Simple ODE Solvers - Derivation

These notes provide derivations of some simple algorithms for generating, numerically, approximate solutions to the initial value problem

$$
\begin{aligned}
y^{\prime}(t) & =f(t, y(t)) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}
$$

Here $f(t, y)$ is a given function, t_{0} is a given initial time and y_{0} is a given initial value for y. The unknown in the problem is the function $y(t)$. We start with

Euler's Method

Our goal is to determine (approximately) the unknown function $y(t)$ for $t \geq t_{0}$. We are told explicitly the value of $y\left(t_{0}\right)$, namely y_{0}. Using the given differential equation, we can also determine exactly the instantaneous rate of change of y at time t_{0}.

$$
y^{\prime}\left(t_{0}\right)=f\left(t_{0}, y\left(t_{0}\right)\right)=f\left(t_{0}, y_{0}\right)
$$

If the rate of change of $y(t)$ were to remain $f\left(t_{0}, y_{0}\right)$ for all time, then $y(t)$ would be exactly $y_{0}+f\left(t_{0}, y_{0}\right)\left(t-t_{0}\right)$. The rate of change of $y(t)$ does not remain $f\left(t_{0}, y_{0}\right)$ for all time, but it is reasonable to expect that it remains close to $f\left(t_{0}, y_{0}\right)$ for t close to t_{0}. If this is the case, then the value of $y(t)$ will remain close to $y_{0}+f\left(t_{0}, y_{0}\right)\left(t-t_{0}\right)$ for t close to t_{0}. So pick a small number h and define

$$
\begin{aligned}
& t_{1}=t_{0}+h \\
& y_{1}=y_{0}+f\left(t_{0}, y_{0}\right)\left(t_{1}-t_{0}\right)=y_{0}+f\left(t_{0}, y_{0}\right) h
\end{aligned}
$$

By the above argument

$$
y\left(t_{1}\right) \approx y_{1}
$$

Now we start over. We now know the approximate value of y at time t_{1}. If $y\left(t_{1}\right)$ were exactly y_{1}, then the instantaneous rate of change of y at time t_{1} would be exactly $f\left(t_{1}, y_{1}\right)$. If this rate of change were to persist for all future time, $y(t)$ would be exactly $y_{1}+f\left(t_{1}, y_{1}\right)\left(t-t_{1}\right)$. As $y\left(t_{1}\right)$ is only approximately y_{1} and as the rate of change of $y(t)$ varies with t, the rate of change of $y(t)$ is only approximately $f\left(t_{1}, y_{1}\right)$ and only for t near t_{1}. So we approximate $y(t)$ by $y_{1}+f\left(t_{1}, y_{1}\right)\left(t-t_{1}\right)$ for t bigger than, but close to, t_{1}. Defining

$$
\begin{aligned}
t_{2} & =t_{1}+h=t_{0}+2 h \\
y_{2} & =y_{1}+f\left(t_{1}, y_{1}\right)\left(t_{2}-t_{1}\right)=y_{1}+f\left(t_{1}, y_{1}\right) h
\end{aligned}
$$

we have

$$
y\left(t_{2}\right) \approx y_{2}
$$

We just repeat this argument ad infinitum. Define, for $n=0,1,2,3, \cdots$

$$
t_{n}=t_{0}+n h
$$

Suppose that, for some value of n, we have already computed an approximate value y_{n} for $y\left(t_{n}\right)$. Then the rate of change of $y(t)$ for t close to t_{n} is $f(t, y(t)) \approx f\left(t_{n}, y\left(t_{n}\right)\right) \approx f\left(t_{n}, y_{n}\right)$ and, again for t close to t_{n}, $y(t) \approx y_{n}+f\left(t_{n}, y_{n}\right)\left(t-t_{n}\right)$. Hence

$$
\begin{equation*}
y\left(t_{n+1}\right) \approx y_{n+1}=y_{n}+f\left(t_{n}, y_{n}\right) h \tag{Eul}
\end{equation*}
$$

This algorithm is called Euler's Method. The parameter h is called the step size.

Here is a table applying a few steps of Euler's method to the initial value problem

$$
\begin{aligned}
y^{\prime} & =-2 t+y \\
y(0) & =3
\end{aligned}
$$

with step size $h=0.1$. For this initial value problem

$$
\begin{aligned}
f(t, y) & =-2 t+y \\
t_{0} & =0 \\
y_{0} & =3
\end{aligned}
$$

Of course this initial value problem has been chosen for illustrative purposes only. The exact solution is, easily, $y(t)=2+2 t+e^{t}$.

n	t_{n}	y_{n}	$f\left(t_{n}, y_{n}\right)=-2 t_{n}+y_{n}$	$y_{n+1}=y_{n}+f\left(t_{n}, y_{n}\right) * h$
0	0.0	3.000	$-2 * 0.0+3.000=3.000$	$3.000+3.000 * 0.1=3.300$
1	0.1	3.300	$-2 * 0.1+3.300=3.100$	$3.300+3.100 * 0.1=3.610$
2	0.2	3.610	$-2 * 0.2+3.610=3.210$	$3.610+3.210 * 0.1=3.931$
3	0.3	3.931	$-2 * 0.3+3.931=3.331$	$3.931+3.331 * 0.1=4.264$
4	0.4	4.264	$-2 * 0.4+4.264=3.464$	$4.264+3.464 * 0.1=4.611$
5	0.5	4.611		

The Improved Euler's Method

Euler's method is one algorithm which generates approximate solutions to the initial value problem

$$
\begin{aligned}
y^{\prime}(t) & =f(t, y(t)) \\
y\left(t_{0}\right) & =y_{0}
\end{aligned}
$$

In applications, $f(t, y)$ is a given function and t_{0} and y_{0} are given numbers. The function $y(t)$ is unknown. Denote by $\varphi(t)$ the exact solution for this initial value problem. In other words $\varphi(t)$ is the function that obeys

$$
\begin{aligned}
\varphi^{\prime}(t) & =f(t, \varphi(t)) \\
\varphi\left(t_{0}\right) & =y_{0}
\end{aligned}
$$

exactly.
Fix a step size h and define $t_{n}=t_{0}+n h$. We now derive another algorithm that generates approximate values for φ at the sequence of equally spaced time values $t_{0}, t_{1}, t_{2}, \cdots$. We shall denote the approximate values y_{n} with

$$
y_{n} \approx \varphi\left(t_{n}\right)
$$

By the fundamental theorem of calculus and the differential equation, the exact solution obeys

$$
\begin{aligned}
\varphi\left(t_{n+1}\right) & =\varphi\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} \varphi^{\prime}(t) d t \\
& =\varphi\left(t_{n}\right)+\int_{t_{n}}^{t_{n+1}} f(t, \varphi(t)) d t
\end{aligned}
$$

Fix any n and suppose that we have already found $y_{0}, y_{1}, \cdots, y_{n}$. Our algorithm for computing y_{n+1} will be of the form

$$
y_{n+1}=y_{n}+\text { approximate value for } \int_{t_{n}}^{t_{n+1}} f(t, \varphi(t)) d t
$$

In fact Euler's method is of precisely this form. In Euler's method, we approximate $f(t, \varphi(t))$ for $t_{n} \leq t \leq t_{n+1}$ by the constant $f\left(t_{n}, y_{n}\right)$. Thus

$$
\text { Euler's approximate value for } \int_{t_{n}}^{t_{n+1}} f(t, \varphi(t)) d t=\int_{t_{n}}^{t_{n+1}} f\left(t_{n}, y_{n}\right) d t=f\left(t_{n}, y_{n}\right) h
$$

The area of the complicated region $0 \leq y \leq f(t, \varphi(t)), t_{n} \leq t \leq t_{n+1} \quad$ (represented by the shaded region under the parabola in the left half of the figure below) is approximated by the area of the rectangle $0 \leq y \leq$ $f\left(t_{n}, y_{n}\right), t_{n} \leq t \leq t_{n+1} \quad$ (the shaded rectangle in the right half of the figure below).

Our second algorithm, the improved Euler's method, gets a better approximation by attempting to approximate by the trapezoid on the right below rather than the rectangle on the right above. The exact area

of this trapezoid is the length h of the base multiplied by the average, $\frac{1}{2}\left[f\left(t_{n}, \varphi\left(t_{n}\right)\right)+f\left(t_{n+1}, \varphi\left(t_{n+1}\right)\right)\right]$, of the heights of the two sides. Of course we do not know $\varphi\left(t_{n}\right)$ or $\varphi\left(t_{n+1}\right)$ exactly. Recall that we have already found y_{0}, \cdots, y_{n} and are in the process of finding y_{n+1}. So we already have an approximation for $\varphi\left(t_{n}\right)$, namely y_{n}, but not for $\varphi\left(t_{n+1}\right)$. Improved Euler uses

$$
\varphi\left(t_{n+1}\right) \approx \varphi\left(t_{n}\right)+\varphi^{\prime}\left(t_{n}\right) h \approx y_{n}+f\left(t_{n}, y_{n}\right) h
$$

in approximating $\frac{1}{2}\left[f\left(t_{n}, \varphi\left(t_{n}\right)\right)+f\left(t_{n+1}, \varphi\left(t_{n+1}\right)\right)\right]$. Altogether

$$
\begin{aligned}
& \text { Improved Euler's approximate value for } \int_{t_{n}}^{t_{n+1}} f(t, \varphi(t)) d t \\
& \qquad=\frac{1}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n}+f\left(t_{n}, y_{n}\right) h\right)\right] h
\end{aligned}
$$

so that the improved Euler's method algorithm is

$$
\begin{equation*}
y\left(t_{n+1}\right) \approx y_{n+1}=y_{n}+\frac{1}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n}+f\left(t_{n}, y_{n}\right) h\right)\right] h \tag{ImpEul}
\end{equation*}
$$

Here are the first two steps of the improved Euler's method applied to

$$
\begin{aligned}
y^{\prime} & =-2 t+y \\
y(0) & =3
\end{aligned}
$$

with $h=0.1$. In each step we compute $f\left(t_{n}, y_{n}\right)$, followed by $y_{n}+f\left(t_{n}, y_{n}\right) h$, which we denote \tilde{y}_{n+1}, followed by $f\left(t_{n+1}, \tilde{y}_{n+1}\right)$, followed by $y_{n+1}=y_{n}+\frac{1}{2}\left[f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, \tilde{y}_{n+1}\right)\right] h$.

$$
\begin{array}{llr}
t_{0}=0 \quad y_{0}=3 & \Longrightarrow f\left(t_{0}, y_{0}\right)=-2 * 0+3=3 \\
& \Longrightarrow & \tilde{y}_{1}=3+3 * 0.1=3.3 \\
& \Longrightarrow f\left(t_{1}, \tilde{y}_{1}\right)=-2 * 0.1+3.3=3.1 \\
t_{1}=0.1 \quad y_{1}=3.305 & \Longrightarrow f\left(t_{1}, y_{1}\right)=-2 * 0.1+3.305=3.105 \\
& \Longrightarrow \quad y_{1}=3+\frac{1}{2}[3+3.1] * 0.1=3.305 \\
& \Longrightarrow f\left(t_{2}, \tilde{y}_{2}\right)=-2 * 0.2+3.6155=3.2155 \\
& \Longrightarrow \quad \tilde{y}_{2}=3.305+3.105 * 0.1=3.6155 \\
& y_{2}=3.305+\frac{1}{2}[3.105+3.2155] * 0.1=3.621025
\end{array}
$$

Here is a table which gives the first five steps.

n	t_{n}	y_{n}	$f\left(t_{n}, y_{n}\right)$	\tilde{y}_{n+1}	$f\left(t_{n+1}, \tilde{y}_{n+1}\right)$	y_{n+1}
0	0.0	3.000	3.000	3.300	3.100	3.305
1	0.1	3.305	3.105	3.616	3.216	3.621
2	0.2	3.621	3.221	3.943	3.343	3.949
3	0.3	3.949	3.349	4.284	3.484	4.291
4	0.4	4.291	3.491	4.640	3.640	4.647
5	0.5	4.647				

The Runge-Kutta Method

The Runge-Kutta algorithm is similar to the Euler and improved Euler methods in that it also uses, in the notation of the last section,

$$
y_{n+1}=y_{n}+\text { approximate value for } \int_{t_{n}}^{t_{n+1}} f(t, \varphi(t)) d t
$$

But rather than approximating $\int_{t_{n}}^{t_{n+1}} f(t, \varphi(t)) d t$ by the area of a rectangle, as does Euler, or by the area of a trapezoid, as does improved Euler, it approximates by the area under a parabola. That is, it uses Simpson's rule. According to Simpson's rule (if you don't know Simpson's rule, just take my word for it)

$$
\int_{t_{n}}^{t_{n}+h} f(t, \varphi(t)) d t \approx \frac{h}{6}\left[f\left(t_{n}, \varphi\left(t_{n}\right)\right)+4 f\left(t_{n}+\frac{h}{2}, \varphi\left(t_{n}+\frac{h}{2}\right)\right)+f\left(t_{n}+h, \varphi\left(t_{n}+h\right)\right)\right]
$$

As we don't know $\varphi\left(t_{n}\right), \varphi\left(t_{n}+\frac{h}{2}\right)$ or $\varphi\left(t_{n}+h\right)$, we have to approximate them as well. The Runge-Kutta algorithm, incorporating all these approximations, is

$$
\begin{align*}
k_{n, 1} & =f\left(t_{n}, y_{n}\right) \\
k_{n, 2} & =f\left(t_{n}+\frac{1}{2} h, y_{n}+\frac{h}{2} k_{n, 1}\right) \\
k_{n, 3} & =f\left(t_{n}+\frac{1}{2} h, y_{n}+\frac{h}{2} k_{n, 2}\right) \tag{RK}\\
k_{n, 4} & =f\left(t_{n}+h, y_{n}+h k_{n, 3}\right) \\
y_{n+1} & =y_{n}+\frac{h}{6}\left[k_{n, 1}+2 k_{n, 2}+2 k_{n, 3}+k_{n, 4}\right]
\end{align*}
$$

Here are the first two steps of the Runge-Kutta algorithm applied to

$$
\begin{aligned}
y^{\prime} & =-2 t+y \\
y(0) & =3
\end{aligned}
$$

with $h=0.1$.

$$
\begin{array}{rlr}
t_{0} & =0 & y_{0}=3 \\
& \Longrightarrow & k_{0,1}=f(0,3)=-2 * 0+3=3 \\
& \Longrightarrow & y_{0}+\frac{h}{2} k_{0,1}=3+0.05 * 3=3.15 \\
& \Longrightarrow & k_{0,2}=f(0.05,3.15)=-2 * 0.05+3.15=3.05 \\
& \Longrightarrow & y_{0}+\frac{h}{2} k_{0,2}=3+0.05 * 3.05=3.1525 \\
& \Longrightarrow & k_{0,3}=f(0.05,3.1525)=-2 * 0.05+3.1525=3.0525 \\
& \Longrightarrow & y_{0}+h k_{0,3}=3+0.1 * 3.0525=3.30525 \\
& \Longrightarrow & k_{0,4}=f(0.1,3.30525)=-2 * 0.1+3.30525=3.10525 \\
& \Longrightarrow & y_{1}=3+\frac{0.1}{6}[3+2 * 3.05+2 * 3.0525+3.10525]=3.3051708 \\
t_{1} & =0.1 & y_{1}=3.3051708 \\
& \Longrightarrow & k_{1,1}=f(0.1,3.3051708)=-2 * 0.1+3.3051708=3.1051708 \\
& \Longrightarrow & y_{1}+\frac{h}{2} k_{1,1}=3.3051708+0.05 * 3.1051708=3.4604293 \\
& \Longrightarrow & k_{1,2}=f(0.15,3.4604293)=-2 * 0.15+3.4604293=3.1604293 \\
& \Longrightarrow & y_{1}+\frac{h}{2} k_{1,2}=3.3051708+0.05 * 3.1604293=3.4631923 \\
& \Longrightarrow & k_{1,3}=f(0.15,3.4631923)=-2 * 0.15+3.4631923=3.1631923 \\
& \Longrightarrow & y_{1}+h k_{1,3}=3.3051708+0.1 * 3.4631923=3.62149 \\
& \Longrightarrow & k_{1,4}=f(0.2,3.62149)=-2 * 0.2+3.62149=3.22149 \\
& \Longrightarrow & y_{2}=3.3051708+\frac{0.1}{6}[3.1051708+2 * 3.1604293+ \\
& \\
t_{2}=0.2 & y_{2}=3.6214025
\end{array}
$$

and here is a table giving the first five steps. The intermediate data is only given to three decimal places even though the computation has been done to many more.

n	t_{n}	y_{n}	$k_{n 1}$	$y_{n 1}$	$k_{n 2}$	$y_{n 2}$	$k_{n 3}$	$y_{n 3}$	$k_{n 4}$	y_{n+1}
0	0.0	3.000	3.000	3.150	3.050	3.153	3.053	3.305	3.105	3.305170833
1	0.1	3.305	3.105	3.460	3.160	3.463	3.163	3.621	3.221	3.621402571
2	0.2	3.621	3.221	3.782	3.282	3.786	3.286	3.950	3.350	3.949858497
3	0.3	3.950	3.350	4.117	3.417	4.121	3.421	4.292	3.492	4.291824240
4	0.4	4.292	3.492	4.466	3.566	4.470	3.570	4.649	3.649	4.648720639
5	0.5	4.648								

These notes have, hopefully, motivated the Euler, improved Euler and Runge-Kutta algorithms. So far we not attempted to see how efficient and how accurate the algorithms are. A first look at those questions is provided in the notes "Simple ODE Solvers - Error Behaviour".

