Cylindrical Shells Example

Find the volume of the solid obtained by rotating the region bounded by z = 4 — % and x = 8 — 2y
about y = b.

Solution. The region bounded by z = 4 — y? and 2 = 8 — 2y? is sketched below. Note that the two
parabolas meet when 4 — % = 8 — 2y? or y> = 4 or y = +2. The corresponding x = 4 — (£2)? = 0.
So, the two parabolas meet at (0,42). Consider the thin slice in the figure on the right. It runs
horizontally from (4 — 32, y) to (8 — 232, y) and has width dy. When this slice is rotated about y = 5,
it sweeps out a cylindrical shell, as illustrated in the figure on the left. A radius for the shell is shown
in the figure on the right. It is the vertical line half way along the thin slice. The y—coordinate of
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the top end of the radius is 5 and the y—coordinate of the bottom end is y. So the radius has length
5 — y. The height of the shell is the difference between the z—coordinates at the right and left hand
ends of the thin slice. So the height of the shell is (8 — 2y?) — (4 — y?) = 4 — y2. The thickness of the
shell is dy and its volume is 27(5 — y)(4 — y?)dy. The total volume of the solid is
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For any odd power y" of y, and any a, the integral ffa y™ dy = 0. This is because the area
with —a < y < 0 has the same magnitude but opposite 81gn as the area with 0 < y < a. See the
figure on the left below. Thus the integrals [ 2 Toydy= |7, y3 dy = 0. For any even power y" of

y, and any a, the integral ffa yrdy = Zf[;l y™ dy. This is because the area with —a < y < 0 has the
same magnitude and same sign as the area with 0 < y < a. See the figure on the right above.
The volume of the solid is
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