
Error Formulae for Taylor Polynomial Approximations

Let

Pn(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ 1
n!f

(n)(x0)(x− x0)
n

be the Taylor polynomial of degree n for the function f(x) and expansion point x0. Using this polynomial to
approximate f(x) introduces an error

En(x) = f(x)− Pn(x)

We shall now prove that

En(x) =
1

(n+1)!f
(n+1)(z)(x− x0)

n+1 (1n)

for some z between x0 and x and that

En(x) =
1
n!

∫ x

x0

(x− z)nf (n+1)(z) dz (2n)

These proofs are not part of the official course. It rarely necessary, or even possible, to evaluate En(x)
exactly. It is usually sufficient to find a number M such that

∣

∣f (n+1)(z)
∣

∣ ≤ M for all z between x0 and the x

of interest. Both (1n) and (2n) then imply that |En(x)| ≤
1

(n+1)!M |x− x0|
n+1.

Both (1n) and (2n) are easily proven in the special case n = 0. When n = 0, (1n) and (2n) are the
statements that

f(x)− f(x0) = f ′(z)(x− x0) (10)

for some z between x0 and x and that

f(x)− f(x0) =

∫ x

x0

f ′(z) dz (20)

So (10) is just a restatement of the mean–value theorem and (20) is just a restatement of part of the fundamental
theorem of calculus.

To prove (1n) with n ≥ 1, we need the following small generalization of the mean–value theorem.

Theorem (Generalized Mean–Value Theorem) Let the functions F (x) and G(x) both be defined and

continuous on a ≤ x ≤ b and both be differentiable on a < x < b. Furthermore, suppose that G′(x) 6= 0 for all

a < x < b. Then, there is a number c obeying a < c < b such that

F (b)−F (a)
G(b)−G(a) =

F ′(c)
G′(c)

Proof: Define

h(x) =
[

F (b)− F (a)
][

G(x) −G(a)
]

−
[

F (x) − F (a)
][

G(b)−G(a)
]

Observe that h(a) = h(b) = 0. So, by the mean–value theorem, there is a number c obeying a < c < b such that

0 = h′(c) =
[

F (b)− F (a)
]

G′(c)− F ′(c)
[

G(b)−G(a)
]

As G(a) 6= G(b) (otherwise the mean–value theorem would imply the existence of an a < x < b obeying
G′(x) = 0), we may divide by G′(c)

[

G(b)−G(a)
]

which gives the desired result.
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Proof of (1n): To prove (11), that is (1n) for n = 1, simply apply the generalized mean–value theorem with
F (x) = f(x)− f(x0)− f ′(x0)(x− x0), G(x) = (x− x0)

2, a = x0 and b = x. Then F (a) = G(a) = 0, so that

F (b)
G(b) =

F ′(c)
G′(c) ⇒ f(x)−f(x0)−f ′(x0)(x−x0)

(x−x0)2
= f ′(c)−f ′(x0)

2(c−x0)

for some c between x0 and x. By the mean–value theorem (the standard one, but with f(x) replaced by f ′(x)),
f ′(c)−f ′(x0)

c−x0
= f ′′(z), for some z between x0 and c (which forces z to also be between x0 and x). Hence

f(x)−f(x0)−f ′(x0)(x−x0)
(x−x0)2

= 1
2f

′′(z)

which is exactly (11).
At this stage, we know that (1n) applies to all (sufficiently differentiable) functions for n = 0 and

n = 1. To prove it for general n, we proceed by induction. That is, we assume that we already know that (1n)
applies to n = k − 1 for some k (as is the case for k = 1, 2) and that we wish to prove that it also applies to
n = k. We apply the generalized mean–value theorem with F (x) = Ek(x), G(x) = (x − x0)

k+1, a = x0 and
b = x. Then F (a) = G(a) = 0, so that

F (b)
G(b) =

F ′(c)
G′(c) ⇒ Ek(x)

(x−x0)k+1 =
E′

k
(c)

(k+1)(c−x0)k

But

E′

k(c) =
d
dx

[

f(x)− f(x0)− f ′(x0)− · · · − 1
k!f

(k)(x0)(x− x0)
k
]

x=c

=
[

f ′(x) − f ′(x0)− · · · − 1
(k−1)!f

(k)(x0)(x − x0)
k−1

]

x=c

= f ′(c)− f ′(x0)− · · · − 1
(k−1)!f

(k)(x0)(c− x0)
k−1

The last expression is exactly the definition of Ek−1(c), but for the function f ′(x), instead of the function f(x).
But we already know that (1k−1) is true, so we already know that the last expression equals

1
(k−1+1)!

(

f ′
)(k−1+1)

(z)(c− x0)
k−1+1 = 1

k!f
(k+1)(z)(c− x0)

k

for some z between x0 and c. Subbing this in

Ek(x)
(x−x0)k+1 =

E′

k
(c)

(k+1)(c−x0)k
= 1

(k+1)!f
(k+1)(z)

which is exactly (1k). Repeating this for k = 2, 3, 4, · · · gives (1k) for all k.

Proof of (2n): We again proceed by induction. That is, we assume that we already know that (2n) applies
to n = k − 1 for some k (as is the case for k = 1) and we then prove that it also applies to n = k. So we are
assuming that

Ek−1(x) =
1

(k−1)!

∫ x

x0

(x − z)k−1f (k)(z) dz

Integrate by parts with u(z) = f (k)(z) and v′(z) dz = (x−z)k−1

(k−1)! dz. Note that z is now the integration variable

and x is just some constant. So u′(z) dz = f (k+1)(z) dz and we may take v(z) = − 1
k! (x− z)k. This gives

Ek−1(x) = − 1
k! (x− z)kf (k)(z)

∣

∣

∣

z=x

z=x0

+ 1
k!

∫ x

x0

(x − z)kf (k+1)(z) dz

= 1
k! (x− x0)

kf (k)(x0) +
1
k!

∫ x

x0

(x− z)kf (k+1)(z) dz

Since

Ek(x) = f(x)− Pk(x) = f(x)− Pk−1(x)−
1
k! (x− x0)

kf (k)(x0) = Ek−1(x) −
1
k! (x− x0)

kf (k)(x0)

we have

Ek(x) =
1
k!

∫ x

x0

(x− z)kf (k+1)(z) dz

which is exactly (2k). Repeating this for k = 2, 3, 4, · · · gives (2k) for all k.
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