Trig Functions

Definitions

$\sin \theta=\frac{A}{C} \quad \cos \theta=\frac{B}{C} \quad \tan \theta=\frac{A}{B}$
$\csc \theta=\frac{C}{A} \quad \sec \theta=\frac{C}{B} \quad \cot \theta=\frac{B}{A}$

Radians

For use in calculus, angles are best measured in units called radians. By definition, an arc of length θ on a circle of radius one subtends an angle of θ radians at the center of the circle. Because the circumference of a circle of radius one is 2π, we have

Special Triangles

From the triangles above, we have

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
$0^{\circ}=0 \mathrm{rad}$	0	1	0		1	
$30^{\circ}=\frac{\pi}{6} \mathrm{rad}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$	$\sqrt{3}$
$45^{\circ}=\frac{\pi}{4} \mathrm{rad}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$60^{\circ}=\frac{\pi}{3} \mathrm{rad}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2	$\frac{1}{\sqrt{3}}$
$90^{\circ}=\frac{\pi}{2} \mathrm{rad}$	1	0		1		0
$180^{\circ}=\pi \mathrm{rad}$	0	-1	0		-1	

The empty boxes mean that the trig function is undefined (i.e. $\pm \infty$) for that angle.

Trig Identities - Elementary

The following identities are all immediate consequences of the definitions at the top of the previous page

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}
$$

Because 2π radians is 360°, the angles θ and $\theta+2 \pi$ are really the same, so

$$
\sin (\theta+2 \pi)=\sin \theta \quad \cos (\theta+2 \pi)=\cos \theta
$$

The following trig identities are consequences of the figure to their right.

$$
\begin{gathered}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\sin (-\theta)=-\sin (\theta) \quad \cos (-\theta)=\cos (\theta)
\end{gathered}
$$

The following trig identities are consequences of the figure to their left.

Trig Identities - Addition Formulae

The following trig identities are derived in the handout entitled "Trig Identities - Cosine law and Addition Formulae"

$$
\begin{aligned}
& \sin (x+y)=\sin x \cos y+\cos x \sin y \\
& \sin (x-y)=\sin x \cos y-\cos x \sin y \\
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& \cos (x-y)=\cos x \cos y+\sin x \sin y
\end{aligned}
$$

Setting $y=x$ gives

$$
\begin{aligned}
\sin (2 x) & =2 \sin x \cos x \\
\cos (2 x) & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& \\
& \text { since } \sin ^{2} x=1-\cos ^{2} x \\
& =2 \sin ^{2} x \quad
\end{aligned} \quad \text { since } \cos ^{2} x=1-\sin ^{2} x ~ \$ ~ l
$$

Solving $\cos (2 x)=2 \cos ^{2} x-1$ for $\cos ^{2} x$ and $\cos (2 x)=1-2 \sin ^{2} x$ for $\sin ^{2} x$ gives

$$
\begin{aligned}
& \cos ^{2} x=\frac{1+\cos (2 x)}{2} \\
& \sin ^{2} x=\frac{1-\cos (2 x)}{2}
\end{aligned}
$$

