```
\begin{array} { l l l l } { \text { 5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems 5.3: Complex Exponential 5.4: Polar Representation} } \end{array}
```

Outline

Week 9: complex numbers; complex exponential and polar form

Course Notes: 5.1, 5.2, 5.3, 5.4

Goals:
Fluency with arithmetic on complex numbers
Using matrices with complex entries: finding determinants and
inverses, solving systems, etc.
Visualizing complex numbers in coordinate systems

5.1: Complex Arithmetic $0 \cdot 00000$		ex Matrices and Linear Systems	5.3: Complex Exponential 0000000	5.4: Polar Representation 000

Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{lllll}\text { 5.1: Complex Arithmetic } & \text { 5.2: Complex Matrices and Linear Systems } & \text { 5.3: Complex Exponential } & \text { 5.4: Polar Representation }\end{array}$
Complex Arithmetic
Notes

Multiplication is similar to polynomials.

	I: 0
A: $(-4+3 i)+(1-i)$	II: -1
B: $i(2+3 i)$	III: -2
C: $(i+1)(i-1)$	IV: $2 \mathrm{i}+12$
D: $(2 i+3)(i+4)$	V: $: 3+2 \mathrm{i}$
	VI: $3+2 \mathrm{i}$
	VII: $10+11 \mathrm{i}$

Modulus
The modulus of $(x+y i)$ is:

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

like the norm/length/magnitude of a vector.

Complex Conjugate
The complex conjugate of $(x+y i)$ is:

$$
\overline{x+y i}=x-y i
$$

the reflection of the vector over the real (x) axis

| 5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems 5.3: Complex Exponential
 oin 5.4: Polar Representation
 00000000 | | |
| :--- | :--- | :--- | :--- |
| Complex Arithmetic | | |

$$
|x+y i|=\sqrt{x^{2}+y^{2}} \quad \overline{x+y i}=x-y i
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

```
5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems 5.3: Complex Exponential 5.4: Polar Representation
```

Complex Arithmetic
Notes

$$
\frac{z}{w}=\frac{z \bar{w}}{|w|^{2}}
$$

Compute:

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$
$f(x)=x^{2}+1$ has no real roots, but it has two complex roots
It is not factorable over \mathbb{R}, but it is factorable over \mathbb{C}

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
00000000			

Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

$$
\begin{array}{r}
\operatorname{det}\left[\begin{array}{cc}
1+i & 1-i \\
2 & i
\end{array}\right]= \\
\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & 3 \\
i & 4 & 3 i \\
1+i & 2-i & 5
\end{array}\right]=
\end{array}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

$i x_{1}+\quad x_{2}+2 x_{3}$	$=0$
$i x_{2}+3 x_{3}$	$=0$
$2 i x_{1}+(2-i) x_{2}+x_{3}$	$=0$

Solve the following system of equations:

$$
\begin{array}{rlrr}
i x_{1}+r & 2 x_{2} & = & 9 \\
3 x_{1}+(1+i) x_{2} & = & 5+8 i
\end{array}
$$

Find the inverse of the matrix $\left[\begin{array}{cc}i & 1 \\ 2 & 3 i\end{array}\right]$

$\begin{array}{lllll}\text { 5.1: Complex Arithmetic } & \text { 5.2: Complex Matrices and Linear Systems } & \text { 5.3: Complex Exponential } & \text { 5.4: Polar Representation } \\ \text { 0000000 } & \text { 0000000 } & & & \end{array}$
 Exponentials

What to do when i is the power of a function ?
Maclaurin (Taylor) Series: (you wont be assessed on this explanation)

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots \\
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\cdots \\
=1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}-\frac{x^{6}}{6!} \cdots \\
=\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right) \\
=\cos x+i \sin x
\end{gathered}
$$

$$
\begin{aligned}
& e^{i x}=\cos x+i \sin x \\
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} ; \\
& e^{x+y}=e^{x} e^{y} ;
\end{aligned}
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]$$
e^{i x}=\cos x+i \sin x
$$

Evaluate:
$e^{\frac{\pi i}{2}}$
e^{2+i}
$\sqrt{2} e^{\frac{\pi i}{4}}$
2^{i}
$e^{\pi i}+1$
$\left|e^{x i}\right|$, where x is real.

Complex exponentiation: $e^{i x}=\cos x+i \sin x$

Let x be a real number.
True or False?
(1) $e^{x}=\cos x$
(2) $e^{i x}=e^{i(x+2 \pi)}$
(3) $e^{i x}=-e^{i(x+\pi)}$
(4) $e^{i x}+e^{-i x}$ is a real number

| 5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems 5.3: Complex Exponential
 0000000 5.4: Polar Representation
 000000 000 | | |
| :--- | :--- | :--- | :--- |
| Coordinates Revisited | | |

Complex number : $r(\cos \theta+i \sin \theta)=r e^{i \theta}=r e^{i(\theta+2 \pi)}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Coordinates and Exponentials

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{llll}\text { 5.1: Complex Arithmetic } & \text { 5.2: Complex Matrices and Linear Systems } & \text { 5.3: Complex Exponential } & \text { 5.4: Polar Representation } \\ 0000000000000000 & 0000\end{array}$
Roots of Unity

$\left(r e^{i \theta}\right)^{3}=1$
$\begin{array}{llll}\text { 5.1: Complex Arithmetic } & \text { 5.2: Complex Matrices and Linear Systems } & \text { 5.3: Complex Exponential } & \text { 5.4: Polar Representation }\end{array}$ Roots

Find all complex numbers z such that $z^{3}=8$.
2, $e^{\frac{2 \pi i}{3}}, 2 e^{\frac{4 \pi i}{3}}$

Find all complex numbers z such that $z^{3}=27 e^{\frac{i \pi}{2}}$.
$3 e^{\frac{\pi i}{6}}, 3 e^{\frac{5 \pi i}{6}}, 3 e^{\frac{3 \pi i}{2}}$

Find all complex numbers z such that $z^{4}=81 e^{2 i}$
$3 e^{\frac{i}{2}}, 3 e^{\frac{(1+\pi) i}{2}}, 3 e^{\frac{(1+2 \pi) i}{2}}, 3 e^{\frac{(1+3 \pi) i}{2}}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: (

