# Planetary Motion 

with Corrections from General Relativity

Let $\mathbf{r}(t)$ be the position at time $t$ of a planet (approximated by a point mass, $m$ ) in orbit around a sun (also approximated by a point mass, $M$ ) whose position is fixed at the origin. According to Newton's law of gravity

$$
\begin{equation*}
m \mathbf{r}^{\prime \prime}(t)=-\frac{G M m}{|\mathbf{r}|^{3}} \mathbf{r} \tag{1}
\end{equation*}
$$

where $G$ is the usual gravitational constant.
It is possible to considerably simplify (1). The first simplication is a consequence of the fact that (1) is a central force law. That is, the force $-\frac{G M m}{|\mathbf{r}|^{3}} \mathbf{r}$ is always parallel to the radius vector $\mathbf{r}$. For all solutions $\mathbf{r}(t)$ of all central force laws, $m \mathbf{r}^{\prime \prime}=f(\mathbf{r}) \mathbf{r}$, the angular momentum $\mathbf{a}(t)=m \mathbf{r}(t) \times \mathbf{r}^{\prime}(t)$ is independent of $t$. To see this, it suffices to observe that the time derivative

$$
\frac{d \mathbf{a}}{d t}=\frac{d}{d t} m \mathbf{r} \times \mathbf{r}^{\prime}=m \mathbf{r}^{\prime} \times \mathbf{r}^{\prime}+m \mathbf{r} \times \mathbf{r}^{\prime \prime}=m \mathbf{r}^{\prime} \times \mathbf{r}^{\prime}+m f(\mathbf{r}) \mathbf{r} \times \mathbf{r}
$$

is always zero, because $\mathbf{v} \times \mathbf{v}=0$ for all vectors $\mathbf{v}$. Consequently, for all $t, \mathbf{r}(t)$ is perpendicular to the fixed vector $\mathbf{a}$. In other words $\mathbf{r}(t)$ lies in a fixed plane, for all $t$. We may as well choose our coordinate system so that it is the $x-y$ plane. That is the first simplification.

The second simplification is achieved by switching to polar coordinates and writing

$$
\begin{align*}
\mathbf{r}(t) & =r(t)(\cos \theta(t), \sin \theta(t)) \\
\mathbf{r}^{\prime}(t) & =r^{\prime}(t)(\cos \theta(t), \sin \theta(t))+r(t) \theta^{\prime}(t)(-\sin \theta(t), \cos \theta(t)) \\
\mathbf{r}^{\prime \prime}(t) & =\left[r^{\prime \prime}(t)-r(t) \theta^{\prime}(t)^{2}\right](\cos \theta(t), \sin \theta(t))+\left[2 r^{\prime}(t) \theta^{\prime}(t)+r(t) \theta^{\prime \prime}(t)\right](-\sin \theta(t), \cos \theta(t)) \tag{2}
\end{align*}
$$

Substituting (2) into (1) gives

$$
m\left[r^{\prime \prime}-r \theta^{\prime 2}\right](\cos \theta, \sin \theta)+\left[2 r^{\prime} \theta^{\prime}+r \theta^{\prime \prime}\right](-\sin \theta, \cos \theta)=-\frac{G M m}{r^{2}}(\cos \theta, \sin \theta)
$$

matching coefficients of $(\cos \theta, \sin \theta)$ on the left and right hand sides and then matching coefficients of $(-\sin \theta(t), \cos \theta(t))$ on the left and right hand sides gives

$$
\begin{align*}
m\left[r^{\prime \prime}-r \theta^{2}\right] & =-\frac{G M m}{r^{2}}  \tag{3a}\\
2 r^{\prime} \theta^{\prime}+r \theta^{\prime \prime} & =0 \tag{3b}
\end{align*}
$$

In fact (3b) is redundant with conservation of angular mometum. Since $(\cos \theta(t), \sin \theta(t)) \times$ $(\cos \theta(t), \sin \theta(t))=0$ and $(\cos \theta(t), \sin \theta(t)) \times(-\sin \theta(t), \cos \theta(t))$ is the unit vector $\widehat{\mathbf{k}}$ along the $z$-axis, the angular momentum

$$
\mathbf{a}(t)=m \mathbf{r}(t) \times \mathbf{r}^{\prime}(t)=m r(t)^{2} \theta^{\prime}(t) \widehat{\mathbf{k}}
$$

and conservation of angular momentum implies that

$$
\begin{equation*}
r(t)^{2} \theta^{\prime}(t)=\frac{l}{m} \tag{4}
\end{equation*}
$$

where $l$ is the constant magnitude of the angular momentum vector a. Differentiating (4) with respect to $t$ and multiplying by $r$ gives (3b). We can use (4) to eliminate the $\theta^{\prime}$ in (3a)

$$
\begin{equation*}
r^{\prime \prime}-\frac{l^{2}}{m^{2} r^{3}}=-\frac{G M}{r^{2}} \tag{5}
\end{equation*}
$$

In general relativity (see Misner, Thorne and Wheeler, Gravitation, page 656) this is modified to

$$
\begin{equation*}
r^{\prime \prime}-\frac{l^{2}}{m^{2} r^{3}}=-\frac{G M}{r^{2}}\left(1+\frac{3 l^{2}}{m^{2} c^{2}|\mathbf{r}|^{2}}\right) \tag{6}
\end{equation*}
$$

assuming that the planet is moving slowly compared to the speed $c$ of light.
The final simplification is another change of variables. Replace $r$ by $u=\frac{1}{r}$ and think of $u$ as being a function of $\theta$, which in turn is a function of $t$. That is

$$
\begin{aligned}
r(t) & =\frac{1}{u(\theta(t))} \\
r^{\prime}(t) & =-\frac{1}{u(\theta(t))^{2}} \frac{d u}{d \theta}(\theta(t)) \theta^{\prime}(t)=-r(t)^{2} \theta^{\prime}(t) \frac{d u}{d \theta}(\theta(t))=-\frac{l}{m} \frac{d u}{d \theta}(\theta(t)) \quad \text { by }(4) \\
r^{\prime \prime}(t) & =-\frac{l}{m} \frac{d^{2} u}{d \theta^{2}}(\theta(t)) \theta^{\prime}(t)=-\frac{l}{m} \frac{l}{m r^{2}} \frac{d^{2} u}{d \theta^{2}}=-\frac{l^{2}}{m^{2}} u^{2} \frac{d^{2} u}{d \theta^{2}}
\end{aligned}
$$

Substituting this into (6) gives

$$
-\frac{l^{2}}{m^{2}} u^{2} \frac{d^{2} u}{d \theta^{2}}-\frac{l^{2}}{m^{2}} u^{3}=-G M u^{2}\left(1+\frac{3 l^{2}}{m^{2} c^{2}} u^{2}\right)
$$

Multiplying through by $-\frac{m^{2}}{l^{2} u^{2}}$ gives

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{G M m^{2}}{l^{2}}+\frac{3 G M}{c^{2}} u^{2}
$$

