Techniques of Integration - Substitution

The substitution rule for simplifying integrals is just the chain rule rewritten in terms of integrals. Suppose that $F(y)$ is a function whose derivative is $f(y)$. That is, $F(y)$ is an indefinite integral for $f(y)$ so that

$$
\int f(y) d y=F(y)+C
$$

Then the chain rule says that, for any function $y(x)$,

$$
\frac{d}{d x} F(y(x))=F^{\prime}(y(x)) y^{\prime}(x)=f(y(x)) y^{\prime}(x)
$$

So $F(y(x))$ is one function with derivative $f(y(x)) y^{\prime}(x)$ and $F(y(x))$ is an indefinite integral for $f(y(x)) y^{\prime}(x)$. Thus $\int f(y(x)) y^{\prime}(x) d x=F(y(x))+C$ or

$$
\begin{equation*}
\int f(y(x)) y^{\prime}(x) d x=\left.\int f(y) d y\right|_{y=y(x)} \tag{S1}
\end{equation*}
$$

This is the substitution rule for indefinite integrals. Note that, since $f(y(x)) y^{\prime}(x)$, is a function of x, its indefinite integral must also be a function of x. On the right hand side, evaluating y at $y(x)$ ensures that we end up with a function of x.

Because $F(y(x))$ is one indefinite integral of $f(y(x)) y^{\prime}(x)$,

$$
\int_{a}^{b} f(y(x)) y^{\prime}(x) d x=\left.F(y(x))\right|_{x=a} ^{x=b}=F(y(b))-F(y(a))
$$

The right hand side is $F(y)=\int f(y) d y$ evaluated at $y(b)$ minus the same function evaluated at $y(a)$. So

$$
\begin{equation*}
\int_{a}^{b} f(y(x)) y^{\prime}(x) d x=\int_{y(a)}^{y(b)} f(y) d y \tag{S2}
\end{equation*}
$$

This is the substitution rule for definite integrals. Notice that to get from the integral on the left hand side to the integral on the right hand side you

- substitute $y(x) \rightarrow y$ and $y^{\prime}(x) d x \rightarrow d y$ (which looks like $\frac{d y}{d x}=y^{\prime}(x)$ with the $d x$ multiplied across)
- set the lower limit for the y integral to the value of y (namely $y(a)$) that corresponds to the lower limit of the x integral (namely $x=a$) and
- set the upper limit for the y integral to the value of y (namely $y(b)$) that corresponds to the upper limit of the x integral (namely $x=b$).
The substitution rule is used to simplify integrals, like $\int_{0}^{\pi} x^{2} \sin \left(\frac{1}{3} x^{3}\right) d x$, in which the integrand
- has one factor $\left(\sin \left(\frac{1}{3} x^{3}\right)\right.$ in this example) which is some function (\sin in this example) evaluated at some complicated argument ($\frac{1}{3} x^{3}$ in this example) and
- has a second factor (x^{2} in this example) which is the derivative of the complicated argument, or at least a constant times the derivative of the complicated argument.
In this case one chooses $y(x)$ to be the complicated argument (so $y(x)=\frac{1}{3} x^{3}$ in this example).
Example 1 The integrand of

$$
\int_{0}^{1} e^{x} \sin \left(e^{x}\right) d x
$$

is $e^{x} \sin \left(e^{x}\right)$. One factor of this integrand is $\sin \left(e^{x}\right)$, which is the function sin evaluated at e^{x}. The derivative of e^{x} is again e^{x}, which is the other factor in the integrand. Choose $y(x)=e^{x}$ and $f(y)=\sin y$. Then $f(y(x))=\sin \left(e^{x}\right)$ and $y^{\prime}(x)=e^{x}$ so

$$
\int_{0}^{1} e^{x} \sin \left(e^{x}\right) d x=\int_{a}^{b} f(y(x)) y^{\prime}(x) d x
$$

with $a=0$ and $b=1$. As $y(a)=y(0)=e^{0}=1$ and $y(b)=y(1)=e^{1}=e$, the substitution rule gives

$$
\int_{0}^{1} e^{x} \sin \left(e^{x}\right) d x=\int_{a}^{b} f(y(x)) y^{\prime}(x) d x=\int_{y(a)}^{y(b)} f(y) d y=\int_{1}^{e} \sin y d y=-\left.\cos y\right|_{1} ^{e}=-\cos e+\cos 1
$$

In conclusion

$$
\int_{0}^{1} e^{x} \sin \left(e^{x}\right) d x=\cos 1-\cos e
$$

Example 2 The integrand of

$$
\int_{0}^{1} x^{2} \sin \left(x^{3}+1\right) d x
$$

is $x^{2} \sin \left(x^{3}+1\right)$. One factor of this integrand is $\sin \left(x^{3}+1\right)$, which is the function sin evaluated at $x^{3}+1$. So set $y(x)=x^{3}+1$. The derivative $y^{\prime}(x)=3 x^{2}$ is not quite the other factor, x^{2}, in the integrand. But we can arrange for $y^{\prime}(x)=3 x^{2}$ to appear as a factor in the integrand just by multiplying and dividing by 3 .

$$
\int_{0}^{1} x^{2} \sin \left(x^{3}+1\right) d x=\int_{0}^{1} \frac{1}{3} \sin \left(x^{3}+1\right) 3 x^{2} d x
$$

The integrand $\frac{1}{3} \sin \left(x^{3}+1\right) 3 x^{2}$ now is of the form $f(y(x)) y^{\prime}(x)$ with $y(x)=x^{3}+1$ and $f(y)=\frac{1}{3} \sin y$. The limits of integration are $x=0$ and $x=1$. So, choosing $y(x)=x^{3}+1, f(y)=\frac{1}{3} \sin y, a=0$ and $b=1$ we have

$$
\int_{0}^{1} \frac{1}{3} \sin \left(x^{3}+1\right) 3 x^{2} d x=\int_{a}^{b} f(y(x)) y^{\prime}(x) d x=\int_{y(a)}^{y(b)} f(y) d y=\int_{1}^{2} \frac{1}{3} \sin y d y=-\left.\frac{1}{3} \cos y\right|_{1} ^{2}=\frac{-\cos 2}{3}-\frac{-\cos 1}{3}
$$

In conclusion

$$
\int_{0}^{1} \sin \left(x^{3}+1\right) x^{2} d x=\frac{\cos 1-\cos 2}{3}
$$

Once one has chosen $y(x)$, one can make the substitution without ever explicitly deciding what $f(y)$ is. One just has to note that the integrand on the right hand side of the substitution rule

$$
\int_{a}^{b} f(y(x)) y^{\prime}(x) d x=\int_{y(a)}^{y(b)} f(y) d y
$$

is constructed from the integrand on the left hand side by

- substituting y for $y(x)$ and
- substituting $d y$ for $y^{\prime}(x) d x$

The substitution $d y=y^{\prime}(x) d x$ is easily remembered by pretending that $\frac{d y}{d x}$ is an ordinary fraction. Then cross-multiplying $\frac{d y}{d x}=y^{\prime}(x)$ gives $d y=y^{\prime}(x) d x$.

Example 2 (revisited) Consider

$$
\int_{0}^{1} x^{2} \sin \left(x^{3}+1\right) d x
$$

once again. We have observed that one factor of the integrand is $\sin \left(x^{3}+1\right)$, which is sin evaluated at $x^{3}+1$, and the other factor, x^{2} is, aside from a factor of 3 , the derivative of $x^{3}+1$. So we decide to try $y(x)=x^{3}+1$. Substitute y for $x^{3}+1$ and $d y$ for $3 x^{2} d x$. That is $x^{3}+1=y$ and $d y=3 x^{2} d x$ or $x^{2} d x=\frac{d y}{3}$. When $x=0$, $y=0^{3}+1=1$. When $x=1, y=1^{3}+1=2$.

$$
\int_{0}^{1} \sin \left(x^{3}+1\right) x^{2} d x=\int_{1}^{2} \sin y \frac{d y}{3}
$$

We ended up with exactly this integral in example 2.
Example $3 \int_{0}^{\pi / 2} \cos (3 x) d x$. Substitute for the argument of $\cos (3 x)$. That, is $y(x)=3 x$. We are to substitute $y=3 x$ and $d y=3 d x$ or $d x=\frac{d y}{3}$. When $x=0, y=3 \times 0=0$. When $x=\frac{\pi}{2}, y=\frac{3}{2} \pi$.

$$
\int_{0}^{\pi / 2} \cos (3 x) d x=\int_{0}^{3 \pi / 2} \cos (y) \frac{d y}{3}=\left.\frac{\sin y}{3}\right|_{0} ^{3 \pi / 2}=\frac{-1}{3}-\frac{0}{3}=-\frac{1}{3}
$$

Example $4 \int_{0}^{1} \frac{1}{(2 x+1)^{3}} d x$. Substitute for the argument, $2 x+1$, of $[2 x+1]^{-3}$. That is, $y=2 x+1$ and $d y=2 d x$ or $d x=\frac{d y}{2}$. When $x=0, y=2 \times 0+1=1$. When $x=1, y=2 \times 1+1=3$.

$$
\int_{0}^{1} \frac{1}{(2 x+1)^{3}} d x=\int_{1}^{3} \frac{1}{y^{3}} \frac{d y}{2}=\frac{1}{2} \int_{1}^{3} y^{-3} d y=\left.\frac{1}{2} \frac{y^{-2}}{-2}\right|_{1} ^{3}=\frac{3^{-2}}{-4}-\frac{1^{-2}}{-4}=\frac{1}{4}\left[1-\frac{1}{9}\right]=\frac{2}{9}
$$

Example $5 \int_{0}^{1} \frac{x}{1+x^{2}} d x$. Think of the integrand as the product $\frac{1}{1+x^{2}} x$. The first factor is the function "one over" evaluated at the argument $1+x^{2}$. The derivative of the argument $1+x^{2}$ is $2 x$, which is, except for the 2 , the second factor of the integrand. Substitute $y=1+x^{2}, d y=2 x d x$ or $x d x=\frac{d y}{2}$. When $x=0, y=1+0^{2}=1$. When $x=1, y=1+1^{2}=2$.

$$
\int_{0}^{1} \frac{x}{1+x^{2}} d x=\int_{1}^{2} \frac{1}{y} \frac{d y}{2}=\left.\frac{1}{2} \ln |y|\right|_{1} ^{2}=\frac{\ln 2}{2}-\frac{0}{2}=\frac{1}{2} \ln 2
$$

Example $6 \int x^{3} \cos \left(x^{4}+2\right) d x$. The integrand is the product of cos evaluated at the argument $x^{4}+2$ times x^{3}, which aside from a factor of 4 , is the derivative of the argument $x^{4}+2$. Substitute $y=x^{4}+2, d y=4 x^{3} d x$ or $x^{3} d x=\frac{d y}{4}$.

$$
\int x^{3} \cos \left(x^{4}+2\right) d x=\int \cos (y) \frac{d y}{4}=\frac{1}{4} \sin y+C
$$

Because we are dealing with indefinite integrals we need not worry about limits of integration. On the other hand, $x^{3} \cos \left(x^{4}+2\right)$ is a function of x. So its indefinite integral (which is defined to be a function whose derivative is $\left.x^{3} \cos \left(x^{4}+2\right)\right)$ must also be a function of x. The answer is $\frac{1}{4} \sin y(x)+C=\frac{1}{4} \sin \left(x^{4}+1\right)+C$. This is what (S1) says.

Example $7 \int \sqrt{1+x^{2}} x^{3} d x$. Substitute for the argument of the square root. That is, substitute $y=1+x^{2}$, $d y=2 x d x$ or $d x=\frac{d y}{2 x}$. You might think that this does not eliminate all of the x 's from $\sqrt{1+x^{2}} x^{3} d x=$ $\sqrt{y} x^{3} \frac{d y}{2 x}=\sqrt{y} x^{2} \frac{d y}{2}$. It does, provided you remember to substitute $x^{2}=y-1$ for the remaining factor of x^{2}.
$\int \sqrt{1+x^{2}} x^{3} d x=\int \sqrt{y}(y-1) \frac{d y}{2}=\frac{1}{2} \int\left(y^{3 / 2}-y^{1 / 2}\right) d y=\frac{1}{2}\left[\frac{y^{5 / 2}}{5 / 2}-\frac{y^{3 / 2}}{3 / 2}\right]+C=\frac{1}{5}\left(1+x^{2}\right)^{5 / 2}-\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C$
Don't forget to express the final answer in terms of x using $y=1+x^{2}$. Also, don't forget that you can always check that

$$
\int \sqrt{1+x^{2}} x^{3} d x=\frac{1}{5}\left(1+x^{2}\right)^{5 / 2}-\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C
$$

is correct. Just differentiate the right hand side

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{1}{5}\left(1+x^{2}\right)^{5 / 2}-\frac{1}{3}\left(1+x^{2}\right)^{3 / 2}+C\right] & =\frac{1}{5} \frac{5}{2}\left(1+x^{2}\right)^{3 / 2}(2 x)-\frac{1}{3} \frac{3}{2}\left(1+x^{2}\right)^{1 / 2}(2 x) \\
& =x\left(1+x^{2}\right)^{3 / 2}-x\left(1+x^{2}\right)^{1 / 2}=x \sqrt{1+x^{2}}\left[\left(1+x^{2}\right)-1\right] \\
& =x \sqrt{1+x^{2}} x^{2}=x^{3} \sqrt{1+x^{2}}
\end{aligned}
$$

and verify that the answer is the same as the original integrand.
Example $8 \int \tan x d x$. The secret here is to write the integrand $\tan x=\frac{1}{\cos x} \sin x$. Think of the first factor as the function "one over" evaluated at the argument $\cos x$. The derivative of the argument $\cos x$ is, except for a -1 , the same as the second factor $\sin x$. Substitute $y=\cos x, d y=-\sin x d x$ or $\sin x d x=\frac{d y}{-1}$.

$$
\int \tan x d x=\int \frac{1}{\cos x} \sin x d x=\int \frac{1}{y} \frac{d y}{-1}=-\ln |y|+C=-\ln |\cos x|+C=\ln |\cos x|^{-1}+C=\ln |\sec x|+C
$$

