Long Division of Polynomials

Suppose that $P(x)$ is a polynomial of degree p and suppose that you know that r is a root of that polynomial. In other words, suppose you know that $P(r)=0$. Then it is always possible to factor $(x-r)$ out of $P(x)$. More precisely, it is alway possible to find a polynomial $Q(x)$ of degree $p-1$ such that

$$
P(x)=(x-r) Q(x)
$$

In sufficiently simple cases, you can probably do this factoring by inspection. For example, $P(x)=x^{2}-4$ has $r=2$ as a root because $P(2)=2^{2}-4=0$. In this case, $P(x)=(x-2)(x+2)$ so that $Q(x)=(x+2)$. As another example, $P(x)=x^{2}-2 x-3$ has $r=-1$ as a root because $P(-1)=(-1)^{2}-2(-1)-3=1+2-3=0$. In this case, $P(x)=(x+1)(x-3)$ so that $Q(x)=(x-3)$.

Once you have found a root r of a polynomial, even if you cannot factor $(x-r)$ out of the polynomial by inspection, you can find $Q(x)$ by dividing $P(x)$ by $x-r$, using the long division algorithm you learned in public school, but with 10 replaced by x.

Example. $P(x)=x^{3}-x^{2}+2$.
Because $P(-1)=(-1)^{3}-(-1)^{2}+2=-1-1+2=0, r=-1$ is a root of this polynomial. So we divide $\frac{x^{3}-x^{2}+2}{x+1}$. The first term, x^{2}, in the quotient is chosen so that when you multiply it by the denominator, $x^{2}(x+1)=x^{3}+x^{2}$, the leading term, x^{3}, matches the leading term in the numerator, $x^{3}-x^{2}+2$, exactly.

$$
\begin{array}{l|l}
& x^{2} \\
x+1 & x^{3}-x^{2}+ \\
& x^{3}+x^{2}
\end{array}
$$

When you subtract $x^{2}(x+1)=x^{3}+x^{2}$ from the numerator $x^{3}-x^{2}+2$ you get the remainder $-2 x^{2}+2$. Just like in public school, the 2 is not normally "brought down" until it is actually needed.

$$
\begin{aligned}
& x^{2} \\
& \\
& x^{3}-x^{2}+2 \\
& \frac{x^{3}+x^{2}}{-2 x^{2}}
\end{aligned}
$$

The next term, $-2 x$, in the quotient is chosen so that when you multiply it by the denominator, $-2 x(x+1)=$ $-2 x^{2}-2 x$, the leading term $-2 x^{2}$ matches the leading term in the remainder exactly.

$$
\begin{array}{rlr}
& x^{2}-2 x \\
\hline x+1 & x^{3}-x^{2}+ & 2 \\
& \frac{x^{3}+x^{2}}{-2 x^{2}} & \\
& -2 x^{2}-2 x
\end{array}
$$

And so on.

$$
\begin{aligned}
& x^{2}-2 x+2 \\
x+1 & x^{3}-x^{2}+ \\
& \frac{x^{3}+x^{2}}{-2 x^{2}} \\
& \frac{-2 x^{2}-2 x}{2 x+2} \\
& \frac{2 x+2}{0}
\end{aligned}
$$

Note that we finally end up with a remainder 0 . Since -1 is a root of the numerator, $x^{3}-x^{2}+2$, the denominator $x-(-1)$ must divide the numerator exactly.

There is an alternative to long division that involves more writing. In the previous example, we know
that $\frac{x^{3}-x^{2}+2}{x+1}$ must be a polynomial (since -1 is a root of the numerator) of degree 2 . So

$$
\frac{x^{3}-x^{2}+2}{x+1}=a x^{2}+b x+c
$$

for some, as yet unknown, coefficients a, b and c. Cross multiplying and simplifying

$$
\begin{aligned}
x^{3}-x^{2}+2 & =\left(a x^{2}+b x+c\right)(x+1) \\
& =a x^{3}+(a+b) x^{2}+(b+c) x+c
\end{aligned}
$$

Matching coefficients of the various powers of x on the left and right hand sides

$$
\begin{aligned}
\text { coefficient of } x^{3}: & & a & =1 \\
& \text { coefficient of } x^{2}: & & a+b
\end{aligned}=-1
$$

tells us directly that $a=1$ and $c=2$. Subbing $a=1$ into $a+b=-1$ tells us that $1+b=-1$ and hence $b=-2$.

