Planetary Motion

with Corrections from General Relativity

Let $\mathbf{r}(t)$ be the position at time t of a planet (approximated by a point mass, m) in orbit around a sun (also approximated by a point mass, M) whose position is fixed at the origin. According to Newton's law of gravity

$$m\mathbf{r}''(t) = -\frac{GMm}{|\mathbf{r}|^3}\mathbf{r} \tag{1}$$

where G is the usual gravitational constant.

It is possible to considerably simplify (1). The first simplication is a consequence of the fact that (1) is a central force law. That is, the force $-\frac{GMm}{|\mathbf{r}|^3}\mathbf{r}$ is always parallel to the radius vector \mathbf{r} . For all solutions $\mathbf{r}(t)$ of all central force laws, $m\mathbf{r}'' = f(\mathbf{r})\mathbf{r}$, the angular momentum $\mathbf{a}(t) = m\mathbf{r}(t) \times \mathbf{r}'(t)$ is independent of t. To see this, it suffices to observe that the time derivative

$$\frac{d\mathbf{a}}{dt} = \frac{d}{dt}m\mathbf{r} \times \mathbf{r}' = m\mathbf{r}' \times \mathbf{r}' + m\mathbf{r} \times \mathbf{r}'' = m\mathbf{r}' \times \mathbf{r}' + mf(\mathbf{r})\mathbf{r} \times \mathbf{r}'$$

is always zero, because $\mathbf{v} \times \mathbf{v} = 0$ for all vectors \mathbf{v} . Consequently, for all t, $\mathbf{r}(t)$ is perpendicular to the fixed vector \mathbf{a} . In other words $\mathbf{r}(t)$ lies in a fixed plane, for all t. We may as well choose our coordinate system so that it is the x-y plane. That is the first simplification.

The second simplification is achieved by switching to polar coordinates and writing $\mathbf{r}(t) = r(t) (\cos \theta(t), \sin \theta(t))$

$$\mathbf{r}'(t) = r'(t) \left(\cos \theta(t), \sin \theta(t)\right) + r(t)\theta'(t) \left(-\sin \theta(t), \cos \theta(t)\right)$$

$$\mathbf{r}''(t) = \left[r''(t) - r(t)\theta'(t)^2\right] \left(\cos\theta(t), \sin\theta(t)\right) + \left[2r'(t)\theta'(t) + r(t)\theta''(t)\right] \left(-\sin\theta(t), \cos\theta(t)\right)$$
(2)

Substituting (2) into (1) gives

$$m[r'' - r\theta'^2] (\cos \theta, \sin \theta) + [2r'\theta' + r\theta''] (-\sin \theta, \cos \theta) = -\frac{GMm}{r^2} (\cos \theta, \sin \theta)$$

matching coefficients of $(\cos \theta, \sin \theta)$ on the left and right hand sides and then matching coefficients of $(-\sin \theta(t), \cos \theta(t))$ on the left and right hand sides gives

$$m[r'' - r\theta'^2] = -\frac{GMm}{r^2} \tag{3a}$$

$$2r'\theta' + r\theta'' = 0 \tag{3b}$$

In fact (3b) is redundant with conservation of angular mometum. Since $(\cos \theta(t), \sin \theta(t)) \times (\cos \theta(t), \sin \theta(t)) = 0$ and $(\cos \theta(t), \sin \theta(t)) \times (-\sin \theta(t), \cos \theta(t))$ is the unit vector $\hat{\mathbf{k}}$ along the z-axis, the angular momentum

$$\mathbf{a}(t) = m\mathbf{r}(t) \times \mathbf{r}'(t) = mr(t)^2 \theta'(t) \hat{\mathbf{k}}$$

and conservation of angular momentum implies that

$$r(t)^2 \theta'(t) = \frac{l}{m} \tag{4}$$

where l is the constant magnitude of the angular momentum vector \mathbf{a} . Differentiating (4) with respect to t and multiplying by r gives (3b). We can use (4) to eliminate the θ' in (3a)

$$r'' - \frac{l^2}{m^2 r^3} = -\frac{GM}{r^2} \tag{5}$$

In general relativity (see Misner, Thorne and Wheeler, *Gravitation*, page 656) this is modified to

$$r'' - \frac{l^2}{m^2 r^3} = -\frac{GM}{r^2} \left(1 + \frac{3l^2}{m^2 c^2 |\mathbf{r}|^2} \right) \tag{6}$$

assuming that the planet is moving slowly compared to the speed c of light.

The final simplification is another change of variables. Replace r by $u = \frac{1}{r}$ and think of u as being a function of θ , which in turn is a function of t. That is

$$r(t) = \frac{1}{u(\theta(t))}$$

$$r'(t) = -\frac{1}{u(\theta(t))^2} \frac{du}{d\theta}(\theta(t))\theta'(t) = -r(t)^2 \theta'(t) \frac{du}{d\theta}(\theta(t)) = -\frac{l}{m} \frac{du}{d\theta}(\theta(t)) \qquad \text{by (4)}$$

$$r''(t) = -\frac{l}{m} \frac{d^2u}{d\theta^2}(\theta(t))\theta'(t) = -\frac{l}{m} \frac{l}{mr^2} \frac{d^2u}{d\theta^2} = -\frac{l^2}{m^2} u^2 \frac{d^2u}{d\theta^2}$$

Substituting this into (6) gives

$$-\frac{l^2}{m^2}u^2\frac{d^2u}{d\theta^2} - \frac{l^2}{m^2}u^3 = -GMu^2\left(1 + \frac{3l^2}{m^2c^2}u^2\right)$$

Multiplying through by $-\frac{m^2}{l^2u^2}$ gives

$$\frac{d^2u}{d\theta^2} + u = \frac{GMm^2}{l^2} + \frac{3GM}{c^2}u^2$$