The Partial Fractions Decomposition

The Simplest Case

In the most common partial fraction decomposition, we split up

$$\frac{N(x)}{(x-a_1)\times\cdots\times(x-a_d)}$$

into a sum of the form

$$\frac{A_1}{x-a_1} + \dots + \frac{A_d}{x-a_d}$$

We now show that this decomposition can always be achieved, under the assumptions that the a_i 's are all different and N(x) is a polynomial of degree at most d-1. To do so, we shall repeatedly apply the following Lemma. (The word Lemma just signifies that the result is not that important – it is only used as a tool to prove a more important result.)

Lemma 1 Let N(x) and D(x) be polynomials of degree n and d respectively, with $n \leq d$. Suppose that a is NOT a zero of D(x). Then there is a polynomial P(x) of degree p < d and a numbers A such that

$$\frac{N(x)}{D(x)(x-a)} = \frac{P(x)}{D(x)} + \frac{A}{x-a}$$

Proof: To save writing, let z = x - a. Then $\tilde{N}(z) = N(z + a)$ and $\tilde{D}(z) = D(z + a)$ are again polynomials of degree n and d respectively, $\tilde{D}(0) = D(a) \neq 0$ and we have to find a polynomial $\tilde{P}(z)$ of degree p < d and a number A such that

$$\frac{\tilde{N}(z)}{\tilde{D}(z) z} = \frac{\tilde{P}(z)}{\tilde{D}(z)} + \frac{A}{z} = \frac{\tilde{P}(z)z + A\tilde{D}(z)}{\tilde{D}(z) z}$$

or equivalently, such that

$$\tilde{P}(z)z + A\tilde{D}(z) = \tilde{N}(z)$$

Now look at the polynomial on the left hand side. Every term in $\tilde{P}(z)z$, has at least one power of z. So the constant term on the left hand side is exactly the constant term in $A\tilde{D}(z)$, which is $A\tilde{D}(0)$. The constant term on the right hand side is $\tilde{N}(0)$. So the constant terms on the left and right hand sides are the same if we choose $A = \frac{\tilde{N}(0)}{\tilde{D}(0)}$. Recall that $\tilde{D}(0)$ cannot be zero. Now move $A\tilde{D}(z)$ to the right hand side.

$$\tilde{P}(z)z = \tilde{N}(z) - A\tilde{D}(z)$$

The constant terms in $\tilde{N}(z)$ and $A\tilde{D}(z)$ are the same, so the right hand side contains no constant term and the right hand side is of the form $\tilde{N}_1(z)z$. Since $\tilde{N}(z)$ is of degree at most d and $A\tilde{D}(z)$ is of degree exactly d, \tilde{N}_1 is a polynomial of degree d-1. It now suffices to choose $\tilde{P}(z) = \tilde{N}_1(z)$.

Now back to

$$\frac{N(x)}{(x-a_1)\times\cdots\times(x-a_d)}$$

Apply Lemma 1, with $D(x) = (x - a_2) \times \cdots \times (x - a_d)$ and $a = a_1$. It says

$$\frac{N(x)}{(x-a_1)\times\cdots\times(x-a_d)} = \frac{A_1}{x-a_1} + \frac{P(x)}{(x-a_2)\times\cdots\times(x-a_d)}$$

for some polynomial P of degree at most d-2 and some number A_1 . Apply Lemma 1 a second time, with $D(x) = (x - a_3) \times \cdots \times (x - a_d)$, N(x) = P(x) and $a = a_2$. It says

$$\frac{P(x)}{(x-a_2)\times\cdots\times(x-a_d)} = \frac{A_2}{x-a_2} + \frac{Q(x)}{(x-a_3)\times\cdots\times(x-a_d)}$$

for some polynomial Q of degree at most d-3 and some number A_2 . At this stage, we know that

$$\frac{N(x)}{(x-a_1) \times \dots \times (x-a_d)} = \frac{A_1}{x-a_1} + \frac{A_2}{x-a_2} + \frac{Q(x)}{(x-a_3) \times \dots \times (x-a_d)}$$

If we just keep going, repeatedly applying Lemma 1, we eventually end up with

$$\frac{N(x)}{(x-a_1)\times\cdots\times(x-a_d)} = \frac{A_1}{x-a_1} + \dots + \frac{A_d}{x-a_d}$$

The general case with linear factors

Now consider splitting

$$\frac{N(x)}{(x-a_1)^{n_1}\times\cdots\times(x-a_d)^{n_d}}$$

into a sum of the form

$$\left[\frac{A_{1,1}}{x-a_1} + \dots + \frac{A_{1,n_1}}{(x-a_1)^{n_1}}\right] + \dots + \left[\frac{A_{d,1}}{x-a_d} + \dots + \frac{A_{d,n_d}}{(x-a_d)^{n_d}}\right]$$

Note that, if we allow ourselves to use complex roots, this is the general case. We now show that this decomposition can always be achieved, under the assumptions that the a_i 's are all different and N(x) is a polynomial of degree at most $n_1 + \cdots + n_d - 1$. To do so, we shall repeatedly apply the following Lemma.

⁽c) Joel Feldman. 2001. All rights reserved.

Lemma 2 Let N(x) and D(x) be polynomials of degree n and d respectively, with n < d+m. Suppose that a is NOT a zero of D(x). Then there is a polynomial P(x) of degree p < d and numbers A_1, \dots, A_m such that

$$\frac{N(x)}{D(x)(x-a)^m} = \frac{P(x)}{D(x)} + \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_m}{(x-a)^m}$$

Proof: To save writing, let z = x - a. Then $\tilde{N}(z) = N(z + a)$ and $\tilde{D}(z) = D(z + a)$ are polynomials of degree n and d respectively, $\tilde{D}(0) = D(a) \neq 0$ and we have to find a polynomial $\tilde{P}(z)$ of degree p < d and numbers A_1, \dots, A_m such that

$$\frac{\tilde{N}(z)}{\tilde{D}(z) z^{m}} = \frac{\tilde{P}(z)}{\tilde{D}(z)} + \frac{A_{1}}{z} + \frac{A_{2}}{z^{2}} + \dots + \frac{A_{m}}{z^{m}}$$
$$= \frac{\tilde{P}(z) z^{m} + A_{1} z^{m-1} \tilde{D}(z) + A_{2} z^{m-2} \tilde{D}(z) + \dots + A_{m} \tilde{D}(z)}{\tilde{D}(z) z^{m}}$$

or equivalently, such that

$$\tilde{P}(z)z^{m} + A_{1}z^{m-1}\tilde{D}(z) + A_{2}z^{m-2}\tilde{D}(z) + \dots + A_{m-1}z\tilde{D}(z) + A_{m}\tilde{D}(z) = \tilde{N}(z)$$

Now look at the polynomial on the left hand side. Every single term on the left hand side, except for the very last one, $A_m \tilde{D}(z)$, has at least one power of z. So the constant term on the left hand side is exactly the constant term in $A_m \tilde{D}(z)$, which is $A_m \tilde{D}(0)$. The constant term on the right hand side is $\tilde{N}(0)$. So the constant terms on the left and right hand sides are the same if we choose $A_m = \frac{\tilde{N}(0)}{\tilde{D}(0)}$. Recall that $\tilde{D}(0) \neq 0$. Now move $A_m \tilde{D}(z)$ to the right hand side.

$$\tilde{P}(z)z^{m} + A_{1}z^{m-1}\tilde{D}(z) + A_{2}z^{m-2}\tilde{D}(z) + \dots + A_{m-1}z\tilde{D}(z) = \tilde{N}(z) - A_{m}\tilde{D}(z)$$

The constant terms in $\tilde{N}(z)$ and $A_m \tilde{D}(z)$ are the same, so the right hand side contains no constant term and the right hand side is of the form $\tilde{N}_1(z)z$ with \tilde{N}_1 a polynomial of degree at most d + m - 2. (Recall that \tilde{N} is of degree at most d + m - 1 and \tilde{D} is of degree at most d.) Divide the whole equation by z.

$$\tilde{P}(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) + A_2 z^{m-3}\tilde{D}(z) + \dots + A_{m-1}\tilde{D}(z) = \tilde{N}_1(z)$$

Now, we can repeat the previous argument. The constant term on the left hand side, which is exactly $A_{m-1}\tilde{D}(0)$ matches the constant term on the right hand side, which is $\tilde{N}_1(0)$ if we choose $A_{m-1} = \frac{\tilde{N}_1(0)}{\tilde{D}(0)}$. With this choice of A_{m-1}

$$\tilde{P}(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) + A_2 z^{m-3}\tilde{D}(z) + \dots + A_{m-2} z\tilde{D}(z) = \tilde{N}_1(z) - A_{m-1}\tilde{D}(z) = \tilde{N}_2(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) + \dots + A_{m-2} z\tilde{D}(z) = \tilde{N}_1(z) - A_{m-1}\tilde{D}(z) = \tilde{N}_2(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) + \dots + A_{m-2} z\tilde{D}(z) = \tilde{N}_1(z) - A_{m-1}\tilde{D}(z) = \tilde{N}_2(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) + \dots + A_{m-2} z\tilde{D}(z) = \tilde{N}_1(z) - A_{m-1}\tilde{D}(z) = \tilde{N}_2(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) + \dots + A_{m-2} z\tilde{D}(z) = \tilde{N}_1(z) - A_{m-1}\tilde{D}(z) = \tilde{N}_2(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) = \tilde{N}_2(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) + \dots + A_{m-2} z\tilde{D}(z) = \tilde{N}_1(z) - A_{m-1}\tilde{D}(z) = \tilde{N}_2(z)z^{m-1} + A_1 z^{m-2}\tilde{D}(z) = \tilde{N}_2(z)z^{m-1} + A_1 z^{m-1} + A_$$

(c) Joel Feldman. 2001. All rights reserved.

with \tilde{N}_2 a polynomial of degree at most d + m - 3. Divide by z and continue. After m steps like this, we end up with

$$\tilde{P}(z)z = \tilde{N}_{m-1}(z) - A_1\tilde{D}(z)$$

after having chosen $A_1 = \frac{\tilde{N}_{m-1}(0)}{\tilde{D}(0)}$. There is no constant term on the right side so that $\tilde{N}_{m-1}(z) - A_1\tilde{D}(z)$ is of the form $\tilde{N}_m(z)z$ with \tilde{N}_m a polynomial of degree d-1. Choosing $\tilde{P}(z) = \tilde{N}_m(z)$ completes the proof.

Now back to

$$\frac{N(x)}{(x-a_1)^{n_1} \times \cdots \times (x-a_d)^{n_d}}$$

Apply Lemma 2, with $D(x) = (x - a_2)^{n_2} \times \cdots \times (x - a_d)^{n_d}$, $m = n_1$ and $a = a_1$. It says

$$\frac{N(x)}{(x-a_1)^{n_1} \times \dots \times (x-a_d)^{n_d}} = \frac{A_{1,1}}{x-a_1} + \frac{A_{1,2}}{(x-a_1)^2} + \dots + \frac{A_{1,n_1}}{(x-a)^{n_1}} + \frac{P(x)}{(x-a_2)^{n_2} \times \dots \times (x-a_d)^{n_d}}$$

Apply Lemma 2 a second time, with $D(x) = (x - a_3)^{n_3} \times \cdots \times (x - a_d)^{n_d}$, N(x) = P(x), $m = n_2$ and $a = a_2$. And so on. Eventually, we end up with

$$\left[\frac{A_{1,1}}{x-a_1} + \dots + \frac{A_{1,n_1}}{(x-a_1)^{n_1}}\right] + \dots + \left[\frac{A_{d,1}}{x-a_d} + \dots + \frac{A_{d,n_d}}{(x-a_d)^{n_d}}\right]$$