Derivation of the Telegraph Equation

Model an infinitesmal piece of telegraph wire as an electrical circuit which consists of a resistor of resistance $R d x$ and a coil of inductance $L d x$. If $i(x, t)$ is the current through the wire, the voltage across the resistor is $i R d x$ while that across the coil is $\frac{\partial i}{\partial t} L d x$. Denoting by $u(x, t)$ the voltage at position x and time t, we have that the change in voltage between the ends of the piece of wire is

$$
d u=-i R d x-\frac{\partial i}{\partial t} L d x
$$

Suppose further that current can escape from the wire to ground, either through a resistor of conductance $G d x$ or through a capacitor of capacitance $C d x$. The amount that escapes through the resistor is $u G d x$.

Because the charge on the capacitor is $q=u C d x$, the amount that escapes from the capacitor is $q_{t}=u_{t} C d x$. In total

$$
d i=-u G d x-u_{t} C d x
$$

Dividing by $d x$ and taking the limit $d x \searrow 0$ we get the differential equations

$$
\begin{array}{r}
u_{x}+R i+L i_{t}=0 \\
C u_{t}+G u+i_{x}=0 \tag{2}
\end{array}
$$

Solving (2) for i_{x} gives $i_{x}=-C u_{t}-G u$. Substituting this and its consequence $i_{x t}=-C u_{t t}-G u_{t}$ into $\frac{\partial}{\partial x}(1)$, which is $u_{x x}+R i_{x}+L i_{x t}=0$, gives

$$
u_{x x}+R\left(-C u_{t}-G u\right)+L\left(-C u_{t t}-G u_{t}\right)=0
$$

Dividing by $L C$ and moving some terms to the other side of the equation gives

$$
\frac{1}{L C} u_{x x}=u_{t t}+\left(\frac{R}{L}+\frac{G}{C}\right) u_{t}+\frac{G R}{L C} u
$$

Renaming some constants, we get the telegraph equation

$$
u_{t t}+(\alpha+\beta) u_{t}+\alpha \beta u=c^{2} u_{x x}
$$

where

$$
c^{2}=\frac{1}{L C} \quad \alpha=\frac{G}{C} \quad \beta=\frac{R}{L}
$$

