Complex Numbers and Exponentials

Definition and Basic Operations

A complex number is nothing more than a point in the xy—plane. The sum and product of two complex

numbers (z1,y1) and (z2,y2) is defined by
(z1,91) + (22, 92) = (21 + 22,41 + y2)
(w1,y1) (w2, y2) = (T122 — Y1Y2, T1Y2 + T2y1)
respectively. It is conventional to use the notation x + iy (or in electrical engineering country = + jy) to stand
for the complex number (z,y). In other words, it is conventional to write = in place of (z,0) and ¢ in place of
(0,1). In this notation, the sum and product of two complex numbers z; = 1 +iy; and z3 = x9 + iy is given

by
21+ 22 = (v1 +22) +i(y1 +¥2)

2122 = 1102 — Y1y2 + i(T1y2 + T2y1)
The complex number ¢ has the special property
i?=(04+1)(04+1) =(0x0—-1x1)+i(0x14+1x0)=—1
For example, if z =1+ 2¢ and w = 3 + 44, then

z4w=(1+2i)+ (3+4i) =4+6i
cw=(142i)(3+4i) =3+4i+6i+8>=3+4i+6i—8=—5+10i

Addition and multiplication of complex numbers obey the familiar algebraic rules

21 +20 =20+ 21 2172 = 2221
21+ (22 + 23) = (21 + 22) + 23 21(2223) = (2122)23
0+ 21 =2 lz1 =2
z1(22 4 23) = 2122 + 2123 (21 + 22)23 = 2123 + 2223

The negative of any complex number z = = + iy is defined by —z = —z + (—y)i, and obeys z + (—z) = 0.

Other Operations
The complex conjugate of z is denoted Z and is defined to be zZ = x —1iy. That is, to take the complex
conjugate, one replaces every ¢ by —i. Note that
22 = (z +iy)(x — iy) = 2% —izy +izy + y? = 2% + 32

is always a positive real number. In fact, it is the square of the distance from x + iy (recall that this is the point
(z,y) in the zy-plane) to 0 (which is the point (0,0)). The distance from z = z 4 iy to 0 is denoted |z| and is
called the absolute value, or modulus, of z. It is given by

lz2| = Va2 +y? = VzzZ
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Since z122 = (z1 +iy1)(x2 +iye) = (172 — y1y2) +i(x1Y2 + 22Y1),

|2122] = V(2122 — y192)2 + (21Y2 + T291)?

= \/x%x% — 2312211Y2 + VY3 + 23y3 4 2z1y2m2y1 + T3Y7

= \Jo2a3 + gy} + ady + a3 = /(e + D) (ad + 1))

= |21]|22]

for all complex numbers z1, 2o .
Since |z|? = 2z, we have z(%) =1 for all complex numbers z # 0. This says that the multiplicative

inverse, denoted z~! or %, of any nonzero complex number z = x + iy is

Z—lzzzzfiy: T Y 4
BE 2242 2242 22492

It is easy to divide a complex number by a real number. For example

1142 _ 11 | 2 .

55 = 25 T 350
In general, there is a trick for rewriting any ratio of complex numbers as a ratio with a real denominator. For
example, suppose that we want to find éﬁi The trick is to multiply by 1 = g:ij. The number 3 — 4i is the

complex conjugate of 3 + 44. Since (3 +44)(3 —4i) =9 — 12 + 120 + 16 = 25

142 _ 142i3—di _ (1420)(3-4i) _ 142 _ 11 4 2,
3+4i T 34+4i3—4i 25 ~— 25 T 2577 2

The notations Re z and Im z stand for the real and imaginary parts of the complex number z, respec-
tively. If z = x + iy (with = and y real) they are defined by

Rez==2 Imz =y
Note that both Re z and Im z are real numbers. Just subbing in z = x — iy gives

Rez = 1(z+2) Imz=2(z — %)

The Complex Exponential

Definition and Basic Properties. For any complex number z = x + iy the exponential e*, is defined by
et = % cosy + iesiny

In particular, ¢ = cosy + isiny. This definition is not as mysterious as it looks. We could also define e¢®¥ by
] ™
n=0 nl"

the subbing z by ¢y in the Taylor series expansion e” =)

. - \2 - \3 . \4 - \5 .
=ty O G

The even terms in this expansion are

N2 . \4 . \6
1+(112/!) +(li!) +%+...:1_y2_!+%_%+...:cosy
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and the odd terms in this expansion are

- \3 - \5 3 5
iy—l—%—!— (“;,) +~-~:i(y—%—!+%—!+~-~) =isiny
For any two complex numbers z; and 2z,
e*te”? = e"(cosy; + isinyy)e®?(cosys + isinysz)

= "1+ 2(cos gy + isiny)(cosys + isinys)

= "2 {(cosy; cosyz — siny; sinys) + i(cosyy sinys + cosyz sinyy)}
= "2 Leos(yp + yo) +isin(yr +y2)}

— lartw2)Filyity2)

= et +z2

so that the familiar multiplication formula also applies to complex exponentials. For any complex number
¢ = o+ if and real number ¢
et = I8t — ocos(Bt) + i sin(St)]

so that the derivative with respect to t

d et = ae®[cos(Bt) + i sin(Bt)] + e [—Bsin(Bt) + 8 cos(t)]
= (a +iB)e* [cos(Bt) + isin(St)]

= ce“

is also the familiar one.

Relationship with sin and cos. When 6 is a real number
e = cosf +isind
e = cosf —isinf = eif
are complex numbers of modulus one. Solving for cosf and sin (by adding and subtracting the two equations)
cost = 1(e” +e7) =Ree®

sinf = (e —e7) = Ime™

These formulae make it easy derive trig identities. For example

cosfcos = (e + e ) (" +e77?)
_ L(ef040) 4 (i0-0) | gi(-0+9) | o=i(040))
= %(ei(9+¢) 4 e~ i0+9) | i0=9) 4 ei(—0+¢>))
= 1(cos(f + ¢) + cos(6 — ¢))

and, using (a + )3 = a3 + 3a?b + 3ab® + b3,

sin® 6 = —é(ew —eiig)3
_ —é(ei?’e 310 4 ge—if _ e—i30)
31 (.0  _—if 11 (,i30 . —i30
foi(e” =) = g (e =)
= 3sinf — 1sin(30)
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Polar Coordinates. Let z = x + iy be any complex number. Writing (z,y) in polar coordinates in the usual
way gives x = rcosf, y = rsinf and

x + iy = re?
&+ iy = rcosf +irsinf = re?
In particular
(1
¢i=(0,1) . X .
1 = 0 = ¢2m =  2km for k=0,+1,+2,---
(cLo=—1 TR 1—oy —1 = €T == (T for k=0, 41,42,
* IR i o= e™/2 = edm = GT2)T for =0 41,42, -
2 —i = eim/2 = 8T = ¢(~3 2T for =0, £1, 42, -
¢ —i=(0,—1)

The polar coordinate # = tan~! 4 associated with the complex number z = x + iy is also called the argument

of z.

The polar coordinate representation makes it easy to find square roots, third roots and so on. Fix any
positive integer n. The n'® roots of unity are, by definition, all solutions z of

Writing z = re®

nenGz _ 1601

The polar coordinates (r,0) and (r',6’) represent the same point in the zy—plane if and only if » = r’ and
0 = 0’ + 2kx for some integer k. So z™ = 1 if and only if ¥ = 1, i.e. » = 1, and nf = 2kx for some integer k.

The n*® roots of unity are all complex numbers e2™in with k integer. There are precisely n distinct n*® roots
of unity because e2min = e2™i% if and only if 27‘1’% — 2m'%, = 27Tk*Tk/ is an integer multiple of 27. That is, if
and only if kK — k' is an integer multiple of n. The are n distinct nth roots of unity are

o2t 2mi 2mi L

2midt
1,6 n , € noaee e n
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Exploiting Complex Exponentials in Calculus Computations

Example 1

/e”” cosz dx = %/ew [ +e7 "] do = %/ [e(l+i)w + e(l—i)w] dx

(1+z)w iie(l—i)m} +C

3 [1+z

This form of the indefinite integral looks a little wierd because of the i’s. But it is correct and it is purely

real, despite the i's, because 15e(!~)% is the complex conjugate of %He(lﬂ')””. We can convert the indefinite

integral into a more familar form just by subbing back in e*® = cosz + isinz, ——

1 1 144
1—¢ = 1+i — 2
x _ w 1 i;E 1 —ix
/8 COSde— [T Ee ]+C

MI)—A

e’ [L5E (cosx +isinz) + Hi(cosz — isinz)| + C

NI— MIH

e® cosx + %exsmx—i—C

Example 2 Using (a + b)* = a* + 4a3b + 6a2b? + 4ab® + b*,

/cos4xdx:2l4/['

611 +
4ix 4 2ix 4 —2ix 1 —4ix
e + 5™ + 6 + —;e + =5e }—i—C

4
%%( diz 674”) + %(621@ _ 672”) +6I] +C
1

—m] dr = 2_4 [641'1 + 4621'1 46+ 46—2i13 + e—4i;ﬂ] dx

_ 1
—ﬁsmélx—l— Zsm2x+§x+0

Example 3 We shall now guess a solution to the differential equation

y" + 2y + 3y = cost

_ 1—i _
T+ — O+n@a—i

1—1

2

and

(1)

Equations like this arise, for example, in the study of the RLC circuit. We shall simplify the computation by

exploiting that cost = Ree®. First, we shall guess a function Y (t) obeying
V" 4+2Y' +3Y ="

Then, taking complex conjugates,
V" +2Y +3Y =e ¥

and, adding 3(2) and 3(2) together will give

(ReY)” +2(ReY) +3(ReY) = Ree’ = cost

which shows that Re Y (t) is a solution to (1). Let’s try Y () = Ae®. This is a solution of (2) if and only if

% (Ae™) + 24 (Ae™) + 3A4e™ = ™
= (2 + 2i)Ae™ = ¢
—

A= 2+2z

So we have found a solution to (2) and Re 55;

coordinates. So
it it

_ _ 1 i(t—% o1
2+2i= 2\/_e4z>2+21 2\/261%—7561( 4):>Reﬁ—mcos(t—§)
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Example 4 In this example, we shall find [ Va2 —1 dx.

First, here is some motivation for the substitution that I shall use. To integrate f V1 =22 dz, we
substitute z = cost, since it is easy to take the square root in v/1 — 22 = /1 — cos2t = Vsin?t. Now that
we know about complex numbers, we are no longer afraid of taking the square root of negative numbers.
Consequently, we can still substitute x = cost into Va2 —1=+cos2t — 1 =+/—sin’t = V=1V sin®t = 4isint.

In any real application, the domain of integration for [ v/z2 — 1 dz will only include z’s obeying 22 > 1,
so that v/22 — 1 is real. This looks like it causes problems for the substitution z = cost, because we are used
to thinking that cost only takes values between —1 and 1. But the restriction —1 < cost < 1 is only valid
when ¢ is real. Allowing ¢t to be complex allows cost to take all possible complex values. In fact, I claim that

as t runs over all pure imaginary values (that is ¢t = iy with y real), cost takes all real values bigger than +1.
To see this, set z = it. Then as t runs over all pure imaginary values, z runs over all pure real values. When
z =0, cost = %(e“ + e*“) = %(ez + e*Z) takes the value 1. As z increases, %(ez + efz) increases (because
%%(ez + e*Z) = %(ez — e*Z) > 0 for z > 0) and as z approachs infinity, so does %(ez + e*z). Thus as z runs
through the real numbers from 0 to infinity, %(ez + e*Z) runs through the real numbers from 1 to infinity. The
function %(ez + e’z) is called the hyperbolic cosine of z and is denoted cosh z. Similarly, the hyperbolic sine of

z is sinh z = %(ez — e’z). The relationship between hyperbolic and regular sine and cosine is

cosy = cosh iy isiny = sinh iy

For every trig identity, there is a corresponding identity for sinh and cosh. Just the signs change. For example
sin? z 4 cos? z = 1, but cosh? 2 —sinh? = 1. The identities are checked by just subbing in sinh z = %(ez — e‘z)
and coshz = %(ez + e_z). Similarly, the derivative rules for sinh and cosh are the same as those for sin and
cos, up to signs. For example, while Z—x cosx = —sinx, Z—x coshx = sinh z.

Now the evaluation of the integral. Suppose that we want > 1. Sub in x = coshz = %(ez + efz)
with z > 0. (If we wanted @ < —1, we would sub in = — cosh z.) T'll write everything out explicitly in terms
of exponentials. The formulae would be shorter, if I wrote everything in terms of coshz and sinh z.

v=g(+e)
dr = %(ez - efz)dz
Pol= e e 1= (ke ) S 1= (P -2k e ) = (e )
m: %(62 _ efz)
Vol —Tde =4 (7 = ) de = (e - 24 ) dz

JVETar=y [ -2 ) de = 3 -2 - o) 4

Now we have to sub back in what z is in terms of z. That is, we have to solve z = %(ez + e_z) for z as a

function of z.
x:%(ez—l—e*‘z) = wr=cteF = wefF =¥ +1 = ¥ —22e*+1=0

Think of this as the quadratic equation Q% —2xQ +1 = 0 for Q = e*. The quadratic equation Q% —2zQ+1 =0
has two solutions: Q = %(2le: Va2 — 4) = 2 ++/22 — 1. Note that if we divide the equation e?* —2ze*4+1 =0

z

by €%* we get e~2* — 2ze~% 4+ 1 = 0, which is exactly the same quadratic equation for Q' = e~* as we had for

Q. One of the two solutions x + /22 — 1 is €? and the other is e7*. As we want z > 0, so that e* > e~ %, we
have to choose ¢ =z + v22 — 1 and e™* =z — Va2 — 1. As a check, note that

(z+Va2-1)(z—Va2-1)=2>-(2*-1)=1 = ﬁ:x— 2 -1
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Subbing in e* =z + V22 —land e =z — V22 — 1 and z = In (z + Va2 — 1),

/\/xQ—lda::i[%ezz—lz—%efzﬂ +C
— 1@+ Va2—1) =2+ Va2 1) = La - Va2 1)’ +C
= %[x\/xQ—l—ln(:zr—i-\/a:Q—l)]—I—C

As a check, note that

d L[p /22 _1_ NS _ 1| /2 _ 14w/ Vai—1
dm2[:17 T 1—1In (x—l— T 1)] =3 _\/x 1+2x —— pry s s
1 [ 221 + z? 1 Vz2—1+4z
2 | Va2-1 Vz2-1 Vz2—1 z+Vz2-1
— 1 [ 221 22 1
T2 Va1 + z2—1 x271:|
_1f2e?2] - w21 f2q
2 [ Va2-1 z2—1

as desired.
Example 5 In this example, we shall find [ #"’f% dx. Using complex numbers, any polynomial can be
written as a product of linear factors. This allows us to eliminate quadratic denominators from the partial
fractions procedure. This example illustrates how.

We first have to factor the denominator 22 + 2x + 5. We can use the high school formula for the roots
of a quadratic equation: =2£V %2_“5 = —21@ = —14++/—4=—1+2i. Or we can complete the square

420 +5=(r+ 1) +4=(2+1)* -2 =[(z+1) - 2][(x+ 1) +2i] = [z + 1 — 2i][z + 1 + 2i]

Next we write the integrand in the form

x+2 _ x+2 _ a 4 b
2242245~ (z+1-24)(xz+14+2i) ~ x+1-2i T+142%

with the constants a and b chosen so that

o b a(z4+142i)+b(a+1-2i) _

4 x+2
TF1—2i " zit2i  (e+1-20)(z+1+2i)  (@+1—21)(z+1+2)

ie. sothat a(x +14+2i) + bz +1—2i) =2 +2
This has to be true for all . We can solve easily for a if we choose z + 1 = 2i and we can solve easily for b if
we choose z + 1 = —2i:

r+1=2i = a(2i42i) +b(2 —2i) =2i+1 = dia=14+2 = a=4H2=1_1
r+1=-2i = a(-2i4+2)+b(-2i—2i)=-2i+1 = —4ib=1-2i = b=-13H=1+4

since ¥+ = —i. As a check, we observe that, with a = % — ii and b = % + %i,

%

as desired. The integral is now easy,

/% dx:/[ﬁjLﬁ} dr =aln(z +1—2i) + bln(z + 1+ 2i) + C
= (35— 1i) In(z+1-2i)+ (3 + i) In(z + 1+ 2i) + C
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though the answer looks a little wierd because of the complex numbers.
One can eliminate the complex numbers by using the fact that

In(X £iY) =lnV/X2+Y2+itan ' L (L)

To derive (L), let In(X £1¢Y) = U £ iV, with U and V real. Then U and V are to be determined by

VEV = X +4Y or eU(COSV +isinV) = X £4iY or eV cosV = X, eVsinV = Y. Dividing the last two

equations gives tanV = % and adding the squares of the last two equations together gives e?V = X2 + Y2,

Applying (L) with X =z + 1 and Y = 2 gives

(3 —L)In(z+1-2i)+ (3 + 3i) In(z + 1+ 2i) = (3 — i) (Va2 + 22+ 5 —itan™ ' —2;)
+(3+3) (Va2 +22+5+itan™! 2)

=va2+2x+5— %tanflﬁ_l

N
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