The Derivative of $\sin x$ at $x=0$

By definition, the derivative of $\sin x$ evaluated at $x=0$ is

$$
\lim _{h \rightarrow 0} \frac{\sin h-\sin 0}{h}=\lim _{h \rightarrow 0} \frac{\sin h}{h}
$$

The figure below contains a circle of radius 1. Recall that an arc of length h on such a circle subtends an angle of h radians at the center of the circle. So the darkened arc in the figure has length h and the darkened vertical line in the figure has length $\sin h$. We must determine what happens to the ratio of the lengths of the darkened vertical line and darkened arc as h tends to zero.

Here is a magnified version of the part of the above figure that contains the darkened arc and vertical line.

This particular figure has been drawn with $h=.4$ radians. Here are three more such blow ups. In each successive figure, I have used a smaller value of h. To make the figures clearer, the degree of magnification was increased each time h was decreased.

As we make h smaller and smaller and look at the figure with ever increasing magnification, the arc of length h and vertical line of length $\sin h$ look more and more alike. We would guess from this that

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=1
$$

The tables of values

h	$\sin h$	$\frac{\sin h}{h}$
0.4	.3894	.9735
0.2	.1987	.9934
0.1	.09983	.9983
0.05	.049979	.99958
0.01	.00999983	.999983
0.001	.0099999983	.9999983

h	$\sin h$	$\frac{\sin h}{h}$
-0.4	-.3894	.9735
-0.2	-.1987	.9934
-0.1	-.09983	.9983
-0.05	-.049979	.99958
-0.01	-.00999983	.999983
-0.001	-.0099999983	.9999983

suggest the same guess.

$$
\left.\frac{d}{d x} \sin x\right|_{x=0}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1
$$

Here is an argument that shows that the guess really is correct.
Proof that $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$:

The circle in the figure above has radius 1. Hence

$$
|O P|=|O R|=1 \quad|P S|=\sin h \quad|Q R|=\tan h
$$

The triangle $O P R$ had base 1 and height $\sin h$ and hence area $\frac{1}{2} \times 1 \times \sin h$. The triangle $O Q R$ had base 1 and height $\tan h$ and hence area $\frac{1}{2} \times 1 \times \tan h$. The piece of pie $O P R$ is the fraction $\frac{h}{2 \pi}$ of the whole circle, which has area $\pi 1^{2}$. So the piece of pie $O P R$ has area $\frac{h}{2 \pi} \times \pi 1^{2}=\frac{h}{2}$. The triangle $O P R$ is contained in and hence has smaller area than the piece of pie $O P R$, which in turn is contained in and hence has smaller area than the triangle $O Q R$. The inequalities stating this are

$$
\frac{1}{2} \sin h \leq \frac{h}{2} \leq \frac{1}{2} \tan h \quad \Longrightarrow \quad \sin h \leq h \leq \frac{\sin h}{\cos h} \quad \Longrightarrow \quad \cos h \leq \frac{\sin h}{h} \leq 1
$$

As h tends to $0, \cos h$ approaches one. Because $\frac{\sin h}{h}$ is sandwiched between $\cos h$ and 1 , it must also approach 1.

