and c. Cross multiplying and simplifying

λ3 − λ2 + 2 = (aλ2 + bλ+ c)(λ+ 1)

= aλ3 + (a+ b)λ2 + (b + c)λ+ c

Matching coefficients of the various powers of λ on the left and right hand sides

a = 1 a+ b = −1 b+ c = 0 c = 2

forces
a = 1 b = −2 c = 2

Example IV.A.4 Suppose that we wish to find the roots of P (λ) = −λ3 + 6λ2 − 11λ + 6. We start by
looking for integer roots. Since P (λ) has integer coefficients, any integer root must divide the constant term,
namely 6, exactly. So the only possible candidates for integer roots are ±1, ±2, ±3 and ±6. Start by testing
±1. (They are easier to test than the others.)

P (−1) = −(−1)3 + 6(−1)2 − 11(−1) + 6 = 24 6= 0

P (1) = −(1)3 + 6(1)2 − 11(1) + 6 = 0

So −1 is not a root, but 1 is. Consequently (λ − 1) must be a factor in P (λ). Rather than test the other
candidates, it is usually more efficient to factor P (λ), using the knowledge that P (λ) must be of the form

P (λ) = (λ− 1)
(
aλ2 + bλ+ c

)

When we multiply out the right hand side the λ3 term will be aλ3. Since the λ3 term in P (λ) is −λ3, we
must have a = −1. Similarly, when we multiply out the right hand side the constant term will be −c. Since
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the constant term in P (λ) is 6, we must have c = −6. That only leaves b, which we determine by observing
that when we multiply out the right hand side the λ2 term will be (b − a)λ2. Since the λ2 term in P (λ) is
6λ2, we must have b− a = 6 and hence b = 6+ a = 5. Thus

P (λ) = (λ− 1)
(
− λ2 + 5λ− 6

)
= −(λ− 1)

(
λ2 − 5λ+ 6

)
= −(λ− 1)(λ− 2)(λ− 3)

So the roots are 1, 2 and 3.
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Appendix B. Complex Numbers

A complex number is nothing more than a point in the xy–plane. The first component, x, of the complex
number (x, y) is called its real part and the second component, y, is called its imaginary part, even though
there is nothing imaginary about it. The sum and product of two complex numbers (x1, y1) and (x2, y2)
are defined by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

(x1, y1) (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

respectively. We’ll get an effective memory aid for the definition of multiplication shortly. It is conventional
to use the notation x + iy (or in electrical engineering country x + jy) to stand for the complex number
(x, y). In other words, it is conventional to write x in place of (x, 0) and i in place of (0, 1). In this notation,
The sum and product of two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 is given by

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = x1x2 − y1y2 + i(x1y2 + x2y1)

Addition and multiplication of complex numbers obey the familiar algebraic rules

z1 + z2 = z2 + z1 z1z2 = z2z1

z1 + (z2 + z3) = (z1 + z2) + z3 z1(z2z3) = (z1z2)z3

0 + z1 = z1 1z1 = z1

z1(z2 + z3) = z1z2 + z1z3 (z1 + z2)z3 = z1z3 + z2z3

The negative of any complex number z = x + iy is defined by −z = −x + (−y)i, and obeys z + (−z) = 0.
The inverse, z−1 or 1

z , of any complex number z = x+ iy, other than 0, is defined by 1
z z = 1. We shall see

below that it is given by the formula 1
z = x

x2+y2 + −y
x2+y2 i. The complex number i has the special property

i2 = (0 + 1i)(0 + 1i) = (0× 0− 1× 1) + i(0× 1 + 1× 0) = −1

To remember how to multiply complex numbers, you just have to supplement the familiar rules of the real
number system with i2 = −1.

The absolute value, or modulus, |z| of z = x+ iy is given by

|z| =
√
x2 + y2

It is just the distance between z, viewed as a point in the xy–plane, and the origin. We have

|z1z2| =
√
(x1x2 − y1y2)2 + (x1y2 + x2y1)2

=
√
x2
1x

2
2 − 2x1x2y1y2 + y21y

2
2 + x2

1y
2
2 + 2x1y2x2y1 + x2

2y
2
1

=
√
x2
1x

2
2 + y21y

2
2 + x2

1y
2
2 + x2

2y
2
1

=
√
(x2

1 + y21)(x
2
2 + y22) =

√
x2
1 + x2

2

√
y21 + y22

= |z1||z2|

for all complex numbers z1 and z2.
The complex conjugate z̄ of the complex number z = x+ iy is defined by z̄ = x − iy. That is, to take

the complex conjugate, you just replace every i by −i. Note that

zz̄ = (x+ iy)(x− iy) = x2 + y2 = |z|2
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Thus
1

z
=

z̄

|z|2

for all z 6= 0. This is the formula for 1
z given above.

The complex conjugate is useful in simplifying ratios of complex numbers like 2+i
1−i . Just multiply both

the numerator and denominator by the complex conjugate of the denominator.

2 + i

1− i
=

2 + i

1− i

1 + i

1 + i
=

2 + 2i+ i− 1

1 + i− i+ 1
=

1 + 3i

2

As it had to be, the denominator is now real. The complex conjugate is also useful for extracting real and
imaginary parts of a complex number. If z = x+ iy is any complex number

x = 1
2 (z + z̄)

y = 1
2i (z − z̄)
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Appendix C. The Complex Exponential

Definition and Basic Properties. For any complex number z = x+ iy the exponential ez , is defined by

ex+iy = ex cos y + iex sin y

For any two complex numbers z1 and z2

ez1ez2 = ex1(cos y1 + i sin y1)e
x2(cos y2 + i sin y2)

= ex1+x2(cos y1 + i sin y1)(cos y2 + i sin y2)

= ex1+x2 {(cos y1 cos y2 − sin y1 sin y2) + i(cos y1 sin y2 + cos y2 sin y1)}
= ex1+x2 {cos(y1 + y2) + i sin(y1 + y2)}
= e(x1+x2)+i(y1+y2)

= ez1+z2

so that the familiar multiplication formula for real exponentials also applies to complex exponentials. For
any complex number c = α+ iβ and real number t

ect = eαt+iβt = eαt[cos(βt) + i sin(βt)]

so that the derivative with respect to t

d
dte

ct = αeαt[cos(βt) + i sin(βt)] + eαt[−β sin(βt) + iβ cos(βt)]

= (α+ iβ)eαt[cos(βt) + i sin(βt)]

= cect

is also the familiar one.

Relationship with sin and cos. When θ is a real number

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ

are complex numbers of modulus one. Solving for cos θ and sin θ (by adding and subtracting the two
equations)

cos θ = 1
2 (e

iθ + e−iθ)

sin θ = 1
2i(e

iθ − e−iθ)

These formulae make it easy to derive trig identities. For example

cos θ cosφ = 1
4 (e

iθ + e−iθ)(eiφ + e−iφ)

= 1
4 [e

i(θ+φ) + ei(θ−φ) + ei(−θ+φ) + e−i(θ+φ)]

= 1
4 [e

i(θ+φ) + e−i(θ+φ) + ei(θ−φ) + ei(−θ+φ)]

= 1
2

[
cos(θ + φ) + cos(θ − φ)

]

cos4 θ = 1
24

[
eiθ + e−iθ

]4

= 1
24

[
ei4θ + 4ei3θe−iθ + 6ei2θe−i2θ + 4eiθe−i3θ + e−4iθ

]

= 1
16

[
ei4θ + e−4iθ + 4ei2θ + 4e−i2θ + 6

]

= 1
8 cos(4θ) +

1
2 cos(2θ) +

3
8
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Polar Coordinates. Let z = x + iy be any complex number. Writing x and y in polar coordinates in the
usual way gives

x+ iy = r cos θ + ir sin θ = reiθ

y

x

x+ iy = reiθ

θ

r

In particular, 1 = 1 + i0 has r = 1 and θ = 0 or 2π or, in general, θ = 2kπ for any integer k. So,
1 = reiθ = e2kπi for any integer k. Similarly, −1 = −1 + i0 has r = 1 and θ = π or, in general, θ = π + 2kπ
for any integer k, so that −1 = e(π+2kπ)i for any integer k.

y

x

π
2

−π
2

π 1=(1,0)(−1,0)=−1

i=(0,1)

−i=(0,−1)

1 = ei0 = e2πi = e2kπi for k = 0,±1,±2, · · ·
−1 = eiπ = e3πi = e(1+2k)πi for k = 0,±1,±2, · · ·
i = eiπ/2 = e

5
2
πi = e(

1
2
+2k)πi for k = 0,±1,±2, · · ·

−i = e−iπ/2 = e
3
2
πi = e(−

1
2
+2k)πi for k = 0,±1,±2, · · ·

The polar coordinate representation makes it easy to find square roots, third roots and so on. Fix any
positive integer n. The nth roots of unity are, by definition, all solutions z of

zn = 1

Writing z = reiθ

rnenθi = 1e0i

The polar coordinates (r, θ) and (r′, θ′) represent the same point in the xy–plane (i.e. reiθ = r′eiθ
′

) if and
only if r = r′ and θ = θ′ + 2kπ for some integer k. So zn = 1 if and only if rn = 1, i.e. r = 1, and
nθ = 2kπ for some integer k. The nth roots of unity are all complex numbers e2πi

k
n with k integer. There

are precisely n distinct nth roots of unity because e2πi
k
n = e2πi

k′

n if and only if 2π k
n − 2πik

′

n = 2π k−k′

n is an
integer multiple of 2π. That is, if and only if k − k′ is an integer multiple of n. The n distinct nth roots of
unity are

1 , e2πi
1
n , e2πi

2
n , e2πi

3
n , · · · , e2πi

n−1

n

y

x
1=e2πi

0
6

e2πi
1
6e2πi

2
6

e2πi
3
6 =−1

e2πi
4
6 e2πi

5
6
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