Units and the Derivative of $\sin x$

Any derivative measures the rate of change of one quantity per unit change of a second quantity. If you change the units of either quantity, the numerical value of the derivative changes. For example, the speed of a car is given by the derivative $\frac{d x}{d t}$, where x is the position of the car and t is time. If x is measured in kilometers and t is measured in hours, one might have, for example, $\frac{d x}{d t}=60 \mathrm{~km} / \mathrm{hr}$. But if you decide to measure t in seconds rather than hours, the same vehicle moving at the same speed will have $\frac{d x}{d t}=60 \times \frac{1}{3600} \mathrm{~km} / \mathrm{sec}$.

As a second example, consider the average rate of change of $\sin x$ as x moves from 0 to a right angle. If x is measured in radians,

$$
\text { average rate of change }=\frac{\text { change in } \sin x}{\text { change in } x}=\frac{1-0}{\frac{\pi}{2}-0}=\frac{2}{\pi}
$$

because $\sin x$ changes from 0 to 1 as x changes from 0 radians to $\frac{\pi}{2}$ radians. But, if x is measured in degrees,

$$
\text { average rate of change }=\frac{\text { change in } \sin x}{\text { change in } x}=\frac{1-0}{90-0}=\frac{1}{90}
$$

The two answers are different even though x moved from 0 to a right angle in both cases. The usual formula that you have memorized for the derivative of $\sin x$, namely $\frac{d}{d x} \sin x=\cos x$, is valid only if x is measured in radians.
Problem. Find $\frac{d}{d x} \sin x$, if x is in degrees, rather than radians.
Solution 1. I think that the safest and clearest way to approach this problem is to give different names to the \sin of x degrees and the \sin of x radians. Of course, in the real world, nobody does this. Use $\operatorname{Sin}(x)$ to denote the \sin of x degrees and $\sin (x)$ to denote the \sin of x radians. Similarly, use $\operatorname{Cos}(x)$ to denote the \cos of x degrees and $\cos (x)$ to denote the \cos of x radians. For example, $\operatorname{Sin}(90)=\sin \left(\frac{\pi}{2}\right)=1$ and $\operatorname{Cos}(90)=\cos \left(\frac{\pi}{2}\right)=0$. In general, $\operatorname{Sin}(x)=\sin \left(\frac{\pi}{180} x\right)$. By definition,

$$
\begin{aligned}
\frac{d}{d x} \operatorname{Sin}(x) & =\lim _{h \rightarrow 0} \frac{\operatorname{Sin}(x+h)-\operatorname{Sin}(x)}{h}=\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{180}(x+h)\right)-\sin \left(\frac{\pi}{180} x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin \left(\frac{\pi}{180} x+\frac{\pi}{180} h\right)-\sin \left(\frac{\pi}{180} x\right)}{h}
\end{aligned}
$$

Set $H=\frac{\pi}{180} h$. Then

$$
\begin{aligned}
\frac{d}{d x} \operatorname{Sin}(x) & =\lim _{H \rightarrow 0} \frac{\sin \left(\frac{\pi}{180} x+H\right)-\sin \left(\frac{\pi}{180} x\right)}{\frac{180}{\pi} H}=\frac{\pi}{180} \lim _{H \rightarrow 0} \frac{\sin \left(\frac{\pi}{180} x+H\right)-\sin \left(\frac{\pi}{180} x\right)}{H} \\
& =\left.\frac{\pi}{180} \frac{d}{d t} \sin (t)\right|_{t=\frac{\pi}{180} x}=\frac{\pi}{180} \cos \left(\frac{\pi}{180} x\right)=\frac{\pi}{180} \operatorname{Cos}(x)
\end{aligned}
$$

Thus $\frac{d}{d x} \operatorname{Sin}(x)=\frac{\pi}{180} \operatorname{Cos}(x)$. Of course, people do not usually give separate names to $\operatorname{Sin}(x)$ and $\sin (x)$. So, it is also correct to say that

$$
\frac{d}{d x} \sin (x)=\frac{\pi}{180} \cos (x), \text { when } \sin (x) \text { and } \cos (x) \text { mean } \sin \text { and } \cos \text { of } x \text { degrees }
$$

Solution 2. Using the same notation as in Solution 1, $\operatorname{Sin}(x)=\sin \left(\frac{\pi}{180} x\right)$. So, by the chain rule, with $f(y)=\sin y$ and $g(x)=\frac{\pi}{180} x$,

$$
\frac{d}{d x} \operatorname{Sin}(x)=\frac{d}{d x} \sin \left(\frac{\pi}{180} x\right)=\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)=\cos \left(\frac{\pi}{180} x\right) \frac{\pi}{180}
$$

This is the same answer as we got in Solution 1.

