| 5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems 5.3: Complex Exponential 5.4: Polar Representation 00000000 000                         |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Outline                                                                                                                                                  | Notes |
| Week 9: complex numbers; complex exponential and polar form                                                                                              |       |
|                                                                                                                                                          |       |
| Course Notes: 5.1, 5.2, 5.3, 5.4                                                                                                                         |       |
|                                                                                                                                                          |       |
| Goals: Fluency with arithmetic on complex numbers                                                                                                        |       |
| Using matrices with complex entries: finding determinants and inverses, solving systems, etc.                                                            |       |
| Visualizing complex numbers in coordinate systems                                                                                                        |       |
|                                                                                                                                                          |       |
|                                                                                                                                                          |       |
|                                                                                                                                                          |       |
|                                                                                                                                                          |       |
| 5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems 5.3: Complex Exponential 5.4: Polar Representation 0000000 0000000000000000000000000000 |       |
| Complex Arithmetic                                                                                                                                       | Notes |
| i                                                                                                                                                        |       |
| We use $i$ (as in "imaginary") to denote the number whose square is $-1$ .                                                                               |       |
| When we talk about "complex numbers," we allow numbers to                                                                                                |       |
| have real parts and imaginary parts: $2+3i \qquad \qquad -1 \qquad \qquad 2i$                                                                            |       |
| imaginary<br>                                                                                                                                            |       |
| 3+ $2+3i$                                                                                                                                                |       |
|                                                                                                                                                          |       |
|                                                                                                                                                          |       |
| real 2                                                                                                                                                   |       |
| _                                                                                                                                                        |       |
|                                                                                                                                                          |       |
|                                                                                                                                                          |       |
| 5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems 5.3: Complex Exponential 5.4: Polar Representation 0000000 Complex Arithmetic           | Notes |
|                                                                                                                                                          |       |
| Addition happens component-wise, just like with vectors or polynomials.                                                                                  |       |
|                                                                                                                                                          |       |
|                                                                                                                                                          |       |
|                                                                                                                                                          |       |
|                                                                                                                                                          |       |

# Complex Arithmetic

Multiplication is similar to polynomials.

A: 
$$(-4+3i)+(1-i)$$

B: 
$$i(2+3i)$$

C: 
$$(i+1)(i-1)$$

D: 
$$(2i+3)(i+4)$$

### Notes

### 5.1: Complex Arithme

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponentia

tial 5.4: Polar Repre

# Complex Arithmetic

#### Modulus

The **modulus** of (x + yi) is:

$$|x + yi| = \sqrt{x^2 + y^2}$$

like the norm/length/magnitude of a vector.

### Complex Conjugate

The **complex conjugate** of (x + yi) is:

$$\overline{x + yi} = x - yi$$

the reflection of the vector over the real (x) axis.

#### Notes

# 

$$|x+yi| = \sqrt{x^2 + y^2} \qquad \overline{x+yi} = x - yi$$

# Complex Arithmetic

$$\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$$

Compute:

000000

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

# Polynomial Factorizations

#### Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example:  $x^2+1=x^2-(-1)=x^2-i^2=(x-i)(x+i)$   $f(x)=x^2+1$  has no real roots, but it has two complex roots. It is not factorable over  $\mathbb R$ , but it is factorable over  $\mathbb C$ 

5.1: Complex Arithmeti

5.2. Complex Matrices and Linear System

5.3: Complex Exponential

5.4: Polar Representation

# Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

$$\det\begin{bmatrix} 1+i & 1-i \\ 2 & i \end{bmatrix} =$$

$$\det\begin{bmatrix}1&2&3\\i&4&3i\\1+i&2-i&5\end{bmatrix}=$$

#### Notes

| - |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

Notes

# Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

$$ix_1 + x_2 + 2x_3 = 0$$
  
 $ix_2 + 3x_3 = 0$   
 $2ix_1 + (2-i)x_2 + x_3 = 0$ 

Solve the following system of equations:

$$ix_1 + 2x_2 = 9$$
  
 $3x_1 + (1+i)x_2 = 5+8i$ 

Find the inverse of the matrix  $\begin{bmatrix} i & 1 \\ 2 & 3i \end{bmatrix}$ 

0000000

5.2: Complex Matrices and Linear System

5.3: Complex Exponential

5.4: Polar Representation

#### Exponentials

What to do when *i* is the power of a function? Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \cdots$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots$$

$$= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \frac{x^6}{6!} \cdots$$

$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)$$

$$= \cos x + i\sin x$$

5.1: Complex Arithme

2: Complex Matrices and Linear System

5.3: Complex Exponentia

5.4: Polar Representation

# Does that even make sense?

$$e^{ix} = \cos x + i \sin x$$

$$\frac{d}{dx}[e^{ax}] = ae^{ax};$$

$$e^{x+y}=e^xe^y;$$

#### Notes

Notes

# Computation Practice

$$e^{ix} = \cos x + i \sin x$$

Evaluate:

 $e^{\frac{\pi i}{2}}$ 

 $e^{2+i}$ 

 $\sqrt{2}e^{\frac{\pi i}{4}}$ 

 $2^i$ 

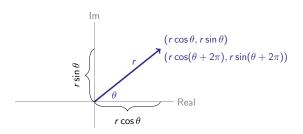
 $e^{\pi i} + 1$ 

 $|e^{xi}|$ , where x is real.

# 

Complex exponentiation:  $e^{ix} = \cos x + i \sin x$ 

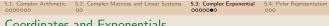
Let x be a real number. True or False?


(1) 
$$e^x = \cos x$$

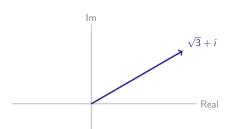
(2) 
$$e^{ix} = e^{i(x+2\pi)}$$

(3) 
$$e^{ix} = -e^{i(x+\pi)}$$

(4) 
$$e^{ix} + e^{-ix}$$
 is a real number


# Coordinates Revisited

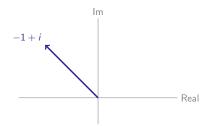



Complex number :  $r(\cos \theta + i \sin \theta) = re^{i\theta} = re^{i(\theta + 2\pi)}$ 

#### Notes

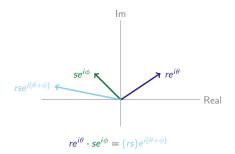
Notes




# Coordinates and Exponentials



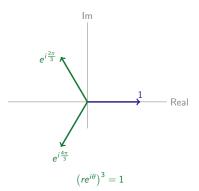
#### Notes


| - |  |
|---|--|
|   |  |
| - |  |
|   |  |

# Coordinates and Exponentials



# Notes


Coordinates and Multiplication



 $\label{lem:Geometric interpretation of multiplication of two complex numbers: \\$ add the angles, multiply the lengths (moduli).



# Roots of Unity



# Roots

Find all complex numbers z such that  $z^3=8$ . 2,  $e^{\frac{2\pi i}{3}}$ ,  $2e^{\frac{4\pi i}{3}}$ 

Find all complex numbers z such that  $z^3=27e^{\frac{i\pi}{2}}.$   $3e^{\frac{\pi i}{6}},~3e^{\frac{5\pi i}{6}},~3e^{\frac{3\pi i}{2}}$ 

Find all complex numbers z such that  $z^4=81e^{2i}$ .  $3e^{\frac{i}{2}}$ ,  $3e^{\frac{(1+2\pi)i}{2}}$ ,  $3e^{\frac{(1+3\pi)i}{2}}$ 

| Notes |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
| Notes |  |