Simple ODE Solvers - Derivation

These notes provide derivations of some simple algorithms for generating, numerically, approximate solutions to the initial value problem

$$y'(t) = f(t, y(t))$$
$$y(t_0) = y_0$$

Here f(t, y) is a given function, t_0 is a given initial time and y_0 is a given initial value for y. The unknown in the problem is the function y(t). We start with

Euler's Method

Our goal is to determine (approximately) the unknown function y(t) for $t \ge t_0$. We are told explicitly the value of $y(t_0)$, namely y_0 . Using the given differential equation, we can also determine exactly the instantaneous rate of change of y at time t_0 .

$$y'(t_0) = f(t_0, y(t_0)) = f(t_0, y_0)$$

If the rate of change of y(t) were to remain $f(t_0, y_0)$ for all time, then y(t) would be exactly $y_0 + f(t_0, y_0)(t-t_0)$. The rate of change of y(t) does not remain $f(t_0, y_0)$ for all time, but it is reasonable to expect that it remains close to $f(t_0, y_0)$ for t close to t_0 . If this is the case, then the value of y(t) will remain close to $y_0 + f(t_0, y_0)(t-t_0)$ for t close to t_0 . So pick a small number h and define

$$t_1 = t_0 + h$$

$$y_1 = y_0 + f(t_0, y_0)(t_1 - t_0) = y_0 + f(t_0, y_0)h$$

By the above argument

$$y(t_1) \approx y_1$$

Now we start over. We now know the approximate value of y at time t_1 . If $y(t_1)$ were exactly y_1 , then the instantaneous rate of change of y at time t_1 would be exactly $f(t_1, y_1)$. If this rate of change were to persist for all future time, y(t) would be exactly $y_1 + f(t_1, y_1)(t - t_1)$. As $y(t_1)$ is only approximately y_1 and as the rate of change of y(t) varies with t, the rate of change of y(t) is only approximately $f(t_1, y_1)$ and only for t near t_1 . So we approximate y(t) by $y_1 + f(t_1, y_1)(t - t_1)$ for t bigger than, but close to, t_1 . Defining

$$t_2 = t_1 + h = t_0 + 2h$$

$$y_2 = y_1 + f(t_1, y_1)(t_2 - t_1) = y_1 + f(t_1, y_1)h$$

we have

 $y(t_2) \approx y_2$

We just repeat this argument ad infinitum. Define, for $n = 0, 1, 2, 3, \cdots$

$$t_n = t_0 + nh$$

Suppose that, for some value of n, we have already computed an approximate value y_n for $y(t_n)$. Then the rate of change of y(t) for t close to t_n is $f(t, y(t)) \approx f(t_n, y(t_n)) \approx f(t_n, y_n)$ and, again for t close to t_n , $y(t) \approx y_n + f(t_n, y_n)(t - t_n)$. Hence

$$y(t_{n+1}) \approx y_{n+1} = y_n + f(t_n, y_n)h$$
(Eul)

This algorithm is called **Euler's Method**. The parameter h is called the step size.

⁽c) Joel Feldman. 2001. All rights reserved.

Here is a table applying a few steps of Euler's method to the initial value problem

$$y' = -2t + y$$
$$y(0) = 3$$

with step size h = 0.1. For this initial value problem

$$f(t, y) = -2t + y$$
$$t_0 = 0$$
$$y_0 = 3$$

Of course this initial value problem has been chosen for illustrative purposes only. The exact solution is, easily, $y(t) = 2 + 2t + e^t$.

n	t_n	y_n	$f(t_n, y_n) = -2t_n + y_n$	$y_{n+1} = y_n + f(t_n, y_n) * h$
0	0.0	3.000	-2 * 0.0 + 3.000 = 3.000	3.000 + 3.000 * 0.1 = 3.300
1	0.1	3.300	-2 * 0.1 + 3.300 = 3.100	3.300 + 3.100 * 0.1 = 3.610
2	0.2	3.610	-2 * 0.2 + 3.610 = 3.210	3.610 + 3.210 * 0.1 = 3.931
3	0.3	3.931	-2 * 0.3 + 3.931 = 3.331	3.931 + 3.331 * 0.1 = 4.264
4	0.4	4.264	-2 * 0.4 + 4.264 = 3.464	4.264 + 3.464 * 0.1 = 4.611
5	0.5	4.611		

The Improved Euler's Method

Euler's method is one algorithm which generates approximate solutions to the initial value problem

$$y'(t) = f(t, y(t))$$
$$y(t_0) = y_0$$

In applications, f(t, y) is a given function and t_0 and y_0 are given numbers. The function y(t) is unknown. Denote by $\varphi(t)$ the exact solution for this initial value problem. In other words $\varphi(t)$ is the function that obeys

$$\varphi'(t) = f(t, \varphi(t))$$

 $\varphi(t_0) = y_0$

exactly.

Fix a step size h and define $t_n = t_0 + nh$. We now derive another algorithm that generates approximate values for φ at the sequence of equally spaced time values t_0, t_1, t_2, \cdots . We shall denote the approximate values y_n with

$$y_n \approx \varphi(t_n)$$

By the fundamental theorem of calculus and the differential equation, the exact solution obeys

$$\varphi(t_{n+1}) = \varphi(t_n) + \int_{t_n}^{t_{n+1}} \varphi'(t) dt$$
$$= \varphi(t_n) + \int_{t_n}^{t_{n+1}} f(t, \varphi(t)) dt$$

© Joel Feldman. 2001. All rights reserved.

Fix any n and suppose that we have already found y_0, y_1, \dots, y_n . Our algorithm for computing y_{n+1} will be of the form

$$y_{n+1} = y_n + \text{ approximate value for } \int_{t_n}^{t_{n+1}} f(t, \varphi(t)) dt$$

In fact Euler's method is of precisely this form. In Euler's method, we approximate $f(t, \varphi(t))$ for $t_n \leq t \leq t_{n+1}$ by the constant $f(t_n, y_n)$. Thus

Euler's approximate value for
$$\int_{t_n}^{t_{n+1}} f(t,\varphi(t)) dt = \int_{t_n}^{t_{n+1}} f(t_n,y_n) dt = f(t_n,y_n)h$$

The area of the complicated region $0 \le y \le f(t, \varphi(t))$, $t_n \le t \le t_{n+1}$ (represented by the shaded region under the parabola in the left half of the figure below) is approximated by the area of the rectangle $0 \le y \le f(t_n, y_n)$, $t_n \le t \le t_{n+1}$ (the shaded rectangle in the right half of the figure below).

Our second algorithm, the improved Euler's method, gets a better approximation by attempting to approximate by the trapezoid on the right below rather than the rectangle on the right above. The exact area

of this trapezoid is the length h of the base multiplied by the average, $\frac{1}{2}[f(t_n, \varphi(t_n)) + f(t_{n+1}, \varphi(t_{n+1}))]$, of the heights of the two sides. Of course we do not know $\varphi(t_n)$ or $\varphi(t_{n+1})$ exactly. Recall that we have already found y_0, \dots, y_n and are in the process of finding y_{n+1} . So we already have an approximation for $\varphi(t_n)$, namely y_n , but not for $\varphi(t_{n+1})$. Improved Euler uses

$$\varphi(t_{n+1}) \approx \varphi(t_n) + \varphi'(t_n)h \approx y_n + f(t_n, y_n)h$$

in approximating $\frac{1}{2}[f(t_n,\varphi(t_n)) + f(t_{n+1},\varphi(t_{n+1}))]$. Altogether

Improved Euler's approximate value for
$$\int_{t_n}^{t_{n+1}} f(t,\varphi(t)) dt$$

= $\frac{1}{2} \Big[f(t_n, y_n) + f(t_{n+1}, y_n + f(t_n, y_n)h) \Big] h$

so that the improved Euler's method algorithm is

$$y(t_{n+1}) \approx y_{n+1} = y_n + \frac{1}{2} \Big[f(t_n, y_n) + f(t_{n+1}, y_n + f(t_n, y_n)h) \Big] h$$
 (ImpEul)

Here are the first two steps of the improved Euler's method applied to

$$y' = -2t + y$$
$$y(0) = 3$$

(c) Joel Feldman. 2001. All rights reserved.

with h = 0.1. In each step we compute $f(t_n, y_n)$, followed by $y_n + f(t_n, y_n)h$, which we denote \tilde{y}_{n+1} , followed by $f(t_{n+1}, \tilde{y}_{n+1})$, followed by $y_{n+1} = y_n + \frac{1}{2} [f(t_n, y_n) + f(t_{n+1}, \tilde{y}_{n+1})]h$.

$$\begin{array}{rcl} t_0 = 0 & y_0 = 3 & \implies f(t_0, y_0) = -2 * 0 + 3 = 3 \\ & \implies & \tilde{y}_1 = 3 + 3 * 0.1 = 3.3 \\ & \implies & f(t_1, \tilde{y}_1) = -2 * 0.1 + 3.3 = 3.1 \\ & \implies & y_1 = 3 + \frac{1}{2}[3 + 3.1] * 0.1 = 3.305 \\ t_1 = 0.1 & y_1 = 3.305 & \implies & f(t_1, y_1) = -2 * 0.1 + 3.305 = 3.105 \\ & \implies & \tilde{y}_2 = 3.305 + 3.105 * 0.1 = 3.6155 \\ & \implies & f(t_2, \tilde{y}_2) = -2 * 0.2 + 3.6155 = 3.2155 \\ & \implies & y_2 = 3.305 + \frac{1}{2}[3.105 + 3.2155] * 0.1 = 3.621025 \end{array}$$

Here is a table which gives the first five steps.

n	t_n	y_n	$f(t_n, y_n)$	\tilde{y}_{n+1}	$f(t_{n+1}, \tilde{y}_{n+1})$	y_{n+1}
0	0.0	3.000	3.000	3.300	3.100	3.305
1	0.1	3.305	3.105	3.616	3.216	3.621
2	0.2	3.621	3.221	3.943	3.343	3.949
3	0.3	3.949	3.349	4.284	3.484	4.291
4	0.4	4.291	3.491	4.640	3.640	4.647
5	0.5	4.647				

The Runge-Kutta Method

The Runge-Kutta algorithm is similar to the Euler and improved Euler methods in that it also uses, in the notation of the last section,

$$y_{n+1} = y_n + \text{ approximate value for } \int_{t_n}^{t_{n+1}} f(t, \varphi(t)) dt$$

But rather than approximating $\int_{t_n}^{t_{n+1}} f(t, \varphi(t)) dt$ by the area of a rectangle, as does Euler, or by the area of a trapezoid, as does improved Euler, it approximates by the area under a parabola. That is, it uses Simpson's rule. According to Simpson's rule (if you don't know Simpson's rule, just take my word for it)

$$\int_{t_n}^{t_n+h} f\left(t,\varphi(t)\right) \, dt \approx \frac{h}{6} \left[f\left(t_n,\varphi(t_n)\right) + 4f\left(t_n + \frac{h}{2},\varphi(t_n + \frac{h}{2})\right) + f\left(t_n + h,\varphi(t_n + h)\right) \right]$$

As we don't know $\varphi(t_n)$, $\varphi(t_n + \frac{h}{2})$ or $\varphi(t_n + h)$, we have to approximate them as well. The Runge-Kutta algorithm, incorporating all these approximations, is

$$k_{n,1} = f(t_n, y_n)$$

$$k_{n,2} = f(t_n + \frac{1}{2}h, y_n + \frac{h}{2}k_{n,1})$$

$$k_{n,3} = f(t_n + \frac{1}{2}h, y_n + \frac{h}{2}k_{n,2})$$

$$k_{n,4} = f(t_n + h, y_n + hk_{n,3})$$

$$y_{n+1} = y_n + \frac{h}{6} [k_{n,1} + 2k_{n,2} + 2k_{n,3} + k_{n,4}]$$
(RK)

Here are the first two steps of the Runge-Kutta algorithm applied to

$$y' = -2t + y$$
$$y(0) = 3$$

with h = 0.1.

 $t_2 = 0.2 \qquad y_2 = 3.6214025$

and here is a table giving the first five steps. The intermediate data is only given to three decimal places even though the computation has been done to many more.

n	t_n	y_n	k_{n1}	y_{n1}	k_{n2}	y_{n2}	k_{n3}	y_{n3}	k_{n4}	y_{n+1}
0	0.0	3.000	3.000	3.150	3.050	3.153	3.053	3.305	3.105	3.305170833
1	0.1	3.305	3.105	3.460	3.160	3.463	3.163	3.621	3.221	3.621402571
2	0.2	3.621	3.221	3.782	3.282	3.786	3.286	3.950	3.350	3.949858497
3	0.3	3.950	3.350	4.117	3.417	4.121	3.421	4.292	3.492	4.291824240
4	0.4	4.292	3.492	4.466	3.566	4.470	3.570	4.649	3.649	4.648720639
5	0.5	4.648								

These notes have, hopefully, motivated the Euler, improved Euler and Runge-Kutta algorithms. So far we not attempted to see how efficient and how accurate the algorithms are. A first look at those questions is provided in the notes "Simple ODE Solvers – Error Behaviour".