Centroid Example

Find the centroid of the region bounded by $y=\sin x, y=\cos x, x=0$ and $x=\frac{\pi}{4}$.
Solution. We apply the formulae that the coordinates of the centroid (=centre of mass assuming constant density) of the region with top $y=f(x)$, bottom $y=g(x)$, left hand side $x=a$ and right hand side $x=b$ are

$$
\bar{x}=\frac{\int_{a}^{b} x[f(x)-g(x)] d x}{\int_{a}^{b}[f(x)-g(x)] d x} \quad \bar{y}=\frac{\int_{a}^{b} \frac{1}{2}\left[f(x)^{2}-g(x)^{2}\right] d x}{\int_{a}^{b}[f(x)-g(x)] d x}
$$

Before we apply these formulae, we recall where they came from. Assume that the region has density one. Consider a thin vertical slice, of width $d x$, running from $(x, g(x))$ to $(x, f(x))$. It has area, and hence mass,

$[f(x)-g(x)] d x$. On this slice x is essentially constant. So the formula for \bar{x} is just the formula for the (weighted) average of x over the whole region. On the slice y runs from $g(x)$ to $f(x)$. The average value of y on the slice is $\frac{1}{2}[f(x)+g(x)]$. Because $\frac{1}{2}[f(x)+g(x)][f(x)-g(x)]=\frac{1}{2}\left[f(x)^{2}-g(x)^{2}\right]$, the formula for \bar{y} is the formula for the average of y over the whole region.

In the given problem, $a=0, b=\frac{\pi}{4}, f(x)=\cos x$ and $g(x)=\sin x$. Subbing these in to the denominator of the formulae for \bar{x} and \bar{y} gives

$$
\begin{aligned}
\int_{a}^{b}[f(x)-g(x)] d x & =\int_{0}^{\pi / 4}[\cos (x)-\sin (x)] d x=[\sin (x)+\cos (x)]_{0}^{\pi / 4} \\
& =\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]-[0+1]=\frac{2}{\sqrt{2}}-1=\sqrt{2}-1
\end{aligned}
$$

Subbing into the numerator of the formula for \bar{x} gives

$$
\int_{a}^{b} x[f(x)-g(x)] d x=\int_{0}^{\pi / 4} x[\cos (x)-\sin (x)] d x
$$

To integrate this, use integration by parts with $u=x$ and $d v=[\cos x-\sin x] d x$. So $d u=d x, v=\sin x+\cos x$ and

$$
\begin{aligned}
\int_{0}^{\pi / 4} x[\cos (x)-\sin (x)] d x & =\left.x[\sin x+\cos x]\right|_{0} ^{\pi / 4}-\int_{0}^{\pi / 4}[\sin (x)+\cos (x)] d x \\
& =\frac{\pi}{4}\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right]-[-\cos (x)+\sin (x)]_{0}^{\pi / 4} \\
& =\frac{2 \pi}{4 \sqrt{2}}-\left[\left(-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)-(-1+0)\right]=\frac{\pi}{2 \sqrt{2}}-1
\end{aligned}
$$

Finally, subbing into the numerator of the formula for \bar{y} gives

$$
\int_{a}^{b} \frac{1}{2}\left[f(x)^{2}-g(x)^{2}\right] d x=\int_{0}^{\pi / 4} \frac{1}{2}\left[\cos ^{2} x-\sin ^{2} x\right] d x=\int_{0}^{\pi / 4} \frac{1}{2} \cos (2 x) d x=\left[\frac{1}{4} \sin (2 x)\right]_{0}^{\pi / 4}=\frac{1}{4}
$$

Putting the formulae together

$$
\bar{x}=\frac{\int_{a}^{b} x[f(x)-g(x)] d x}{\int_{a}^{b}[f(x)-g(x)] d x}=\frac{\frac{\pi}{2 \sqrt{2}}-1}{\sqrt{2}-1} \quad \bar{y}=\frac{\int_{a}^{b} \frac{1}{2}\left[f(x)^{2}-g(x)^{2}\right] d x}{\int_{a}^{b}[f(x)-g(x)] d x}=\frac{\frac{1}{4}}{\sqrt{2}-1}
$$

