The Partial Fractions Decomposition

The Simplest Case

In the most common partial fraction decomposition, we split up

$$
\frac{N(x)}{\left(x-a_{1}\right) \times \cdots \times\left(x-a_{d}\right)}
$$

into a sum of the form

$$
\frac{A_{1}}{x-a_{1}}+\cdots+\frac{A_{d}}{x-a_{d}}
$$

We now show that this decomposition can always be achieved, under the assumptions that the a_{i} 's are all different and $N(x)$ is a polynomial of degree at most $d-1$. To do so, we shall repeatedly apply the following Lemma. (The word Lemma just signifies that the result is not that important - it is only used as a tool to prove a more important result.)

Lemma 1 Let $N(x)$ and $D(x)$ be polynomials of degree n and d respectively, with $n \leq d$. Suppose that a is NOT a zero of $D(x)$. Then there is a polynomial $P(x)$ of degree $p<d$ and a numbers A such that

$$
\frac{N(x)}{D(x)(x-a)}=\frac{P(x)}{D(x)}+\frac{A}{x-a}
$$

Proof: To save writing, let $z=x-a$. Then $\tilde{N}(z)=N(z+a)$ and $\tilde{D}(z)=D(z+a)$ are again polynomials of degree n and d respectively, $\tilde{D}(0)=D(a) \neq 0$ and we have to find a polynomial $\tilde{P}(z)$ of degree $p<d$ and a number A such that

$$
\frac{\tilde{N}(z)}{\tilde{D}(z) z}=\frac{\tilde{P}(z)}{\tilde{D}(z)}+\frac{A}{z}=\frac{\tilde{P}(z) z+A \tilde{D}(z)}{\tilde{D}(z) z}
$$

or equivalently, such that

$$
\tilde{P}(z) z+A \tilde{D}(z)=\tilde{N}(z)
$$

Now look at the polynomial on the left hand side. Every term in $\tilde{P}(z) z$, has at least one power of z. So the constant term on the left hand side is exactly the constant term in $A \tilde{D}(z)$, which is $A \tilde{D}(0)$. The constant term on the right hand side is $\tilde{N}(0)$. So the constant terms on the left and right hand sides are the same if we choose $A=\frac{\tilde{N}(0)}{\tilde{D}(0)}$. Recall that $\tilde{D}(0)$ cannot be zero. Now move $A \tilde{D}(z)$ to the right hand side.

$$
\tilde{P}(z) z=\tilde{N}(z)-A \tilde{D}(z)
$$

The constant terms in $\tilde{N}(z)$ and $A \tilde{D}(z)$ are the same, so the right hand side contains no constant term and the right hand side is of the form $\tilde{N}_{1}(z) z$. Since $\tilde{N}(z)$ is of degree at most d and $A \tilde{D}(z)$ is of degree exactly d, \tilde{N}_{1} is a polynomial of degree $d-1$. It now suffices to choose $\tilde{P}(z)=\tilde{N}_{1}(z)$.

Now back to

$$
\frac{N(x)}{\left(x-a_{1}\right) \times \cdots \times\left(x-a_{d}\right)}
$$

Apply Lemma 1 , with $D(x)=\left(x-a_{2}\right) \times \cdots \times\left(x-a_{d}\right)$ and $a=a_{1}$. It says

$$
\frac{N(x)}{\left(x-a_{1}\right) \times \cdots \times\left(x-a_{d}\right)}=\frac{A_{1}}{x-a_{1}}+\frac{P(x)}{\left(x-a_{2}\right) \times \cdots \times\left(x-a_{d}\right)}
$$

for some polynomial P of degree at most $d-2$ and some number A_{1}. Apply Lemma 1 a second time, with $D(x)=\left(x-a_{3}\right) \times \cdots \times\left(x-a_{d}\right), N(x)=P(x)$ and $a=a_{2}$. It says

$$
\frac{P(x)}{\left(x-a_{2}\right) \times \cdots \times\left(x-a_{d}\right)}=\frac{A_{2}}{x-a_{2}}+\frac{Q(x)}{\left(x-a_{3}\right) \times \cdots \times\left(x-a_{d}\right)}
$$

for some polynomial Q of degree at most $d-3$ and some number A_{2}. At this stage, we know that

$$
\frac{N(x)}{\left(x-a_{1}\right) \times \cdots \times\left(x-a_{d}\right)}=\frac{A_{1}}{x-a_{1}}+\frac{A_{2}}{x-a_{2}}+\frac{Q(x)}{\left(x-a_{3}\right) \times \cdots \times\left(x-a_{d}\right)}
$$

If we just keep going, repeatedly applying Lemma 1, we eventually end up with

$$
\frac{N(x)}{\left(x-a_{1}\right) \times \cdots \times\left(x-a_{d}\right)}=\frac{A_{1}}{x-a_{1}}+\cdots+\frac{A_{d}}{x-a_{d}}
$$

The general case with linear factors

Now consider splitting

$$
\frac{N(x)}{\left(x-a_{1}\right)^{n} \times \cdots \times\left(x-a_{d}\right)^{n} d}
$$

into a sum of the form

$$
\left[\frac{A_{1,1}}{x-a_{1}}+\cdots+\frac{A_{1, n_{1}}}{\left(x-a_{1}\right)^{n_{1}}}\right]+\cdots+\left[\frac{A_{d, 1}}{x-a_{d}}+\cdots+\frac{A_{d, n_{d}}}{\left(x-a_{d}\right)^{n_{d}}}\right]
$$

Note that, if we allow ourselves to use complex roots, this is the general case. We now show that this decomposition can always be achieved, under the assumptions that the a_{i} 's are all different and $N(x)$ is a polynomial of degree at most $n_{1}+\cdots+n_{d}-1$. To do so, we shall repeatedly apply the following Lemma.

Lemma 2 Let $N(x)$ and $D(x)$ be polynomials of degree n and d respectively, with $n<d+m$. Suppose that a is NOT a zero of $D(x)$. Then there is a polynomial $P(x)$ of degree $p<d$ and numbers A_{1}, \cdots, A_{m} such that

$$
\frac{N(x)}{D(x)(x-a)^{m}}=\frac{P(x)}{D(x)}+\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\cdots+\frac{A_{m}}{(x-a)^{m}}
$$

Proof: To save writing, let $z=x-a$. Then $\tilde{N}(z)=N(z+a)$ and $\tilde{D}(z)=D(z+a)$ are polynomials of degree n and d respectively, $\tilde{D}(0)=D(a) \neq 0$ and we have to find a polynomial $\tilde{P}(z)$ of degree $p<d$ and numbers A_{1}, \cdots, A_{m} such that

$$
\begin{aligned}
\frac{\tilde{N}(z)}{\tilde{D}(z) z^{m}} & =\frac{\tilde{P}(z)}{\tilde{D}(z)}+\frac{A_{1}}{z}+\frac{A_{2}}{z^{2}}+\cdots+\frac{A_{m}}{z^{m}} \\
& =\frac{\tilde{P}(z) z^{m}+A_{1} z^{m-1} \tilde{D}(z)+A_{2} z^{m-2} \tilde{D}(z)+\cdots+A_{m} \tilde{D}(z)}{\tilde{\tilde{D}(z) z^{m}}}
\end{aligned}
$$

or equivalently, such that

$$
\tilde{P}(z) z^{m}+A_{1} z^{m-1} \tilde{D}(z)+A_{2} z^{m-2} \tilde{D}(z)+\cdots+A_{m-1} z \tilde{D}(z)+A_{m} \tilde{D}(z)=\tilde{N}(z)
$$

Now look at the polynomial on the left hand side. Every single term on the left hand side, except for the very last one, $A_{m} \tilde{D}(z)$, has at least one power of z. So the constant term on the left hand side is exactly the constant term in $A_{m} \tilde{D}(z)$, which is $A_{m} \tilde{D}(0)$. The constant term on the right hand side is $\tilde{N}(0)$. So the constant terms on the left and right hand sides are the same if we choose $A_{m}=\frac{\tilde{N}(0)}{\tilde{D}(0)}$. Recall that $\tilde{D}(0) \neq 0$. Now move $A_{m} \tilde{D}(z)$ to the right hand side.

$$
\tilde{P}(z) z^{m}+A_{1} z^{m-1} \tilde{D}(z)+A_{2} z^{m-2} \tilde{D}(z)+\cdots+A_{m-1} z \tilde{D}(z)=\tilde{N}(z)-A_{m} \tilde{D}(z)
$$

The constant terms in $\tilde{N}(z)$ and $A_{m} \tilde{D}(z)$ are the same, so the right hand side contains no constant term and the right hand side is of the form $\tilde{N}_{1}(z) z$ with \tilde{N}_{1} a polynomial of degree at most $d+m-2$. (Recall that \tilde{N} is of degree at most $d+m-1$ and \tilde{D} is of degree at most d.) Divide the whole equation by z.

$$
\tilde{P}(z) z^{m-1}+A_{1} z^{m-2} \tilde{D}(z)+A_{2} z^{m-3} \tilde{D}(z)+\cdots+A_{m-1} \tilde{D}(z)=\tilde{N}_{1}(z)
$$

Now, we can repeat the previous argument. The constant term on the left hand side, which is exactly $A_{m-1} \tilde{D}(0)$ matchs the constant term on the right hand side, which is $\tilde{N}_{1}(0)$ if we choose $A_{m-1}=\frac{\tilde{N}_{1}(0)}{\tilde{D}(0)}$. With this choice of A_{m-1}
$\tilde{P}(z) z^{m-1}+A_{1} z^{m-2} \tilde{D}(z)+A_{2} z^{m-3} \tilde{D}(z)+\cdots+A_{m-2} z \tilde{D}(z)=\tilde{N}_{1}(z)-A_{m-1} \tilde{D}(z)=\tilde{N}_{2}(z) z$
(c) Joel Feldman. 2001. All rights reserved.
with \tilde{N}_{2} a polynomial of degree at most $d+m-3$. Divide by z and continue. After m steps like this, we end up with

$$
\tilde{P}(z) z=\tilde{N}_{m-1}(z)-A_{1} \tilde{D}(z)
$$

after having chosen $A_{1}=\frac{\tilde{N}_{m-1}(0)}{\tilde{D}(0)}$. There is no constant term on the right side so that $\tilde{N}_{m-1}(z)-A_{1} \tilde{D}(z)$ is of the form $\tilde{N}_{m}(z) z$ with \tilde{N}_{m} a polynomial of degree $d-1$. Choosing $\tilde{P}(z)=\tilde{N}_{m}(z)$ completes the proof.

Now back to

$$
\frac{N(x)}{\left(x-a_{1}\right)^{n} \times \cdots \times\left(x-a_{d}\right)^{n_{d}}}
$$

Apply Lemma 2, with $D(x)=\left(x-a_{2}\right)^{n_{2}} \times \cdots \times\left(x-a_{d}\right)^{n_{d}}, m=n_{1}$ and $a=a_{1}$. It says

$$
\frac{N(x)}{\left(x-a_{1}\right)^{n_{1}} \times \cdots \times\left(x-a_{d}\right)^{n} d}=\frac{A_{1,1}}{x-a_{1}}+\frac{A_{1,2}}{\left(x-a_{1}\right)^{2}}+\cdots+\frac{A_{1, n_{1}}}{(x-a)^{n_{1}}}+\frac{P(x)}{\left(x-a_{2}\right)^{n_{2}} \times \cdots \times\left(x-a_{d}\right)^{n_{d}}}
$$

Apply Lemma 2 a second time, with $D(x)=\left(x-a_{3}\right)^{n_{3}} \times \cdots \times\left(x-a_{d}\right)^{n_{d}}, N(x)=P(x)$, $m=n_{2}$ and $a=a_{2}$. And so on. Eventually, we end up with

$$
\left[\frac{A_{1,1}}{x-a_{1}}+\cdots+\frac{A_{1, n_{1}}}{\left(x-a_{1}\right)^{n_{1}}}\right]+\cdots+\left[\frac{A_{d, 1}}{x-a_{d}}+\cdots+\frac{A_{d, n_{d}}}{\left(x-a_{d}\right)^{n_{d}}}\right]
$$

