
Warnings

These notes highlight number of common, but serious, first year calculus errors.

Warning 1. The formula

lim
x→a

f(x)

g(x)
=

lim
x→a

f(x)

lim
x→a

g(x)

is valid only under the hypothesis lim
x→a

g(x) 6= 0.

Discussion. In some cases, when lim
x→a

g(x) = 0, the limit lim
x→a

f(x)
g(x) does not exist at all. But

in other cases it does exist and when it does, it can take any value at all. Here are two simple

examples. In both examples g(x) = x− a, which has the property that lim
x→a

g(x) = 0. In the

first example, lim
x→a

f(x)
g(x) does not exist at all (because f(x)

g(x) is huge and positive for x−a small

and positive and huge and negative for x− a small and negative). In the second it does exist

and takes the value 123.45.

f(x) = 1 g(x) = x− a ⇒ lim
x→a

f(x)
g(x) does not exist

f(x) = 123.45(x− a) g(x) = x− a ⇒ lim
x→a

f(x)
g(x) = lim

x→a

123.45(x−a)
x−a

= lim
x→a

123.45 = 123.45

Warning 2. L’Hôpital’s rule,

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

is not valid if the limit lim
x→a

g(x) exists and is nonzero.

Discussion. Here is an example with a = 0. If f(x) = 3x and g(x) = 4 + 5x, then

lim
x→0

f(x)
g(x) = lim

x→0

3x
4+5x = 3×0

4+5×0 = 0

lim
x→0

f ′(x)
g′(x)

= lim
x→0

3
5

= 3
5

Warning 3. d
dx
[f(a)] is not the same as f ′(a).

Discussion. The expression d
dx
[f(a)] is, by definition, the derivative of the constant function

g(x) = f(a). In other words, d
dx
[f(a)] means
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• first evaluate f(x) at x = a, to get a constant, f(a).

• Then differentiate the constant to get zero.

On the other hand, f ′(a) means

• first find the derivative f ′(x).

• Then evaluate the derivative at x = a. Typically, this is not zero.

Here is an example. Let f(x) = x + 1 and a = 1. Then f ′(x) = 1 for all x. In particular,

f ′(1) = 1. But if we first evaluate f(x) at x = 1, we get f(1) = 2. The derivative of the

constant function g(x) = 2 is g′(x) = 0.

1
x

y y = f(x) = x+ 1

y = g(x) = f(1) = 2

The two functions f(x) and f(1) (which I am also calling g(x) here) both take the value 1

when x = 1, but they have different slopes and hence have different derivatives: f ′(1) = 1

but d
dx
[f(1)] = d

dx
1 = 0.

Warning 4. The usual formula for the derivative of sinx, namely d
dx

sinx = cosx, is valid

only if x is measured in radians.

Discussion. Any derivative measures the instantaneous rate of change of one quantity per

unit change of a second quantity. If you change the units of either quantity, the numerical

value of the derivative changes. For example, consider the average rate of change of sinx as

x moves from 0 to a right angle. If x is measured in radians,

average rate of change =
change in sinx

change in x
=

1− 0
π
2 − 0

=
2

π

because sinx changes from 0 to 1 as x changes from 0 radians to π
2 radians. But, if x is

measured in degrees,

average rate of change =
change in sinx

change in x
=

1− 0

90− 0
=

1

90
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The two answers are different even though x moved from 0 to a right angle in both cases.

Here is a sample problem in which one gets the wrong answer by expressing an angle

in the wrong units. Suppose that you wish to compute, approximately, the sin of two degrees,

but that you can’t just use your calculator. (Pretend that you are the person designing the

software used by the calculator.) Recall that

f(x) ≈ f(x0) + f ′(x0)(x− x0)

gives an approximate value for f(x) for all x close to x0. Apply this approximation to

f(x) = sin(x) with x0 = 0. Then

f(x) = sinx f(x0) = f(0) = 0

f ′(x) = cosx f ′(x0) = f ′(0) = 1

so that sinx = f(x) ≈ f(x0)+ f ′(x0)(x−x0) = 0+1(x− 0) = x. If we apply this with x = 2

we get

sin 2 ≈ 2

which is both wrong and ridiculous, as sinx is never bigger than one in magnitude. The

problem arose because we used d
dx

sinx = cosx in the computation

f(x) ≈ f(x0) + f ′(x0)(x− x0) = 0 + 1(x− 0) = x

thereby implicitly assuming that x is in radians. We should have first rewritten 2◦ = 2 π
180

=

0.0349066 radians and then applied

sin(2◦) = sin(0.0349066 rad) ≈ [f(x0)+f ′(x0)(x−x0)]x=0.0349066 = x
∣

∣

x=0.0349066
= 0.0349066

For comparison purposes, the exact value of sin of 2 degrees is 0.0348995 to 7 decimal places.

Our rather simple minded approximation scheme gave an error of 0.0349066− 0.0348995 =

0.0000071, which is a relative error of 100 0.0000071
0.0348995% = 0.021%.

Warning 5. d
dx
ax is not the same as d

dx
xa.

Discussion. d
dx
f(x) is the rate of change of f(x) per unit change in x. In d

dx
ax, the exponent

changes as x changes, with the base, a, remaining fixed. In d
dx
xa, the base changes as x
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changes, with the exponent, a, remaining fixed. As a concrete example, suppose a = 4.

As x changes from 4 to 5,

◦ ax = 4x changes from 44 = 256 to 45 = 1024

⇒ the average rate of change of ax = 4x from x = 4 to x = 5 is 1024−256
5−4 = 768

◦ xa = x4 changes from 44 = 256 to 54 = 625

⇒ the average rate of change of xa = x4 from x = 4 to x = 5 is 625−256
5−4

= 369

The correct formulae for the instantaneous rates of change of ax and xa are

d
dx
ax = ln a ax d

dx
xa = axa−1

Warning 6. The slope of the curve y = f(x) at x = a is not f ′(x). It is f ′(a).

Discussion. Consider the problem “Find the tangent line to the curve y = x2 at the point

(1, 1)”. The tangent line is a straight line. Any straight line has only one slope. In this

case the slope of the tangent line is the same as the slope of y = x2 at x = 1, which is

d
dx
x2

∣

∣

x=1
= 2x

∣

∣

x=1
= 2. So the tangent line is y − 1 = 2(x− 1). If you negelect to evaluate

d
dx
x2 = 2x at x = 1, you get y − 1 = (2x)(x− 1) instead. This is not a straight line at all,

because as x changes the quantity you put in for the slope (2x) also changes. As you move

along a straight line, the slope is not allowed to change.
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