
Roots of Polynomials

Here are some tricks for finding roots of polynomials. These tricks work well on
exams and homework assignments, where polynomials tend to have integer coefficients and
roots that are integers, or at least fractions.

Trick # 1

If r or −r is an integer root of a polynomial anx
n + · · · + a1x + a0 with integer

coefficients, then r is a factor of the constant term a0.
To see that this is true, just observe that for any root ±r

an(±r)n + · · · + a1(±r) + a0 = 0 =⇒ a0 = −
[

an(±r)n + · · · + a1(±r)
]

Every term on the right hand side is an integer times a strictly positive power of r. So the
right hand side, and hence the left hand side, is some integer times r.

Example. P (λ) = λ3 − λ2 + 2.
The constant term in this polynomial is 2 = 1×2. So the only candidates for integer

roots are ±1, ±2. Trying each in turn

P (1) = 2 P (−1) = 0 P (2) = 6 P (−2) = −10

so the only integer root is −1.

Trick # 2

If b/d or −b/d is a rational root in lowest terms (i.e. b and d are integers with no
common factors) of a polynomial anx

n + · · · + a1x + a0 with integer coefficients,
then the numerator b is a factor of the constant term a0 and the denominator d is
a factor of an.

For any root ±b/d
an(±b/d)n + · · · + a1(±b/d) + a0 = 0

Multiply through by dn

a0d
n = −

[

an(±b)n + an−1d(±b)n−1 + · · · + a1d
n−1(±b)

]

Every term on the right hand side is an integer times a strictly positive power of b. So the
right hand side is some integer times b. The left hand side is dna0 and d does not contain
any factor that is a factor of b. So a0 must be some integer times b. Similarly, every term on
the right hand side of

an(±b)n = −
[

an−1d(±b)n−1 · · · + a1d
n−1(±b) + a0d

n

]

is an integer times a strictly positive power of d. So the right hand side is some integer times
d. The left hand side is an(±b)n and b does not contain any factor that is a factor of d. So
an must be some integer times d.
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Example. P (λ) = 2λ2 − λ− 3.
The constant term in this polynomial is 3 = 1× 3 and the coefficient of the highest

power of λ is 2 = 1 × 2. So the only candidates for integer roots are ±1, ±3 and the only
candidates for fractional roots are ±1

2
, ±3

2
.

P (1) = −2 P (−1) = 0 P
(

± 3
)

= 18∓ 3− 3 6= 0

P
(

± 1
2
) = 2 1

4
∓ 1

2
− 3 6= 0 P

(

3
2
) = 2 9

4
− 3

2
− 3 = 0 P

(

− 3
2
) = 2 9

4
+ 3

2
− 3 6= 0

So the roots are −1 and 3
2
.

Trick # 3 – Long Division

Suppose that P (x) is a polynomial of degree p and suppose that you know that r
is a root of that polynomial. In other words, suppose you know that P (r) = 0. Then it is
always possible to factor (x − r) out of P (x). More precisely, it is alway possible to find a
polynomial Q(x) of degree p− 1 such that

P (x) = (x− r)Q(x)

In sufficiently simple cases, you can probably do this factoring by inspection. For example,
P (x) = x2−4 has r = 2 as a root because P (2) = 22−4 = 0. In this case, P (x) = (x−2)(x+2)
so that Q(x) = (x+2). As another example, P (x) = x2−2x−3 has r = −1 as a root because
P (−1) = (−1)2 − 2(−1) − 3 = 1 + 2 − 3 = 0. In this case, P (x) = (x + 1)(x − 3) so that
Q(x) = (x− 3).

Once you have found a root r of a polynomial, even if you cannot factor (x− r) out
of the polynomial by inspection, you can find Q(x) by dividing P (x) by x− r, using
the long division algorithm you learned in public school, but with 10 replaced by x.

Example. P (x) = x3 − x2 + 2.
Because P (−1) = (−1)3− (−1)2+2 = −1−1+2 = 0, r = −1 is a root of this poly-

nomial and x+1 must be a factor of x3−x2+2. So we divide x
3
−x

2+2
x+1

. The first term, x2, in

the quotient is chosen so that when you multiply it by the denominator, x2(x+1) = x3 +x2,
the leading term, x3, matches the leading term in the numerator, x3 − x2 + 2, exactly.

x2

x+ 1 x3 − x2 + 2

x3 + x2

When you subtract x2(x+1) = x3+x2 from the numerator x3−x2+2 you get the remainder
−2x2+2. Just like in public school, the 2 is not normally “brought down” until it is actually
needed.

x2

x+ 1 x3 − x2 + 2

x3 + x2

−2x2

The next term, −2x, in the quotient is chosen so that when you multiply it by the denom-
inator, −2x(x + 1) = −2x2 − 2x, the leading term −2x2 matches the leading term in the
remainder exactly.
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x2 − 2x

x+ 1 x3 − x2 + 2

x3 + x2

−2x2

−2x2 − 2x

And so on.

x2 − 2x+ 2

x+ 1 x3 − x2 + 2

x3 + x2

−2x2

−2x2 − 2x

2x+ 2

2x+ 2

0

Note that we finally end up with a remainder 0. A nonzero remainder would have signalled a
computational error, since we know that the denominator x−(−1) must divide the numerator
x3 − x2 + 2 exactly. We conclude that

(x+ 1)(x2 − 2x+ 2) = x3 − x2 + 2

To check this, just multiply out the left hand side explicitly.

There is an alternative to long division that involves more writing. In the previous

example, we know that x
3
−x

2+2
x+1

must be a polynomial (since −1 is a root of the numerator)
of degree 2. So

x3 − x2 + 2

x+ 1
= ax2 + bx+ c

for some, as yet unknown, coefficients a, b and c. Cross multiplying and simplifying

x3 − x2 + 2 = (ax2 + bx+ c)(x+ 1)

= ax3 + (a+ b)x2 + (b+ c)x+ c

Matching coefficients of the various powers of x on the left and right hand sides

coefficient of x3: a = 1

coefficient of x2: a+ b = −1

coefficient of x1: b+ c = 0

coefficient of x0: c = 2

tells us directly that a = 1 and c = 2. Subbing a = 1 into a+ b = −1 tells us that 1+ b = −1
and hence b = −2.

c© Joel Feldman. 2001. All rights reserved. 3


