Linear Regression

Imagine an experiment in which you measure one quantity, call it y, as a function of a second quantity, say x. For example, y could be the current that flows through a resistor when a voltage x is applied to it. Suppose that you measure n data points $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ and that you wish to find the straight line $y=m x+b$ that fits the data best. If the data point

$\left(x_{i}, y_{i}\right)$ were to land exactly on the line $y=m x+b$ we would have $y_{i}=m x_{i}+b$. If it doesn't land exactly on the line, the vertical distance between $\left(x_{i}, y_{i}\right)$ and the line $y=m x+b$ is $\left|y_{i}-m x_{i}-b\right|$. That is the discrepancy between the measured value of y_{i} and the corresponding idealized value on the line is $\left|y_{i}-m x_{i}-b\right|$. One measure of the total discrepancy for all data points is $\sum_{i=1}^{n}\left|y_{i}-m x_{i}-b\right|$. A more convenient measure, which avoids the absolute value signs, is

$$
D(m, b)=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

We will now find the values of m and b that give the minimum value of $D(m, b)$. The corresponding line $y=m x+b$ is generally viewed as the line that fits the data best.

You learned in your first Calculus course that the value of m that gives the minimum value of a function of one variable $f(m)$ obeys $f^{\prime}(m)=0$. The analogous statement for functions of two variables is the following. First pretend that b is just a constant and compute the derivative of $D(m, b)$ with respect to m. This is called the partial derivative of $D(m, b)$ with respect to m and denoted $\frac{\partial D}{\partial m}(m, b)$. Next pretend that m is just a constant and compute the derivative of $D(m, b)$ with respect to b. This is called the partial derivative of $D(m, b)$ with respect to b and denoted $\frac{\partial D}{\partial b}(m, b)$. If (m, b) gives the minimum value of $D(m, b)$, then

$$
\frac{\partial D}{\partial m}(m, b)=\frac{\partial D}{\partial b}(m, b)=0
$$

For our specific $D(m, b)$

$$
\begin{aligned}
& \frac{\partial D}{\partial m}(m, b)=\sum_{i=1}^{n} 2\left(y_{i}-m x_{i}-b\right)\left(-x_{i}\right) \\
& \frac{\partial D}{\partial b}(m, b)=\sum_{i=1}^{n} 2\left(y_{i}-m x_{i}-b\right)(-1)
\end{aligned}
$$

It is important to remember here that all of the x_{i} 's and y_{i} 's here are given numbers. The only unknowns are m and b. The two partials are of the forms

$$
\begin{aligned}
& \frac{\partial D}{\partial m}(m, b)=2 c_{x x} m+2 c_{x} b-2 c_{x y} \\
& \frac{\partial D}{\partial b}(m, b)=2 c_{x} m+2 n b-2 c_{y}
\end{aligned}
$$

where the various c 's are just given numbers whose values are

$$
c_{x x}=\sum_{i=1}^{n} x_{i}^{2} \quad c_{x}=\sum_{i=1}^{n} x_{i} \quad c_{x y}=\sum_{i=1}^{n} x_{i} y_{i} \quad c_{y}=\sum_{i=1}^{n} y_{i}
$$

So the value of (m, b) that gives the minimum value of $D(m, b)$ is determined by

$$
\begin{align*}
c_{x x} m+c_{x} b & =c_{x y} \tag{1}\\
c_{x} m+n b & =c_{y} \tag{2}
\end{align*}
$$

This is a system of two linear equations in the two unknowns m and b, which is easy to solve:

$$
\begin{array}{llll}
n(1)-c_{x}(2): & {\left[n c_{x x}-c_{x}^{2}\right] m=n c_{x y}-c_{x} c_{y}} & \Longrightarrow & m=\frac{n c_{x y}-c_{x} c_{y}}{n c_{x x}-c_{x}^{2}} \\
c_{x}(1)-c_{x x}(2): & {\left[c_{x}^{2}-n c_{x x}\right] b=c_{x} c_{x y}-c_{x x} c_{y}} & \Longrightarrow & b=\frac{c_{x x} c_{y}-c_{x} c_{x y}}{n c_{x x}-c_{x}^{2}}
\end{array}
$$

