Powers and Roots

The symbol x^{3} means $x \cdot x \cdot x$. More generally, if n is any strictly positive integer, then x^{n} means the product $\overbrace{x \cdot x \cdots x}^{n \text { factors }}$.

If x is a positive number, then $\sqrt{x}=x^{\frac{1}{2}}$ is used to denote the positive number that obeys $\sqrt{x} \sqrt{x}=x$. For example $2 \times 2=4$, so $\sqrt{4}=2$. The equation $x^{2}=137$ has two solutions. The positive one is denoted $\sqrt{137}$ and the negative one $-\sqrt{137}$. So the general solution to $x^{2}=137$ is $x= \pm \sqrt{137}$. It is possible to define the square root of a negative number. But this involves enlarging the real number system to the complex number system and will not be covered in this course.

If x is a positive number and n is a strictly positive integer, then $\sqrt[n]{x}=x^{\frac{1}{n}}$ is used to denote the positive number that obeys $(\sqrt[n]{x})^{n}=x$. For example $2 \cdot 2 \cdot 2 \cdot 2=16$ so $\sqrt[4]{16}=2$. Call

$$
p(x)=x^{n} \quad r(x)=x^{\frac{1}{n}}
$$

So p is the symbol for a machine (let's call it a powifier) that outputs x^{n} in response to the input x and r is the symbol for a machine (let's call it a rootifier) that outputs $x^{\frac{1}{n}}$ in response to the input x. If you put x into the input hopper of the rootifier you get the output $r(x)=\sqrt[n]{x}$. If you take this output of the rootifier and put it into the input hopper of the powifier, the output of the powifier will be

$$
p(r(x))=(r(x))^{n}=(\sqrt[n]{x})^{n}=x
$$

The last equality was a consequence of the definition of $\sqrt[n]{x}$. Similarly, if you feed x into the powifer first and then feed the resulting output into the rootifier, the output of the rootifier is

$$
r(p(x))=\sqrt[n]{p(x)}=\sqrt[n]{x^{n}}=x
$$

The equations $r(p(x))=p(r(x))=x$ say that the rootifier undoes whatever the powifier does and vice versa. Consequently, p and r are called inverse functions.

Because p and r are inverse functions, it is very easy to convert the graph of $p(x)$ into the graph of $r(x)$. Here is how. Graph $y=x^{n}$. Observe that if $\left(x_{0}, y_{0}\right)$ is any point on the graph, then x_{0} and y_{0} are related by $y_{0}=x_{0}^{n}$. Consequently, by the definition of the $n^{\text {th }}$ root, $x_{0}=\sqrt[n]{y_{0}}$.

Now redraw the same graph, but this time flip it over so that the y-axis runs horizontally and the x-axis runs vertically. This is a little unorthodox, but perfectly legal.

Then replace every x with a Y and every Y with an X.

Any point on the curve has its X and Y coordinates related by $Y=\sqrt[n]{X}$. So the curve is the graph of $\sqrt[n]{X}$ against X.

