A Careful Area Computation

We are going to carefully compute the exact area of the region $0 \leq y \leq e^{x} \leq 1$, $0 \leq x \leq 1$. There will be no uncontrolled approximations.

Because derivative $\frac{d}{d x} e^{x}=e^{x}$ is always positive, the function e^{x} increases as x increases. Consequently, the smallest and largest values of e^{x} on the interval $a \leq x \leq b$ are e^{a} and e^{b}, respectively. In particular, for $0 \leq x \leq \frac{1}{N}$, e^{x} takes values only between e^{0} and $e^{1 / N}$. As a result, the set

$$
\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{1}{N}\right., 0 \leq y \leq e^{x}\right\}
$$

contains the rectangle of $0 \leq x \leq \frac{1}{N}, 0 \leq y \leq e^{0}$ (the lighter rectangle in the figure on the left below) and is contained in the rectangle $0 \leq x \leq \frac{1}{N}, 0 \leq y \leq e^{1 / N}$ (the largest rectangle in the figure on the left below). Hence

$$
\frac{1}{N} e^{0} \leq \text { Area }\left\{(x, y) \left\lvert\, 0 \leq x \leq \frac{1}{N}\right., 0 \leq y \leq e^{x}\right\} \leq \frac{1}{N} e^{1 / N}
$$

Similarly, as in the figure on the right above,

$$
\begin{array}{ccc}
\frac{1}{N} e^{1 / N} \leq \text { Area }\left\{(x, y) \left\lvert\, \frac{1}{N} \leq x \leq \frac{2}{N}\right., 0 \leq y \leq e^{x}\right\} & \leq \frac{1}{N} e^{2 / N} \\
\frac{1}{N} e^{2 / N} \leq \text { Area }\left\{(x, y) \left\lvert\, \frac{2}{N} \leq x \leq \frac{3}{N}\right., 0 \leq y \leq e^{x}\right\} & \leq \frac{1}{N} e^{3 / N} \\
\vdots & \vdots & \vdots \tag{2}\\
\frac{1}{N} e^{(N-1) / N} \leq \text { Area }\left\{(x, y) \left\lvert\, \frac{N-1}{N} \leq x \leq \frac{N}{N}\right., 0 \leq y \leq e^{x}\right\} \leq \frac{1}{N} e^{N / N}
\end{array}
$$

Adding (1) and all of the lines of (2) together gives

$$
\begin{aligned}
& \frac{1}{N}\left(1+e^{\frac{1}{N}}+\cdots+e^{\frac{N-1}{N}}\right) \\
& \leq \operatorname{Area}\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq e^{x}\right\} \\
& \leq \frac{1}{N}\left(e^{\frac{1}{N}}+e^{\frac{2}{N}}+\cdots+e^{\frac{N}{N}}\right) \\
& =\frac{1}{N} e^{\frac{1}{N}}\left(1+e^{\frac{1}{N}}+\cdots+e^{\frac{N-1}{N}}\right)
\end{aligned}
$$

Using $1+r+\cdots+r^{m}=\frac{1-r^{m+1}}{1-r}$ with $r=e^{1 / N}$ and $m=N-1$, so that $r^{m+1}=\left(e^{1 / N}\right)^{N}=e$,

$$
\frac{1}{N} \frac{1-e}{1-e^{1 / N}} \leq \operatorname{Area}\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq e^{x}\right\} \leq \frac{1}{N} e^{1 / N} \frac{1-e}{1-e^{1 / N}}
$$

Thus the exact area must be at least as large as $\frac{1}{N} \frac{1-e}{1-e^{1 / N}}$ for every single integer $N \geq 1$. So the exact area must also be at least as large as

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \frac{1-e}{1-e^{1 / N}}=(1-e) \lim _{x=\frac{1}{N} \rightarrow 0} \frac{x}{1-e^{x}}=(1-e) \lim _{x \rightarrow 0} \frac{1}{-e^{x}}=e-1
$$

by L'Hôpital's rule. Similarly, the exact area must be smaller than (or equal to) $\frac{1}{N} e^{\frac{1}{N}} \frac{1-e}{1-e^{1 / N}}$ for every single natural number N. So the exact area must also be smaller than or equal to

$$
\lim _{N \rightarrow \infty} \frac{1}{N} e^{\frac{1}{N}} \frac{1-e}{1-e^{1 / N}}=(1-e) \lim _{x \rightarrow 0} e^{x} \frac{x}{1-e^{x}}=(1-e) \lim _{x \rightarrow 0} e^{x} \lim _{x \rightarrow 0} \frac{x}{1-e^{x}}=e-1
$$

We have now shown that

$$
e-1 \leq \operatorname{Area}\left\{(x, y) \mid 0 \leq y \leq e^{x}, 0 \leq x \leq 1\right\} \leq e-1
$$

so that the area must be exactly $e-1$.

