## The Chain Rule

## Question

You are walking. Your position at time $x$ is $g(x)$. Your are walking in an environment in which the air temperature depends on position. The temperature at position $y$ is $f(y)$. What instantaneous rate of change of temperature do you feel at time $x$ ?

Because your position at time $x$ is $y=g(x)$, the temperature you feel at time $x$ is $F(x)=f(g(x))$. The instantaneous rate of change of temperature that you feel is $F^{\prime}(x)$. We have a complicated function $F(x)$, constructed from two simple functions, $g(x)$ and $f(y)$. We wish to compute the derivative, $F^{\prime}(x)$, of the complicated function in terms of the derivatives, $g^{\prime}(x)$ and $f^{\prime}(y)$, of the two simple functions. This is exactly what the chain rule does.

## The Chain Rule

$$
\text { If } F(x)=f(g(x)), \text { then } F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

## Special Cases

a) If $f(y)=y^{n}$, then $f^{\prime}(y)=n y^{n-1}, f(g(x))=g(x)^{n}$ and $f^{\prime}(g(x)) g^{\prime}(x)=n g(x)^{n-1} g^{\prime}(x)$. So

$$
\frac{d}{d x} g(x)^{n}=n g(x)^{n-1} g^{\prime}(x)
$$

b) If $f(y)=\sin y$, then $f^{\prime}(y)=\cos y, f(g(x))=\sin (g(x))$ and $f^{\prime}(g(x)) g^{\prime}(x)=$ $\cos (g(x)) g^{\prime}(x)$. So

$$
\frac{d}{d x} \sin (g(x))=\cos (g(x)) g^{\prime}(x)
$$

Similarly

$$
\frac{d}{d x} \cos (g(x))=-\sin (g(x)) g^{\prime}(x)
$$

## Units

In the question posed above, $x$ has units of seconds, $g(x)$ has units of meters, $y$ has units of meters and $f(y)$ has units of degrees. Consequently, $F(x)=f(g(x))$ has units of degrees, $F^{\prime}(x)$ has units $\frac{\text { degrees }}{\text { second }}, f^{\prime}(y)$ has units $\frac{\text { degrees }}{\text { meter }}$ and $g^{\prime}(x)$ has units $\frac{\text { meters }}{\text { second }}$. Thus
$f^{\prime}(g(x)) g^{\prime}(x)$ has units $\frac{\text { degrees }}{\text { meter }} \times \frac{\text { meters }}{\text { second }}=\frac{\text { degrees }}{\text { second }}$ which is the same as the units of $F^{\prime}(x)$. This of course does not prove that $F^{\prime}(x)$ and $f^{\prime}(g(x)) g^{\prime}(x)$ are the same. But it does provide a consistency check.

## Derivation of the Chain Rule

Our goal is to evaluate

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h}
$$

in terms of

$$
f^{\prime}(y)=\lim _{H \rightarrow 0} \frac{f(y+H)-f(y)}{H} \quad \text { and } \quad g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}
$$

The limit we wish to evaluate looks almost like the limit defining $f^{\prime}(y)$ if we choose $y=g(x)$ :

$$
f^{\prime}(g(x))=\lim _{H \rightarrow 0} \frac{f(g(x)+H)-f(g(x))}{H}
$$

We know the answer to the limit $\lim _{H \rightarrow 0} \frac{f(g(x)+H)-f(g(x))}{H}$ and we wish to compute the limit $\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h}$. We can make the numerators of the two limits identical just by defining

$$
H=g(x+h)-g(x)
$$

Substituting this in, and observing that $H$ tends to zero as $h$ tends to zero,

$$
\begin{aligned}
f^{\prime}(g(x)) & =\lim _{H \rightarrow 0} \frac{f(g(x)+H)-f(g(x))}{H}=\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)} \\
& =\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \frac{1}{\frac{g(x+h)-g(x)}{h}} \\
& =\lim _{h \rightarrow 0} \frac{1}{\frac{g(x+h)-g(x)}{h}} \lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h} \\
& =\frac{1}{g^{\prime}(x)} \lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h}
\end{aligned}
$$

Cross multiplying by $g^{\prime}(x)$ gives

$$
\lim _{h \rightarrow 0} \frac{f(g(x+h))-f(g(x))}{h}=f^{\prime}(g(x)) g^{\prime}(x)
$$

which is the chain rule.

