5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
Outline			

Week 9: complex numbers; complex exponential and polar form

Course Notes: 5.1, 5.2, 5.3, 5.4

Goals:

Fluency with arithmetic on complex numbers Using matrices with complex entries: finding determinants and inverses, solving systems, etc. Visualizing complex numbers in coordinate systems

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

i

We use $i \$ (as in "imaginary") to denote the number whose square is -1.

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

i

We use $i \ \mbox{(as in "imaginary")}$ to denote the number whose square is -1.

 $i^2 = -1$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
•000000	00	0000000	0000000

i

We use i (as in "imaginary") to denote the number whose square is -1.

 $i^2 = -1$ $(-i)^2 =$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
•000000	00	0000000	0000000

i

We use i (as in "imaginary") to denote the number whose square is -1.

 $i^2 = -1$ $(-i)^2 = -1$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
•000000	00	0000000	0000000

i

We use i (as in "imaginary") to denote the number whose square is -1.

 $i^2 = -1$ $(-i)^2 = -1$ $i^3 =$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
•000000	00	0000000	0000000

i

We use i (as in "imaginary") to denote the number whose square is -1.

 $i^2 = -1$ $(-i)^2 = -1$ $i^3 = -i$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
•000000	00	0000000	0000000

We use i (as in "imaginary") to denote the number whose square is -1.

 $i^2 = -1$ $(-i)^2 = -1$ $i^3 = -i$ $i^4 =$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
•000000	00	0000000	0000000

We use i (as in "imaginary") to denote the number whose square is -1.

 $i^2 = -1$ $(-i)^2 = -1$ $i^3 = -i$ $i^4 = 1$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	000000	0000000

We use i (as in "imaginary") to denote the number whose square is -1.

 $i^2 = -1$ $(-i)^2 = -1$ $i^3 = -i$ $i^4 = 1$ When we talk about "complex numbers," we allow numbers to have real parts and imaginary parts: 2+3i -1 2i

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

2 + 3i2*i* -1imaginary 3 2 + 3*i* real 2

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

2+3i -1 2i

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	000000

2+3i -1 2i

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	000000	0000000

Addition happens component-wise, just like with vectors or polynomials.

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	000000	0000000

3

Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.

```
(2+3i)+(3-4i) =
              imaginary
                           2 + 3i
                                          real
```

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

Addition happens component-wise, just like with vectors or polynomials.

$$(2+3i)+(3-4i)=5-i$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation

Multiplication is similar to polynomials.

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

Multiplication is similar to polynomials. (2+3i)(3-4i)=

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

Multiplication is similar to polynomials. $(2+3i)(3-4i)=2\cdot 3+3i\cdot 3+(2)(-4i)+(3i)(-4i)$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	000000	0000000

Multiplication is similar to polynomials. $(2+3i)(3-4i)=2 \cdot 3 + 3i \cdot 3 + (2)(-4i) + (3i)(-4i)$ = 6 + 9i - 8i + 12

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	000000	0000000

Multiplication is similar to polynomials. $(2+3i)(3-4i)=2\cdot 3+3i\cdot 3+(2)(-4i)+(3i)(-4i)$ = 6+9i-8i+12=18+i

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

Multiplication is similar to polynomials. $(2+3i)(3-4i)=2\cdot 3+3i\cdot 3+(2)(-4i)+(3i)(-4i)$ = 6 + 9i - 8i + 12 = 18 + i1:0 A: (-4+3i) + (1-i)II: -1 III: -2 B: i(2+3i)IV: 2i+12C: (i + 1)(i - 1)V: -3+2i

D: (2i+3)(i+4) VI: 3+2i

VII: 10+11i

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	0000000	0000000

Multiplication is similar to polynomials. $(2+3i)(3-4i)=2\cdot 3+3i\cdot 3+(2)(-4i)+(3i)(-4i)$ = 6+9i-8i+12=18+i

I: 0

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

Modulus

The **modulus** of (x + yi) is:

$$|x+yi| = \sqrt{x^2 + y^2}$$

like the norm/length/magnitude of a vector.

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

Modulus

The **modulus** of (x + yi) is:

$$|x+yi| = \sqrt{x^2 + y^2}$$

like the norm/length/magnitude of a vector.

Complex Conjugate

The **complex conjugate** of (x + yi) is:

$$\overline{x+yi} = x-yi$$

the reflection of the vector over the real (x) axis.

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	000000

$$|x + yi| = \sqrt{x^2 + y^2} \qquad \qquad \overline{x + yi} = x - yi$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

$$|x+yi| = \sqrt{x^2 + y^2}$$
 $\overline{x+yi} = x-yi$

- $z \overline{z}$
- $z + \overline{z}$
- $z\overline{z} |z|^2$
- $\overline{zw} (\overline{z})(\overline{w})$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

$$|x+yi| = \sqrt{x^2 + y^2}$$
 $\overline{x+yi} = x-yi$

- $z \overline{z} = 2yi$ y is called the imaginary part of z
- $z + \overline{z}$
- $z\overline{z} |z|^2$
- $\overline{zw} (\overline{z})(\overline{w})$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

$$|x + yi| = \sqrt{x^2 + y^2}$$
 $\overline{x + yi} = x - yi$

- $z \overline{z} = 2yi$ y is called the imaginary part of z
- $z + \overline{z} = 2x$ x is called the real part of z
- $z\overline{z} |z|^2$
- $\overline{zw} (\overline{z})(\overline{w})$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

$$|x+yi| = \sqrt{x^2 + y^2}$$
 $\overline{x+yi} = x-yi$

- $z \overline{z} = 2yi$ y is called the imaginary part of z
- $z + \overline{z} = 2x$ x is called the real part of z
- $z\overline{z} |z|^2 = 0$ So, $z\overline{z} = |z|^2$
- $\overline{zw} (\overline{z})(\overline{w})$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

$$|x+yi| = \sqrt{x^2 + y^2} \qquad \qquad \overline{x+yi} = x - yi$$

- $z \overline{z} = 2yi$ y is called the imaginary part of z
- $z + \overline{z} = 2x$ x is called the real part of z
- $z\overline{z} |z|^2 = 0$ So, $z\overline{z} = |z|^2$
- $\overline{zw} (\overline{z})(\overline{w}) = 0$ So, $\overline{zw} = \overline{z} \ \overline{w}$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

$$|x+yi| = \sqrt{x^2 + y^2} \qquad \qquad \overline{x+yi} = x - yi$$

Suppose z = x + yi and w = a + bi. Calculate the following.

- $z \overline{z} = 2yi$ y is called the imaginary part of z
- $z + \overline{z} = 2x$ x is called the real part of z
- $z\overline{z} |z|^2 = 0$ So, $z\overline{z} = |z|^2$
- $\overline{zw} (\overline{z})(\overline{w}) = 0$ So, $\overline{zw} = \overline{z} \ \overline{w}$

Division

$$\frac{z}{W} =$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

$$|x+yi| = \sqrt{x^2 + y^2} \qquad \qquad \overline{x+yi} = x - yi$$

Suppose z = x + yi and w = a + bi. Calculate the following.

- $z \overline{z} = 2yi$ y is called the imaginary part of z
- $z + \overline{z} = 2x$ x is called the real part of z
- $z\overline{z} |z|^2 = 0$ So, $z\overline{z} = |z|^2$
- $\overline{zw} (\overline{z})(\overline{w}) = 0$ So, $\overline{zw} = \overline{z} \ \overline{w}$

Division

$$\frac{z}{w} = \frac{z}{w} \cdot \frac{\overline{w}}{\overline{w}}$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

$$|x+yi| = \sqrt{x^2 + y^2}$$
 $\overline{x+yi} = x-yi$

Suppose z = x + yi and w = a + bi. Calculate the following.

- $z \overline{z} = 2yi$ y is called the imaginary part of z
- $z + \overline{z} = 2x$ x is called the real part of z
- $z\overline{z} |z|^2 = 0$ So, $z\overline{z} = |z|^2$
- $\overline{zw} (\overline{z})(\overline{w}) = 0$ So, $\overline{zw} = \overline{z} \ \overline{w}$

Division

$$\frac{z}{w} = \frac{z}{w} \cdot \frac{\overline{w}}{\overline{w}} = \frac{z\overline{w}}{|w|^2}$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	000000

$$\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

$$\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$$

Compute:

- $\frac{2+3i}{3+4i}$
- $\frac{1+3i}{1-3i}$

•
$$\frac{2}{1+i}$$

• $\frac{5}{i}$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

$$\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$$

Compute:

•
$$\frac{2+3i}{3+4i} = \frac{18}{25} + \frac{1}{25}i$$

•
$$\frac{1+3i}{1-3i}$$

•
$$\frac{2}{1+i}$$

•
$$\frac{5}{i}$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

$$\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$$

Compute:

- $\frac{2+3i}{3+4i} = \frac{18}{25} + \frac{1}{25}i$
- $\frac{1+3i}{1-3i} = \frac{-4}{5} + \frac{3}{5}i$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

$$\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$$

Compute:

 $\cdot \frac{5}{i}$

- $\frac{2+3i}{3+4i} = \frac{18}{25} + \frac{1}{25}i$
- $\frac{1+3i}{1-3i} = \frac{-4}{5} + \frac{3}{5}i$
- $\frac{2}{1+i} = 1-i$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

$$\frac{z}{w} = \frac{z\overline{w}}{|w|^2}$$

Compute:

- $\frac{2+3i}{3+4i} = \frac{18}{25} + \frac{1}{25}i$
- $\frac{1+3i}{1-3i} = \frac{-4}{5} + \frac{3}{5}i$
- $\frac{2}{1+i} = 1-i$
- $\frac{5}{i} = -5i$ (dividing by *i* is the same as multiplying by -i)

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 =$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example:
$$x^2 + 1 = x^2 - (-1) = x^2 - i^2$$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example:
$$x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$$

5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$ $f(x) = x^2 + 1$ has no real roots, but it has two complex roots.

5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$ $f(x) = x^2 + 1$ has no real roots, but it has two complex roots. It is not factorable over \mathbb{R} , but it is factorable over \mathbb{C}

5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$ $f(x) = x^2 + 1$ has no real roots, but it has two complex roots. It is not factorable over \mathbb{R} , but it is factorable over \mathbb{C}

Example: $x^2 + 2x + 10 =$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$ $f(x) = x^2 + 1$ has no real roots, but it has two complex roots. It is not factorable over \mathbb{R} , but it is factorable over \mathbb{C}

Example: $x^2 + 2x + 10 = (x + 1 + 3i)(x + 1 - 3i)$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$ $f(x) = x^2 + 1$ has no real roots, but it has two complex roots. It is not factorable over \mathbb{R} , but it is factorable over \mathbb{C}

Example: $x^2 + 2x + 10 = (x + 1 + 3i)(x + 1 - 3i)$ If a quadratic equation has roots *a* and *b*, then it can be written as c(x - a)(x - b)

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$ $f(x) = x^2 + 1$ has no real roots, but it has two complex roots. It is not factorable over \mathbb{R} , but it is factorable over \mathbb{C}

Example: $x^2 + 2x + 10 = (x + 1 + 3i)(x + 1 - 3i)$ If a quadratic equation has roots *a* and *b*, then it can be written as c(x - a)(x - b)

Example: $x^2 + 4x + 5 =$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$ $f(x) = x^2 + 1$ has no real roots, but it has two complex roots. It is not factorable over \mathbb{R} , but it is factorable over \mathbb{C}

Example: $x^2 + 2x + 10 = (x + 1 + 3i)(x + 1 - 3i)$ If a quadratic equation has roots *a* and *b*, then it can be written as c(x - a)(x - b)

Example: $x^2 + 4x + 5 = (x + 2 + i)(x + 2 - i)$

5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems .

5.3: Complex Exponential 5.4: Polar Representation

Calculating Determinants

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems •••	5.3: Complex Exponential	5.4: Polar Representation
Calculating	Determinants		

We calcuate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real

entries.

 $\det \begin{bmatrix} 1+i & 1-i \\ 2 & i \end{bmatrix}$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems ●○	5.3: Complex Exponential	5.4: Polar Representation

Calculating Determinants

$$det \begin{bmatrix} 1+i & 1-i \\ 2 & i \end{bmatrix} = (1+i)(i) - (1-i)(2) =$$

5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems 5.3: Complex Exponential 5.4: Polar Representation 000000

Calculating Determinants

$$det \begin{bmatrix} 1+i & 1-i \\ 2 & i \end{bmatrix} = (1+i)(i) - (1-i)(2) = -3 + 3i$$

 5.1: Complex Arithmetic
 5.2: Complex Matrices and Linear Systems
 5.3: Complex Exponential
 5.4: Polar Representation

 0000000
 •0
 0000000
 0000000
 0000000

Calculating Determinants

$$\det \begin{bmatrix} 1+i & 1-i \\ 2 & i \end{bmatrix} = (1+i)(i) - (1-i)(2) = -3 + 3i$$
$$\det \begin{bmatrix} 1 & 2 & 3 \\ i & 4 & 3i \\ 1+i & 2-i & 5 \end{bmatrix}$$

 5.1: Complex Arithmetic
 5.2: Complex Matrices and Linear Systems
 5.3: Complex Exponential
 5.4: Polar Representation

 0000000
 •0
 0000000
 0000000
 0000000

Calculating Determinants

$$\det \begin{bmatrix} 1+i & 1-i \\ 2 & i \end{bmatrix} = (1+i)(i) - (1-i)(2) = -3 + 3i$$
$$\det \begin{bmatrix} 1 & 2 & 3 \\ i & 4 & 3i \\ 1+i & 2-i & 5 \end{bmatrix} = 2 - 16i$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	000000	0000000

Give a parametric equation for all solutions to the homogeneous system:

$$ix_1 + x_2 + 2x_3 = 0$$

 $ix_2 + 3x_3 = 0$
 $2ix_1 + (2-i)x_2 + x_3 = 0$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	000000	000000

Give a parametric equation for all solutions to the homogeneous system:

Solve the following system of equations:

$$ix_1 + 2x_2 = 9$$

 $3x_1 + (1+i)x_2 = 5+8i$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
000000	00	000000	0000000

Give a parametric equation for all solutions to the homogeneous system:

Solve the following system of equations:

$$ix_1 + 2x_2 = 9$$

 $3x_1 + (1+i)x_2 = 5+8i$

Find the inverse of the matrix
$$\begin{bmatrix} i & 1 \\ 2 & 3i \end{bmatrix}$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

Give a parametric equation for all solutions to the homogeneous system:

$$ix_{1} + x_{2} + 2x_{3} = 0$$

$$ix_{2} + 3x_{3} = 0$$

$$2ix_{1} + (2-i)x_{2} + x_{3} = 0$$

 $[x_1, x_2, x_3] = s[-3 + 2i, 3i, 1]$

Solve the following system of equations:

$$ix_1 + 2x_2 = 9$$

 $3x_1 + (1+i)x_2 = 5+8i$

Find the inverse of the matrix
$$\begin{bmatrix} i & 1 \\ 2 & 3i \end{bmatrix}$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

Give a parametric equation for all solutions to the homogeneous system:

$$ix_1 + x_2 + 2x_3 = 0$$

$$ix_2 + 3x_3 = 0$$

$$2ix_1 + (2-i)x_2 + x_3 = 0$$

 $[x_1, x_2, x_3] = s[-3 + 2i, 3i, 1]$

Solve the following system of equations:

$$ix_1 + 2x_2 = 9$$

 $3x_1 + (1+i)x_2 = 5+8i$

 $x_1 = i, x_2 = 5$

Find the inverse of the matrix
$$\begin{bmatrix} i & 1 \\ 2 & 3i \end{bmatrix}$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

Give a parametric equation for all solutions to the homogeneous system:

$$ix_1 + x_2 + 2x_3 = 0$$

$$ix_2 + 3x_3 = 0$$

$$2ix_1 + (2-i)x_2 + x_3 = 0$$

 $[x_1, x_2, x_3] = s[-3 + 2i, 3i, 1]$

Solve the following system of equations:

$$ix_1 + 2x_2 = 9$$

 $3x_1 + (1+i)x_2 = 5+8i$

 $x_1 = i, x_2 = 5$

Find the inverse of the matrix
$$\begin{bmatrix} i & 1 \\ 2 & 3i \end{bmatrix}$$
 $\begin{bmatrix} \frac{-3}{5}i & \frac{1}{5} \\ \frac{2}{5} & -\frac{1}{5}i \end{bmatrix}$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential •000000	5.4: Polar Representation
Exponentials	5		

What to do when i is the power of a function?

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential •000000	5.4: Polar Representation

What to do when *i* is the power of a function? Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \cdots$$

We know how to do the operations on the right

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential •000000	5.4: Polar Representation

What to do when *i* is the power of a function? Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \cdots$$

We know how to do the operations on the right

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential •000000	5.4: Polar Representation

What to do when *i* is the power of a function? Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \cdots$$

We know how to do the operations on the right

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots$$
$$= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \frac{x^6}{6!} \cdots$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential •000000	5.4: Polar Representation
Exponentials	5		

What to do when *i* is the power of a function? Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \cdots$$

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots$$

= $1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \frac{x^6}{6!} \cdots$
= $\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential •000000	5.4: Polar Representation

What to do when *i* is the power of a function? Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \cdots$$
$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$
$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots$$
$$= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \frac{x^6}{6!} \cdots$$
$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential •000000	5.4: Polar Representation

What to do when *i* is the power of a function? Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \frac{x^{6}}{6!} + \cdots$$
$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$
$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots$$

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots$$

= $1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \frac{x^6}{6!} \cdots$
= $\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)$
= $\cos x + i\sin x$

5.1: Complex Arithmetic 5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 0000000

5.4: Polar Representation

Does that even make sense?

$$e^{ix} = \cos x + i \sin x$$

5.3: Complex Exponential 0000000

5.4: Polar Representation

$$e^{ix} = \cos x + i \sin x$$

$$\frac{d}{dx}[e^{ax}] = ae^{ax};$$

5.3: Complex Exponential 0000000

5.4: Polar Representation

$$e^{ix} = \cos x + i \sin x$$

$$rac{d}{dx}[e^{ax}] = ae^{ax};$$

 $rac{d}{dx}[e^{ix}]$

5.3: Complex Exponential 0000000

5.4: Polar Representation

$$e^{ix} = \cos x + i \sin x$$

$$\frac{d}{dx}[e^{ax}] = ae^{ax};$$

$$\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i\sin x]$$

5.3: Complex Exponential 0000000

5.4: Polar Representation

$$e^{ix} = \cos x + i \sin x$$

$$\frac{d}{dx}[e^{ax}] = ae^{ax};$$

$$\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i\sin x]$$

$$= -\sin x + i\cos x = i^{2}\sin x + i\cos x = i(\cos x + i\sin x) = ie^{ix}$$

5.3: Complex Exponential 0000000

5.4: Polar Representation

Does that even make sense?

$$e^{ix} = \cos x + i \sin x$$

$$\frac{\frac{d}{dx}[e^{ax}] = ae^{ax};}{\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i\sin x]}$$

= $-\sin x + i\cos x = i^2\sin x + i\cos x = i(\cos x + i\sin x) = ie^{ix}$

 $e^{x+y} = e^x e^y;$

5.3: Complex Exponential 0000000

5.4: Polar Representation

Does that even make sense?

$$e^{ix} = \cos x + i \sin x$$

$$\frac{\frac{d}{dx}[e^{ax}] = ae^{ax};}{\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i\sin x]}$$

= $-\sin x + i\cos x = i^2\sin x + i\cos x = i(\cos x + i\sin x) = ie^{ix}$

 $e^{x+y} = e^x e^y;$ $e^{ix+iy} =$

5.3: Complex Exponential 0000000

5.4: Polar Representation

$$e^{ix} = \cos x + i \sin x$$

$$\frac{d}{dx}[e^{ax}] = ae^{ax};$$

$$\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i\sin x]$$

$$= -\sin x + i\cos x = i^{2}\sin x + i\cos x = i(\cos x + i\sin x) = ie^{ix}$$

$$e^{x+y} = e^{x}e^{y};$$

 $e^{ix+iy} = e^{i(x+y)} = \cos(x+y) + i\sin(x+y)$

5.3: Complex Exponential 0000000

5.4: Polar Representation

$$e^{ix} = \cos x + i \sin x$$

$$\frac{d}{dx}[e^{ax}] = ae^{ax};$$

$$\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i\sin x]$$

$$= -\sin x + i\cos x = i^{2}\sin x + i\cos x = i(\cos x + i\sin x) = ie^{ix}$$

$$e^{x+y} = e^{x}e^{y};$$

$$e^{ix+iy} = e^{i(x+y)} = \cos(x+y) + i\sin(x+y)$$

$$= \cos x \cos y - \sin x \sin y + i[\sin x \cos y + \cos x \sin y]$$

5.3: Complex Exponential 0000000

5.4: Polar Representation

$$e^{ix} = \cos x + i \sin x$$

$$\frac{d}{dx}[e^{ax}] = ae^{ax};$$

$$\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i\sin x]$$

$$= -\sin x + i\cos x = i^{2}\sin x + i\cos x = i(\cos x + i\sin x) = ie^{ix}$$

$$e^{x+y} = e^{x}e^{y};$$

$$e^{ix+iy} = e^{i(x+y)} = \cos(x+y) + i\sin(x+y)$$

$$= \cos x \cos y - \sin x \sin y + i[\sin x \cos y + \cos x \sin y]$$

$$= (\cos x + i \sin y)(\cos y + i \sin x) = e^{ix}e^{iy}$$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 000000

5.4: Polar Representation

Computation Practice

$$e^{ix} = \cos x + i \sin x$$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 000000

5.4: Polar Representation 0000000

Computation Practice

$$e^{ix} = \cos x + i \sin x$$

Evaluate: $e^{\frac{\pi i}{2}} = i$

 e^{2+i}

 $\sqrt{2}e^{\frac{\pi i}{4}}$

2ⁱ

 $e^{\pi i} + 1$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 000000

5.4: Polar Representation 0000000

Computation Practice

$$e^{ix} = \cos x + i \sin x$$

Evaluate:

 $e^{\frac{\pi i}{2}} = i$ $e^{2+i} = e^2(\cos 1 + i \sin 1)$ $\sqrt{2}e^{\frac{\pi i}{4}}$ 2^i $e^{\pi i} + 1$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential 000000

5.4: Polar Representation 0000000

Computation Practice

$$e^{ix} = \cos x + i \sin x$$

Evaluate:

 $e^{\frac{\pi i}{2}} = i$ $e^{2+i} = e^2(\cos 1 + i \sin 1)$ $\sqrt{2}e^{\frac{\pi i}{4}} = i + 1$ 2^i $e^{\pi i} + 1$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Computation Practice

$$e^{ix} = \cos x + i \sin x$$

Evaluate:

$$e^{\frac{\pi i}{2}} = i$$

 $e^{2+i} = e^2(\cos 1 + i \sin 1)$
 $\sqrt{2}e^{\frac{\pi i}{4}} = i + 1$
 $2^i = e^{i \ln 2} = \cos(\ln 2) + i \sin(\ln 2)$
 $e^{\pi i} + 1$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Computation Practice

$$e^{ix} = \cos x + i \sin x$$

Evaluate:

$$e^{\frac{\pi i}{2}} = i$$

$$e^{2+i} = e^2(\cos 1 + i \sin 1)$$

$$\sqrt{2}e^{\frac{\pi i}{4}} = i + 1$$

$$2^i = e^{i \ln 2} = \cos(\ln 2) + i \sin(\ln 2)$$

$$e^{\pi i} + 1 = 0 \text{ (Euler's Identity)}$$

$$|e^{xi}|, \text{ where } x \text{ is any real number.}$$

5.2: Complex Matrices and Linear Systems

5.3: Complex Exponential

5.4: Polar Representation

Computation Practice

$$e^{ix} = \cos x + i \sin x$$

= 1

Evaluate:

$$e^{\frac{\pi i}{2}} = i$$

$$e^{2+i} = e^2(\cos 1 + i \sin 1)$$

$$\sqrt{2}e^{\frac{\pi i}{4}} = i + 1$$

$$2^i = e^{i \ln 2} = \cos(\ln 2) + i \sin(\ln 2)$$

$$e^{\pi i} + 1 = 0 \text{ (Euler's Identity)}$$

$$|e^{xi}|, \text{ where } x \text{ is any real number.}$$

5.3: Complex Exponential 5.4: Polar Representation 0000000

Complex exponentiation: $e^{ix} = \cos x + i \sin x$

Let x be a real number. True or False?

(1) $e^x = \cos x$

(2)
$$e^{ix} = e^{i(x+2\pi)}$$

(3)
$$e^{ix} = -e^{i(x+\pi)}$$

5.3: Complex Exponential 5.4: Polar Representation 0000000

Complex exponentiation: $e^{ix} = \cos x + i \sin x$

Let x be a real number. True or False?

(1) $e^x = \cos x$ False Remember these are real numbers: e^{x} is unbounded, $\cos x$ stays between -1 and 1.

(2)
$$e^{ix} = e^{i(x+2\pi)}$$

(3)
$$e^{ix} = -e^{i(x+\pi)}$$

5.3: Complex Exponential 5.4: Polar Representation 0000000

Complex exponentiation: $e^{ix} = \cos x + i \sin x$

Let x be a real number. True or False?

(1) $e^x = \cos x$ False

Remember these are real numbers: e^{x} is unbounded, $\cos x$ stays between -1 and 1.

(2)
$$e^{ix} = e^{i(x+2\pi)}$$
 True

For real numbers, a larger exponent gives a larger e^{x} ; complex numbers, not necessarily: $e^{ix} = a + bi$ where $|a|, |b| \le 1$.

(3)
$$e^{ix} = -e^{i(x+\pi)}$$

5.3: Complex Exponential 5.4: Polar Representation 0000000

Complex exponentiation: $e^{ix} = \cos x + i \sin x$

Let x be a real number. True or False?

(1) $e^x = \cos x$ False

Remember these are real numbers: e^{x} is unbounded, $\cos x$ stays between -1 and 1.

(2)
$$e^{ix} = e^{i(x+2\pi)}$$
 True

For real numbers, a larger exponent gives a larger e^{x} ; complex numbers, not necessarily: $e^{ix} = a + bi$ where $|a|, |b| \le 1$.

(3)
$$e^{ix} = -e^{i(x+\pi)}$$
 True
 $\cos x = -\cos(x+\pi); \sin x = -\sin(x+\pi)$

5.3: Complex Exponential 5.4: Polar Representation 0000000

Complex exponentiation: $e^{ix} = \cos x + i \sin x$

Let x be a real number. True or False?

(1) $e^x = \cos x$ False

Remember these are real numbers: e^{x} is unbounded, $\cos x$ stays between -1 and 1.

(2)
$$e^{ix} = e^{i(x+2\pi)}$$
 True

For real numbers, a larger exponent gives a larger e^{x} ; complex numbers, not necessarily: $e^{ix} = a + bi$ where |a|, |b| < 1.

(3)
$$e^{ix} = -e^{i(x+\pi)}$$
 True
 $\cos x = -\cos(x+\pi); \sin x = -\sin(x+\pi)$

(4) $e^{ix} + e^{-ix}$ is a real number True using even and odd symmetry of cosine and sine, $e^{ix} + e^{-ix} = 2\cos x$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	000000

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

Complex number : $r(\cos \theta + i \sin \theta) = re^{i\theta}$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representat
0000000	00	0000000	000000

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representa
0000000	00	0000000	0000000

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	0000000

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representati
0000000	00	0000000	000000

 $\sqrt{3} + i = 2(\cos(\pi/6) + i\sin(\pi/6)) = 2e^{\frac{\pi}{6}i}$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential 000000●	5.4: Polar Representation

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential 000000●	5.4: Polar Representation

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	0000000

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	000000	000000

 $-1 + i = \sqrt{2}(\cos(3\pi/4) + i\sin(3\pi/4)) = \sqrt{2}e^{\frac{3\pi}{4}i}$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	•000000

Coordinates and Multiplication

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
0000000	00	0000000	000000

Coordinates and Multiplication

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation •000000

Coordinates and Multiplication

Geometric interpretation of multiplication of two complex numbers: add the angles, multiply the lengths (moduli).

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation •000000

Coordinates and Multiplication

Geometric interpretation of multiplication of two complex numbers: add the angles, multiply the lengths (moduli).

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation ○●○○○○○
Roots of Un	ity		

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation ○●○○○○○
Roots of Un	ity		

$$\left(re^{i\theta}\right)^3 = 1$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
Roots of Un	ity		

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
Roots of Un	ity		

$$(re^{i\theta})^5 = 1$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
Roots of Un	ity		

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation ○●○○○○○
Roots of Un	ity		

$$(re^{i\theta})^{12} = 1$$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
	•.		

Roots of Unity

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
Roots			

Find all complex numbers z such that $z^3 = 8$.

Find all complex numbers z such that $z^3 = 27e^{\frac{i\pi}{2}}$.

Find all complex numbers z such that $z^4 = 81e^{2i}$.

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
$z^{3} = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
$z^{3} = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
$z^{3} = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
$z^{3} = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems	5.3: Complex Exponential	5.4: Polar Representation
$z^{3} = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
$z^{3} = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
$z^3 = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
$z^{3} = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
$z^{3} = 8$			

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
Roots			

Find all complex numbers z such that $z^3 = 8$. 2, $e^{\frac{2\pi i}{3}}$, $2e^{\frac{4\pi i}{3}}$

Find all complex numbers z such that $z^3 = 27e^{\frac{i\pi}{2}}$.

Find all complex numbers z such that $z^4 = 81e^{2i}$.

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation
$z^3 = 27e^{\frac{i\pi}{2}}$			

We solve
$$\left(re^{i heta}
ight)=27e^{rac{i\pi}{2}}.$$
 That is, $r^3e^{i3 heta}=27e^{rac{i\pi}{2}}$

• The modulus of our answer is 27; the modulus of $re^{i\theta}$ is r.

• So, we need
$$r^3 = 27$$
, so $r = 3$.

- That leaves us with $e^{3i\theta} = e^{\frac{i\pi}{2}}$.
 - There are going to be three distinct answers (since there are three roots of unity)

• We write $e^{\frac{i\pi}{2}}$ three ways: $e^{\frac{i\pi}{2}} = e^{i\left(\frac{\pi}{2}+2\pi\right)} = e^{i\left(\frac{\pi}{2}+4\pi\right)}$.

•
$$e^{3i\theta} = e^{\frac{i\pi}{2}} \implies 3\theta = \frac{\pi}{2} \implies \theta = \frac{\pi}{6}$$

• $e^{3i\theta} = e^{i\left(\frac{\pi}{2} + 2\pi\right)} \implies 3\theta = \frac{\pi}{2} + 2\pi \implies \theta = \frac{5\pi}{6}$
• $e^{3i\theta} = e^{i\left(\frac{\pi}{2} + 4\pi\right)} \implies 3\theta = \frac{\pi}{2} + 4\pi \implies \theta = \frac{3\pi}{2}$

• So, our solutions are $3e^{\frac{\pi i}{6}}$, $3e^{\frac{5\pi i}{6}}$, $3e^{\frac{3\pi i}{2}}$

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation 000000●
Roots			

Find all complex numbers z such that $z^3 = 8$. 2, $e^{\frac{2\pi i}{3}}$, $2e^{\frac{4\pi i}{3}}$

Find all complex numbers z such that $z^3 = 27e^{\frac{i\pi}{2}}$. $3e^{\frac{\pi i}{6}}$, $3e^{\frac{5\pi i}{6}}$, $3e^{\frac{3\pi i}{2}}$

Find all complex numbers z such that $z^4 = 81e^{2i}$.

5.1: Complex Arithmetic	5.2: Complex Matrices and Linear Systems 00	5.3: Complex Exponential	5.4: Polar Representation 000000●
Roots			

Find all complex numbers z such that $z^3 = 8$. 2, $e^{\frac{2\pi i}{3}}$, $2e^{\frac{4\pi i}{3}}$

Find all complex numbers z such that $z^3 = 27e^{\frac{i\pi}{2}}$. $3e^{\frac{\pi i}{6}}$, $3e^{\frac{5\pi i}{6}}$, $3e^{\frac{3\pi i}{2}}$

Find all complex numbers *z* such that $z^4 = 81e^{2i}$. $3e^{\frac{i}{2}}, 3e^{\frac{(1+\pi)i}{2}}, 3e^{\frac{(1+2\pi)i}{2}}, 3e^{\frac{(1+3\pi)i}{2}}$