Derivatives of Exponentials

Fix any $a>0$. The definition of the derivative of a^{x} is

$$
\frac{d}{d x} a^{x}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h}=\lim _{h \rightarrow 0} a^{x} \frac{a^{h}-1}{h}=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=C(a) a^{x}
$$

where we are using $C(a)$ to denote the coefficient $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}$ that appears in the derivative. This coefficient does not depend on x. So, at this stage, we know, for example, that $\frac{d}{d x} 2^{x}$ is 2^{x} times some fixed number $C(2)$. We will eventually get a formula for $C(a)$. For now, we just try to get an idea of what $C(a)$ looks like by computing $\frac{a^{h}-1}{h}$ for various values of a and various small values of h. Here is a table of such values. The second row has $a=2$. So it contains a number of values of $\frac{2^{h}-1}{h}$ for various values of h. For example, the table entry in the row labeled 2 and column labeled 0.001 is $\frac{2^{0.001}-1}{0.001}=0.6933874$.

$$
\frac{a^{h}-1}{h}
$$

$a h$	0.1	0.01	0.001	0.0001	0.00001
1	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
2	0.7177346	0.6955550	0.6933874	0.6931712	0.6931494
3	1.1612317	1.1046692	1.0992160	1.0986726	1.0986181
4	1.4869836	1.3959480	1.3872557	1.3863905	1.3863038
10	2.5892541	2.3292992	2.3052381	2.3028502	2.3026115

Observe that, if you fix $a=2$ (i.e. look at the second row) and make h smaller and smaller (i.e. move to the right along row 2), the first four decimal places of the table entries appear to stabilize at 0.6931. So it looks like $C(2)=0.6931$, to four decimal places, and consequently $\frac{d}{d x} 2^{x}=0.6931 \times 2^{x}$.

Similarly, it looks like $C(1)=0, C(3)=1.0986, C(4)=1.3863, C(10)=2.3026$. One can use a computer to estimate $C(a)$, like this, for many different values of a and thereby plot the graph of $C(a)$ against a. Here it is

Observe that

- $C(1)=0$. We did not need the graph to see this: $1^{h}=1$ for all h. Consequently, $C(1)=$ $\lim _{h \rightarrow 0} \frac{\frac{1}{}^{h}-1}{h}=\lim _{h \rightarrow 0} \frac{1-1}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0$.
- $C(a)$ increases as a increases.
- There is exactly one value of a for which $C(a)=1$. See the following figure.

The value of a for which $C(a)=1$ is given the name e. That is, e is defined by the condition $C(e)=1$, or equivalently, by the condition that $\frac{d}{d x} e^{x}=e^{x}$.

From the graph, it looks like e is roughly $2 \frac{3}{4}$. We can determine e to a much greater degree of accuracy using Newton's method. Recall that Newton's method is an algorithm for finding approximate solutions to equations of the form $f(a)=0$. The algorithm is
step 1: Make a first guess a_{1}.
step 2: Construct a second guess by applying the formula $a_{2}=a_{1}-\frac{f\left(a_{1}\right)}{f^{\prime}\left(a_{1}\right)}$.
step 3: Construct a third guess by applying the formula $a_{3}=a_{2}-\frac{f\left(a_{2}\right)}{f^{\prime}\left(a_{2}\right)}$.
and so on. In general, the $n+1^{\text {st }}$ guess is constructed from the $n^{\text {th }}$ guess by applying the formula $a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}$. Usually, as n increases, a_{n} very quickly approaches a solution of $f(a)=0$.

In the present case, $f(x)=C(x)-1$ and

$$
f^{\prime}(x)=C^{\prime}(x)=\lim _{h \rightarrow 0} \frac{d}{d x} \frac{x^{h}-1}{h}=\lim _{h \rightarrow 0} \frac{h x^{h-1}}{h}=\lim _{h \rightarrow 0} x^{h-1}=\frac{1}{x}
$$

so

$$
a_{n+1}=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}=a_{n}-\frac{\left[C\left(a_{n}\right)-1\right]}{1 / a_{n}}=a_{n}-a_{n}\left[C\left(a_{n}\right)-1\right]=a_{n}\left[2-C\left(a_{n}\right)\right]
$$

Of course, because we cannot compute $C(a)$ exactly, we cannot apply $a_{n+1}=a_{n}\left[2-C\left(a_{n}\right)\right]$ exactly as it stands. But we can approximate $C\left(a_{n}\right)=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}$ by taking a very small value of h, like $h=0.000001$. Starting with $a_{1}=3$,

$$
\begin{aligned}
& a_{2}=a_{1}\left[2-C\left(a_{1}\right)\right] \approx 3\left[2-\frac{3^{0.000001}-1}{0.000001}\right]=2.70416 \\
& a_{3}=a_{2}\left[2-C\left(a_{2}\right)\right] \approx a_{2}\left[2-\frac{a_{2}^{0.0000001}-1}{0.000001}\right]=2.71824 \\
& a_{4}=a_{3}\left[2-C\left(a_{3}\right)\right] \approx a_{3}\left[2-\frac{a_{3}^{0.0000001}-1}{0.000001}\right]=2.71828 \\
& a_{5}=a_{4}\left[2-C\left(a_{4}\right)\right] \approx a_{4}\left[2-\frac{a_{4}^{0.000001}-1}{0.000001}\right]=2.71828
\end{aligned}
$$

It looks like the solution of $C(a)=1$, which we have named e, is about 2.71828. To check this, here is another table of values of $\frac{a^{h}-1}{h}$, this time with $a=2.718275$ and $a=2.718285$.
$\frac{a^{h}-1}{h}$

$a \quad h$	0.000001	0.0000001	0.00000001	0.000000001
2.718275	0.9999980	0.9999975	0.9999975	0.9999974
2.718285	1.0000017	1.0000012	1.0000012	1.0000012

The table suggests that $C(2.718275)$ is a little smaller than 1 and $C(2.718285)$ is a little larger than 1 , so that e is between 2.718275 and 2.718285 .

