Outline

Week 9: complex numbers; complex exponential and polar form

Course Notes: 5.1, 5.2, 5.3, 5.4

Goals:
Fluency with arithmetic on complex numbers
Using matrices with complex entries: finding determinants and inverses, solving systems, etc.
Visualizing complex numbers in coordinate systems

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

$$
i^{2}=-1
$$

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

$$
i^{2}=-1 \quad(-i)^{2}=
$$

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

$$
i^{2}=-1 \quad(-i)^{2}=-1
$$

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

$$
i^{2}=-1 \quad(-i)^{2}=-1 \quad i^{3}=
$$

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

$$
i^{2}=-1 \quad(-i)^{2}=-1 \quad i^{3}=-i
$$

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

$$
i^{2}=-1 \quad(-i)^{2}=-1 \quad i^{3}=-i \quad i^{4}=
$$

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

$$
i^{2}=-1 \quad(-i)^{2}=-1 \quad i^{3}=-i \quad i^{4}=1
$$

Complex Arithmetic

i
We use i (as in "imaginary") to denote the number whose square is -1 .

$$
i^{2}=-1 \quad(-i)^{2}=-1 \quad i^{3}=-i \quad i^{4}=1
$$

When we talk about "complex numbers," we allow numbers to have real parts and imaginary parts:

$$
2+3 i \quad-1 \quad 2 i
$$

Complex Arithmetic

5.1: Complex Arithmetic

imaginary

5.1: Complex Arithmetic

Complex Arithmetic

$$
\begin{array}{ccc}
2+3 i & -1 & 2 i \\
& \text { imaginary } &
\end{array}
$$

5.1: Complex Arithmetic 000000

Complex Arithmetic

$$
\begin{array}{ccc}
2+3 i & -1 & 2 i \\
& \text { imaginary } &
\end{array}
$$

Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.

Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.
$(2+3 i)+(3-4 i)=$

> imaginary

Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.
$(2+3 i)+(3-4 i)=5-i$
imaginary

Complex Arithmetic

Multiplication is similar to polynomials.

Complex Arithmetic

Multiplication is similar to polynomials.
$(2+3 i)(3-4 i)=$

Complex Arithmetic

Multiplication is similar to polynomials.
$(2+3 i)(3-4 i)=2 \cdot 3+3 i \cdot 3+(2)(-4 i)+(3 i)(-4 i)$

Complex Arithmetic

Multiplication is similar to polynomials.

$$
\begin{aligned}
& (2+3 i)(3-4 i)=2 \cdot 3+3 i \cdot 3+(2)(-4 i)+(3 i)(-4 i) \\
& =6+9 i-8 i+12
\end{aligned}
$$

Complex Arithmetic

Multiplication is similar to polynomials.

$$
\begin{aligned}
& (2+3 i)(3-4 i)=2 \cdot 3+3 i \cdot 3+(2)(-4 i)+(3 i)(-4 i) \\
& =6+9 i-8 i+12=18+i
\end{aligned}
$$

Complex Arithmetic

Multiplication is similar to polynomials.

$$
\begin{aligned}
& (2+3 i)(3-4 i)=2 \cdot 3+3 i \cdot 3+(2)(-4 i)+(3 i)(-4 i) \\
& =6+9 i-8 i+12=18+i
\end{aligned}
$$

I: 0

$$
\begin{aligned}
\text { A: }(-4+3 i)+(1-i) & \text { II: }-1 \\
\text { B: } i(2+3 i) & \text { III: }-2
\end{aligned}
$$

$$
\mathrm{IV}: 2 \mathrm{i}+12
$$

$$
\mathrm{C}:(i+1)(i-1)
$$

$$
V:-3+2 i
$$

$$
\mathrm{D}:(2 i+3)(i+4)
$$

VI: $3+2 \mathrm{i}$
VII: $10+11 \mathrm{i}$

Complex Arithmetic

Multiplication is similar to polynomials.

$$
\begin{aligned}
& (2+3 i)(3-4 i)=2 \cdot 3+3 i \cdot 3+(2)(-4 i)+(3 i)(-4 i) \\
& =6+9 i-8 i+12=18+i
\end{aligned}
$$

I: 0

$$
\begin{array}{cc}
\text { A: }(-4+3 i)+(1-i) & \text { II: }-1 \\
\text { B: } i(2+3 i)^{\prime} & \text { III: }-2 \\
\text { C: }(i+1)(i-1) & \text { VIV: } 2 \mathrm{i}+12 \\
\text { D: }(2 i+3)(i+4) & \text { VII } 10+2 i
\end{array}
$$

Complex Arithmetic

Modulus
The modulus of $(x+y i)$ is:

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

like the norm/length/magnitude of a vector.

Complex Arithmetic

Modulus

The modulus of $(x+y i)$ is:

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

like the norm/length/magnitude of a vector.

Complex Conjugate
The complex conjugate of $(x+y i)$ is:

$$
\overline{x+y i}=x-y i
$$

the reflection of the vector over the real (x) axis.

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Suppose $z=x+y i$ and $w=a+b i$. Calculate the following.

- $z-\bar{z}$
- $z+\bar{z}$
- $z \bar{z}-|z|^{2}$
- $\overline{z w}-(\bar{z})(\bar{w})$

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Suppose $z=x+y i$ and $w=a+b i$. Calculate the following.

- $z-\bar{z}=2 y i \quad y$ is called the imaginary part of z
- $z+\bar{z}$
- $z \bar{z}-|z|^{2}$
- $\overline{z w}-(\bar{z})(\bar{w})$

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Suppose $z=x+y i$ and $w=a+b i$. Calculate the following.

- $z-\bar{z}=2 y i$ y is called the imaginary part of z
- $z+\bar{z}=2 x \quad x$ is called the real part of z
- $z \bar{z}-|z|^{2}$
- $\overline{z w}-(\bar{z})(\bar{w})$

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Suppose $z=x+y i$ and $w=a+b i$. Calculate the following.

- $z-\bar{z}=2 y i$
y is called the imaginary part of z
- $z+\bar{z}=2 x$ x is called the real part of z
- $z \bar{z}-|z|^{2}=0$

$$
\text { So, } z \bar{z}=|z|^{2}
$$

- $\overline{z w}-(\bar{z})(\bar{w})$

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Suppose $z=x+y i$ and $w=a+b i$. Calculate the following.

- $z-\bar{z}=2 y i$
y is called the imaginary part of z
- $z+\bar{z}=2 x \quad x$ is called the real part of z
- $z \bar{z}-|z|^{2}=0$

$$
\text { So, } z \bar{z}=|z|^{2}
$$

- $\overline{z w}-(\bar{z})(\bar{w})=0$

$$
\text { So, } \overline{z w}=\bar{z} \bar{w}
$$

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Suppose $z=x+y i$ and $w=a+b i$. Calculate the following.

- $z-\bar{z}=2 y i \quad y$ is called the imaginary part of z
- $z+\bar{z}=2 x \quad x$ is called the real part of z
- $z \bar{z}-|z|^{2}=0 \quad$ So, $z \bar{z}=|z|^{2}$
- $\overline{z w}-(\bar{z})(\bar{w})=0 \quad$ So, $\overline{z w}=\bar{z} \bar{w}$

Division

$$
\frac{z}{w}=
$$

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Suppose $z=x+y i$ and $w=a+b i$. Calculate the following.

- $z-\bar{z}=2 y i \quad y$ is called the imaginary part of z
- $z+\bar{z}=2 x \quad x$ is called the real part of z
- $z \bar{z}-|z|^{2}=0 \quad$ So, $z \bar{z}=|z|^{2}$
- $\overline{z w}-(\bar{z})(\bar{w})=0 \quad$ So, $\overline{z w}=\bar{z} \bar{w}$

Division

$$
\frac{z}{w}=\frac{z}{w} \cdot \frac{\bar{w}}{\bar{w}}
$$

Complex Arithmetic

$$
|x+y i|=\sqrt{x^{2}+y^{2}}
$$

$$
\overline{x+y i}=x-y i
$$

Suppose $z=x+y i$ and $w=a+b i$. Calculate the following.

- $z-\bar{z}=2 y i \quad y$ is called the imaginary part of z
- $z+\bar{z}=2 x \quad x$ is called the real part of z
- $z \bar{z}-|z|^{2}=0 \quad$ So, $z \bar{z}=|z|^{2}$
- $\overline{z w}-(\bar{z})(\bar{w})=0 \quad$ So, $\overline{z w}=\bar{z} \bar{w}$

Division

$$
\frac{z}{w}=\frac{z}{w} \cdot \frac{\bar{w}}{\bar{w}}=\frac{z \bar{w}}{|w|^{2}}
$$

Complex Arithmetic

$$
\frac{z}{w}=\frac{z \bar{w}}{|w|^{2}}
$$

Complex Arithmetic

$$
\frac{z}{w}=\frac{z \bar{w}}{|w|^{2}}
$$

Compute:

- $\frac{2+3 i}{3+4 i}$
- $\frac{1+3 i}{1-3 i}$
- $\frac{2}{1+i}$
- $\frac{5}{i}$

Complex Arithmetic

$$
\frac{z}{w}=\frac{z \bar{w}}{|w|^{2}}
$$

Compute:

- $\frac{2+3 i}{3+4 i}=\frac{18}{25}+\frac{1}{25} i$
- $\frac{1+3 i}{1-3 i}$
- $\frac{2}{1+i}$
- $\frac{5}{i}$

Complex Arithmetic

$$
\frac{z}{w}=\frac{z \bar{w}}{|w|^{2}}
$$

Compute:

- $\frac{2+3 i}{3+4 i}=\frac{18}{25}+\frac{1}{25} i$
- $\frac{1+3 i}{1-3 i}=\frac{-4}{5}+\frac{3}{5} i$
- $\frac{2}{1+i}$
- $\frac{5}{i}$

Complex Arithmetic

$$
\frac{z}{w}=\frac{z \bar{w}}{|w|^{2}}
$$

Compute:

- $\frac{2+3 i}{3+4 i}=\frac{18}{25}+\frac{1}{25} i$
- $\frac{1+3 i}{1-3 i}=\frac{-4}{5}+\frac{3}{5} i$
- $\frac{2}{1+i}=1-i$
- $\frac{5}{i}$

Complex Arithmetic

$$
\frac{z}{w}=\frac{z \bar{w}}{|w|^{2}}
$$

Compute:

- $\frac{2+3 i}{3+4 i}=\frac{18}{25}+\frac{1}{25} i$
- $\frac{1+3 i}{1-3 i}=\frac{-4}{5}+\frac{3}{5} i$
- $\frac{2}{1+i}=1-i$
- $\frac{5}{i}=-5 i \quad$ (dividing by i is the same as multiplying by $-i$)

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=$

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}$

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$ $f(x)=x^{2}+1$ has no real roots, but it has two complex roots.

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$ $f(x)=x^{2}+1$ has no real roots, but it has two complex roots.
It is not factorable over \mathbb{R}, but it is factorable over \mathbb{C}

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$ $f(x)=x^{2}+1$ has no real roots, but it has two complex roots.
It is not factorable over \mathbb{R}, but it is factorable over \mathbb{C}
Example: $x^{2}+2 x+10=$

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$ $f(x)=x^{2}+1$ has no real roots, but it has two complex roots. It is not factorable over \mathbb{R}, but it is factorable over \mathbb{C}

Example: $x^{2}+2 x+10=(x+1+3 i)(x+1-3 i)$

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$ $f(x)=x^{2}+1$ has no real roots, but it has two complex roots.
It is not factorable over \mathbb{R}, but it is factorable over \mathbb{C}

Example: $x^{2}+2 x+10=(x+1+3 i)(x+1-3 i)$
If a quadratic equation has roots a and b, then it can be written as
$c(x-a)(x-b)$

Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$ $f(x)=x^{2}+1$ has no real roots, but it has two complex roots.
It is not factorable over \mathbb{R}, but it is factorable over \mathbb{C}

Example: $x^{2}+2 x+10=(x+1+3 i)(x+1-3 i)$
If a quadratic equation has roots a and b, then it can be written as
$c(x-a)(x-b)$
Example: $x^{2}+4 x+5=$

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^{2}+1=x^{2}-(-1)=x^{2}-i^{2}=(x-i)(x+i)$ $f(x)=x^{2}+1$ has no real roots, but it has two complex roots.
It is not factorable over \mathbb{R}, but it is factorable over \mathbb{C}

Example: $x^{2}+2 x+10=(x+1+3 i)(x+1-3 i)$
If a quadratic equation has roots a and b, then it can be written as $c(x-a)(x-b)$

Example: $x^{2}+4 x+5=(x+2+i)(x+2-i)$

Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

$$
\operatorname{det}\left[\begin{array}{cc}
1+i & 1-i \\
2 & i
\end{array}\right]
$$

Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

$$
\operatorname{det}\left[\begin{array}{cc}
1+i & 1-i \\
2 & i
\end{array}\right]=(1+i)(i)-(1-i)(2)=
$$

Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

$$
\operatorname{det}\left[\begin{array}{cc}
1+i & 1-i \\
2 & i
\end{array}\right]=(1+i)(i)-(1-i)(2)=-3+3 i
$$

Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
1+i & 1-i \\
2 & i
\end{array}\right]=(1+i)(i)-(1-i)(2)=-3+3 i \\
\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & 3 \\
i & 4 & 3 i \\
1+i & 2-i & 5
\end{array}\right]
\end{gathered}
$$

Calculating Determinants

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
1+i & 1-i \\
2 & i
\end{array}\right]=(1+i)(i)-(1-i)(2)=-3+3 i \\
\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & 3 \\
i & 4 & 3 i \\
1+i & 2-i & 5
\end{array}\right]=2-16 i
\end{gathered}
$$

Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

$$
\begin{aligned}
i x_{1}+\quad x_{2}+2 x_{3} & =0 \\
i x_{2}+3 x_{3} & =0 \\
2 i x_{1}+(2-i) x_{2}+x_{3} & =0
\end{aligned}
$$

Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

$i x_{1}+\quad x_{2}+2 x_{3}$	$=0$
$i x_{2}+3 x_{3}$	$=0$
$2 i x_{1}+(2-i) x_{2}+x_{3}$	$=0$

Solve the following system of equations:

$$
\begin{array}{rlrr}
i x_{1}+ & 2 x_{2} & = & 9 \\
3 x_{1}+(1+i) x_{2} & = & 5+8 i
\end{array}
$$

Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

$i x_{1}+$$x_{2}$$+2 x_{3}$	$=0$
$i x_{2}+3 x_{3}$	$=0$
$2 i x_{1}+(2-i) x_{2}+x_{3}$	$=0$

Solve the following system of equations:

$$
\begin{array}{rlrr}
i x_{1}+ & 2 x_{2} & = & 9 \\
3 x_{1}+(1+i) x_{2} & = & 5+8 i
\end{array}
$$

Find the inverse of the matrix $\left[\begin{array}{cc}i & 1 \\ 2 & 3 i\end{array}\right]$

Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

$i x_{1}+\quad x_{2}+2 x_{3}$	$=0$
$i x_{2}+3 x_{3}$	$=0$
$2 i x_{1}+(2-i) x_{2}+x_{3}$	$=0$

$\left[x_{1}, x_{2}, x_{3}\right]=s[-3+2 i, 3 i, 1]$
Solve the following system of equations:

$$
\begin{array}{rlrr}
i x_{1}+ & 2 x_{2} & = & 9 \\
3 x_{1}+(1+i) x_{2} & = & 5+8 i
\end{array}
$$

Find the inverse of the matrix $\left[\begin{array}{cc}i & 1 \\ 2 & 3 i\end{array}\right]$

Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

$$
\begin{aligned}
i x_{1}+\quad x_{2}+2 x_{3} & =0 \\
i x_{2}+3 x_{3} & =0 \\
2 i x_{1}+(2-i) x_{2}+x_{3} & =0
\end{aligned}
$$

$$
\left[x_{1}, x_{2}, x_{3}\right]=s[-3+2 i, 3 i, 1]
$$

Solve the following system of equations:

$$
\begin{array}{rlrrr}
i x_{1}+ & 2 x_{2} & = & 9 \\
3 x_{1} & + & (1+i) x_{2} & = & 5+8 i
\end{array}
$$

$x_{1}=i, x_{2}=5$
Find the inverse of the matrix $\left[\begin{array}{cc}i & 1 \\ 2 & 3 i\end{array}\right]$

Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

$$
\begin{aligned}
i x_{1}+\quad x_{2}+2 x_{3} & =0 \\
i x_{2}+3 x_{3} & =0 \\
2 i x_{1}+(2-i) x_{2}+x_{3} & =0
\end{aligned}
$$

$$
\left[x_{1}, x_{2}, x_{3}\right]=s[-3+2 i, 3 i, 1]
$$

Solve the following system of equations:

$$
\begin{array}{rlrr}
i x_{1}+ & 2 x_{2} & = & 9 \\
3 x_{1}+(1+i) x_{2} & = & 5+8 i
\end{array}
$$

$x_{1}=i, x_{2}=5$
Find the inverse of the matrix $\left[\begin{array}{cc}i & 1 \\ 2 & 3 i\end{array}\right] \quad\left[\begin{array}{cc}-3 \\ 5 & \frac{1}{5} \\ \frac{2}{5} & -\frac{1}{5} i\end{array}\right]$

Exponentials

What to do when i is the power of a function?

Exponentials

What to do when i is the power of a function?
Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots
$$

We know how to do the operations on the right

Exponentials

What to do when i is the power of a function?
Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots
$$

We know how to do the operations on the right

$$
e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\cdots
$$

Exponentials

What to do when i is the power of a function?
Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots
$$

We know how to do the operations on the right

$$
\begin{aligned}
e^{i x} & =1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\cdots \\
& =1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}-\frac{x^{6}}{6!} \cdots
\end{aligned}
$$

Exponentials

What to do when i is the power of a function?
Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots
$$

$$
\begin{aligned}
e^{i x} & =1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\cdots \\
& =1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}-\frac{x^{6}}{6!} \cdots \\
& =\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)
\end{aligned}
$$

Exponentials

What to do when i is the power of a function?
Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots \\
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\cdots \\
=1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}-\frac{x^{6}}{6!} \cdots \\
=\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)
\end{gathered}
$$

Exponentials

What to do when i is the power of a function?
Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\cdots \\
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
e^{i x}=1+i x+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\frac{(i x)^{5}}{5!}+\frac{(i x)^{6}}{6!}+\cdots \\
=1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}-\frac{x^{6}}{6!} \cdots \\
=\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)+i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right) \\
=\cos x+i \sin x
\end{gathered}
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\frac{d}{d x}\left[e^{a x}\right]=a e^{a x} ;
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} \\
& \frac{d}{d x}\left[e^{i x}\right]
\end{aligned}
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} \\
& \frac{d}{d x}\left[e^{i x}\right]=\frac{d}{d x}[\cos x+i \sin x]
\end{aligned}
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} \\
& \frac{d}{d x}\left[e^{i x}\right]=\frac{d}{d x}[\cos x+i \sin x] \\
& \quad=-\sin x+i \cos x=i^{2} \sin x+i \cos x=i(\cos x+i \sin x)=i e^{i x}
\end{aligned}
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} \\
& \frac{d}{d x}\left[e^{i x}\right]=\frac{d}{d x}[\cos x+i \sin x] \\
& \quad=-\sin x+i \cos x=i^{2} \sin x+i \cos x=i(\cos x+i \sin x)=i e^{i x} \\
& e^{x+y}=e^{x} e^{y}
\end{aligned}
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} \\
& \frac{d}{d x}\left[e^{i x}\right]=\frac{d}{d x}[\cos x+i \sin x] \\
& \quad=-\sin x+i \cos x=i^{2} \sin x+i \cos x=i(\cos x+i \sin x)=i e^{i x} \\
& e^{x+y}=e^{x} e^{y} \\
& e^{i x+i y}=
\end{aligned}
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} \\
& \frac{d}{d x}\left[e^{i x}\right]=\frac{d}{d x}[\cos x+i \sin x] \\
& \quad=-\sin x+i \cos x=i^{2} \sin x+i \cos x=i(\cos x+i \sin x)=i e^{i x} \\
& e^{x+y}=e^{x} e^{y} ; \\
& e^{i x+i y}=e^{i(x+y)}=\cos (x+y)+i \sin (x+y)
\end{aligned}
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} \\
& \frac{d}{d x}\left[e^{i x}\right]=\frac{d}{d x}[\cos x+i \sin x] \\
& \quad=-\sin x+i \cos x=i^{2} \sin x+i \cos x=i(\cos x+i \sin x)=i e^{i x} \\
& e^{x+y}=e^{x} e^{y} \\
& e^{i x+i y}=e^{i(x+y)}=\cos (x+y)+i \sin (x+y) \\
& \quad=\cos x \cos y-\sin x \sin y+i[\sin x \cos y+\cos x \sin y]
\end{aligned}
$$

Does that even make sense?

$$
e^{i x}=\cos x+i \sin x
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[e^{a x}\right]=a e^{a x} \\
& \frac{d}{d x}\left[e^{i x}\right]=\frac{d}{d x}[\cos x+i \sin x] \\
& \quad=-\sin x+i \cos x=i^{2} \sin x+i \cos x=i(\cos x+i \sin x)=i e^{i x} \\
& e^{x+y}=e^{x} e^{y} \\
& e^{i x+i y}=e^{i(x+y)}=\cos (x+y)+i \sin (x+y) \\
& \quad=\cos x \cos y-\sin x \sin y+i[\sin x \cos y+\cos x \sin y] \\
& \quad=(\cos x+i \sin y)(\cos y+i \sin x)=e^{i x} e^{i y}
\end{aligned}
$$

Computation Practice

$$
e^{i x}=\cos x+i \sin x
$$

Evaluate:
$e^{\frac{\pi i}{2}}$
e^{2+i}
$\sqrt{2} e^{\frac{\pi i}{4}}$
2^{i}
$e^{\pi i}+1$
$\left|e^{x i}\right|$, where x is any real number.

Computation Practice

$$
e^{i x}=\cos x+i \sin x
$$

Evaluate:
$e^{\frac{\pi i}{2}}=i$
e^{2+i}
$\sqrt{2} e^{\frac{\pi i}{4}}$
2^{i}
$e^{\pi i}+1$
$\left|e^{x i}\right|$, where x is any real number.

Computation Practice

$$
e^{i x}=\cos x+i \sin x
$$

Evaluate:
$e^{\frac{\pi i}{2}}=i$
$e^{2+i}=e^{2}(\cos 1+i \sin 1)$
$\sqrt{2} e^{\frac{\pi i}{4}}$
2^{i}
$e^{\pi i}+1$
$\left|e^{x i}\right|$, where x is any real number.

Computation Practice

$$
e^{i x}=\cos x+i \sin x
$$

Evaluate:
$e^{\frac{\pi i}{2}}=i$
$e^{2+i}=e^{2}(\cos 1+i \sin 1)$
$\sqrt{2} e^{\frac{\pi i}{4}}=i+1$
2^{i}
$e^{\pi i}+1$
$\left|e^{x i}\right|$, where x is any real number.

Computation Practice

$$
e^{i x}=\cos x+i \sin x
$$

Evaluate:
$e^{\frac{\pi i}{2}}=i$
$e^{2+i}=e^{2}(\cos 1+i \sin 1)$
$\sqrt{2} e^{\frac{\pi i}{4}}=i+1$
$2^{i}=e^{i \ln 2}=\cos (\ln 2)+i \sin (\ln 2)$
$e^{\pi i}+1$
$\left|e^{x i}\right|$, where x is any real number.

Computation Practice

$$
e^{i x}=\cos x+i \sin x
$$

Evaluate:
$e^{\frac{\pi i}{2}}=i$
$e^{2+i}=e^{2}(\cos 1+i \sin 1)$
$\sqrt{2} e^{\frac{\pi i}{4}}=i+1$
$2^{i}=e^{i \ln 2}=\cos (\ln 2)+i \sin (\ln 2)$
$e^{\pi i}+1=0$ (Euler's Identity)
$\left|e^{x i}\right|$, where x is any real number.

Computation Practice

$$
e^{i x}=\cos x+i \sin x
$$

Evaluate:
$e^{\frac{\pi i}{2}}=i$
$e^{2+i}=e^{2}(\cos 1+i \sin 1)$
$\sqrt{2} e^{\frac{\pi i}{4}}=i+1$
$2^{i}=e^{i \ln 2}=\cos (\ln 2)+i \sin (\ln 2)$
$e^{\pi i}+1=0$ (Euler's Identity)
$\left|e^{x i}\right|$, where x is any real number. $=1$

Complex exponentiation: $e^{i x}=\cos x+i \sin x$

Let x be a real number.
True or False?
(1) $e^{x}=\cos x$
(2) $e^{i x}=e^{i(x+2 \pi)}$
(3) $e^{i x}=-e^{i(x+\pi)}$
(4) $e^{i x}+e^{-i x}$ is a real number

Complex exponentiation: $e^{i x}=\cos x+i \sin x$

Let x be a real number.
True or False?
(1) $e^{x}=\cos x \quad$ False

Remember these are real numbers: e^{x} is unbounded, $\cos x$ stays between -1 and 1 .
(2) $e^{i x}=e^{i(x+2 \pi)}$
(3) $e^{i x}=-e^{i(x+\pi)}$
(4) $e^{i x}+e^{-i x}$ is a real number

Complex exponentiation: $e^{i x}=\cos x+i \sin x$

Let x be a real number.
True or False?
(1) $e^{x}=\cos x \quad$ False

Remember these are real numbers: e^{x} is unbounded, $\cos x$ stays between -1 and 1 .
(2) $e^{i x}=e^{i(x+2 \pi)} \quad$ True

For real numbers, a larger exponent gives a larger e^{x}; complex numbers, not necessarily: $e^{i x}=a+b i$ where $|a|,|b| \leq 1$.
(3) $e^{i x}=-e^{i(x+\pi)}$
(4) $e^{i x}+e^{-i x}$ is a real number

Complex exponentiation: $e^{i x}=\cos x+i \sin x$

Let x be a real number.
True or False?
(1) $e^{x}=\cos x \quad$ False

Remember these are real numbers: e^{x} is unbounded, $\cos x$ stays between -1 and 1 .
(2) $e^{i x}=e^{i(x+2 \pi)} \quad$ True

For real numbers, a larger exponent gives a larger e^{x}; complex numbers, not necessarily: $e^{i x}=a+b i$ where $|a|,|b| \leq 1$.
(3) $e^{i x}=-e^{i(x+\pi)} \quad$ True

$$
\cos x=-\cos (x+\pi) ; \sin x=-\sin (x+\pi)
$$

(4) $e^{i x}+e^{-i x}$ is a real number

Complex exponentiation: $e^{i x}=\cos x+i \sin x$

Let x be a real number.
True or False?
(1) $e^{x}=\cos x \quad$ False

Remember these are real numbers: e^{x} is unbounded, $\cos x$ stays between -1 and 1 .
(2) $e^{i x}=e^{i(x+2 \pi)} \quad$ True

For real numbers, a larger exponent gives a larger e^{x}; complex numbers, not necessarily: $e^{i x}=a+b i$ where $|a|,|b| \leq 1$.
(3) $e^{i x}=-e^{i(x+\pi)} \quad$ True
$\cos x=-\cos (x+\pi) ; \sin x=-\sin (x+\pi)$
(4) $e^{i x}+e^{-i x}$ is a real number True using even and odd symmetry of cosine and sine, $e^{i x}+e^{-i x}=2 \cos x$

Coordinates Revisited

Complex number : $r(\cos \theta+i \sin \theta)=r e^{i \theta}$

Coordinates and Exponentials

Coordinates and Exponentials

Coordinates and Exponentials

Coordinates and Exponentials

$$
\sqrt{3}+i=2(\cos (\pi / 6)+i \sin (\pi / 6))=2 e^{\frac{\pi}{6} i}
$$

Coordinates and Exponentials

Coordinates and Exponentials

Coordinates and Exponentials

Coordinates and Exponentials

$$
-1+i=\sqrt{2}(\cos (3 \pi / 4)+i \sin (3 \pi / 4))=\sqrt{2} e^{\frac{3 \pi}{4} i}
$$

Coordinates and Multiplication

Coordinates and Multiplication

Coordinates and Multiplication

Geometric interpretation of multiplication of two complex numbers: add the angles, multiply the lengths (moduli).

Coordinates and Multiplication

Geometric interpretation of multiplication of two complex numbers: add the angles, multiply the lengths (moduli).

Roots of Unity

5.3: Complex Exponential 0000000

Roots of Unity

Roots of Unity

Roots of Unity

$$
\left(r e^{i \theta}\right)^{5}=1
$$

Roots of Unity

Roots of Unity

Roots of Unity

Roots

Find all complex numbers z such that $z^{3}=8$.

Find all complex numbers z such that $z^{3}=27 e^{\frac{i \pi}{2}}$.

Find all complex numbers z such that $z^{4}=81 e^{2 i}$.
5.3: Complex Exponential

5.2: Complex Matrices and Linear Systems 00
5.3: Complex Exponential
5.4: Polar Representation
$z^{3}=8$

Im
$2 e^{\frac{2 \pi i}{3}}$
5.3: Complex Exponential
5.4: Polar Representation 0000000
$z^{3}=8$

5.1: Complex Arithmetic 0000000
$z^{3}=8$
5.3: Complex Exponential 0000000
5.4: Polar Representation 0000000

5.3: Complex Exponential
$z^{3}=8$

5.3: Complex Exponential
$z^{3}=8$

5.2: Complex Matrices and Linear Systems 00
5.3: Complex Exponential 0000000
5.4: Polar Representation 0000000
$z^{3}=8$

Im

5.3: Complex Exponential 0000000
$z^{3}=8$

5.3: Complex Exponential 0000000
$z^{3}=8$

Roots

Find all complex numbers z such that $z^{3}=8$.
2, $e^{\frac{2 \pi i}{3}}, 2 e^{\frac{4 \pi i}{3}}$

Find all complex numbers z such that $z^{3}=27 e^{\frac{i \pi}{2}}$.

Find all complex numbers z such that $z^{4}=81 e^{2 i}$.

$z^{3}=27 e^{\frac{i \pi}{2}}$

We solve $\left(r e^{i \theta}\right)=27 e^{\frac{i \pi}{2}}$. That is, $r^{3} e^{i 3 \theta}=27 e^{\frac{i \pi}{2}}$

- The modulus of our answer is 27 ; the modulus of $r e^{i \theta}$ is r.
- So, we need $r^{3}=27$, so $r=3$.
- That leaves us with $e^{3 i \theta}=e^{\frac{i \pi}{2}}$.
- There are going to be three distinct answers (since there are three roots of unity)
- We write $e^{\frac{i \pi}{2}}$ three ways: $e^{\frac{i \pi}{2}}=e^{i\left(\frac{\pi}{2}+2 \pi\right)}=e^{i\left(\frac{\pi}{2}+4 \pi\right)}$.
- $e^{3 i \theta}=e^{\frac{i \pi}{2}} \Longrightarrow 3 \theta=\frac{\pi}{2} \Longrightarrow \theta=\frac{\pi}{6}$
- $e^{3 i \theta}=e^{i\left(\frac{\pi}{2}+2 \pi\right)} \Longrightarrow 3 \theta=\frac{\pi}{2}+2 \pi \Longrightarrow \theta=\frac{5 \pi}{6}$
- $e^{3 i \theta}=e^{i\left(\frac{\pi}{2}+4 \pi\right)} \Longrightarrow 3 \theta=\frac{\pi}{2}+4 \pi \Longrightarrow \theta=\frac{3 \pi}{2}$
- So, our solutions are $3 e^{\frac{\pi i}{6}}, 3 e^{\frac{5 \pi i}{6}}, 3 e^{\frac{3 \pi i}{2}}$

Roots

Find all complex numbers z such that $z^{3}=8$.
2, $e^{\frac{2 \pi i}{3}}, 2 e^{\frac{4 \pi i}{3}}$

Find all complex numbers z such that $z^{3}=27 e^{\frac{i \pi}{2}}$. $3 e^{\frac{\pi i}{6}}, 3 e^{\frac{5 \pi i}{6}}, 3 e^{\frac{3 \pi i}{2}}$

Find all complex numbers z such that $z^{4}=81 e^{2 i}$.

Roots

Find all complex numbers z such that $z^{3}=8$.
2, $e^{\frac{2 \pi i}{3}}, 2 e^{\frac{4 \pi i}{3}}$

Find all complex numbers z such that $z^{3}=27 e^{\frac{i \pi}{2}}$.
$3 e^{\frac{\pi i}{6}}, 3 e^{\frac{5 \pi i}{6}}, 3 e^{\frac{3 \pi i}{2}}$

Find all complex numbers z such that $z^{4}=81 e^{2 i}$.
$3 e^{\frac{i}{2}}, 3 e^{\frac{(1+\pi) i}{2}}, 3 e^{\frac{(1+2 \pi) i}{2}}, 3 e^{\frac{(1+3 \pi) i}{2}}$

