00000000000000000000000000000000000000	
Outline	

Notes

Week 8: Inverses and determinants

Course Notes: 4.5, 4.6

Goals: Be able to calculate a matrix's inverse; understand the relationship between the invertibility of a matrix and the solutions of associated linear systems; calculate the determinant of a square matrix of any size, and learn some tricks to make the computation more efficient.

Course Notes 4.5: Matrix Inverses ©000000000000000000000000000000000000		4.6: Determinants 0000000000000000
Calculate:	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	
Calculate:	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	

Course Notes 4.5: Matrix Inverses										4.6: Determinants 00000000000000000
Identity Matrix										
I =	10	: 0	0	0	····	1	0	: 0	0 0 0 0 0 0	
	0	0	0	0		0	0	0	1	

The identity matrix, I, is a square matrix with 1s along its main diagonal, and 0s everywhere else.

For any matrix A that can be multiplied with I, AI = IA = A.

Notes

Course Notes 4 5: Matrix Inves

Course Notes 4.5: Matrix Inverses

What is Division?

00000000000000000

Notes

$$(a+5)x = 7x$$

Divide both sides by x ***as long as*** $x \neq 0$ There are some numbers we can't divide by.

$$(a+5)\frac{x}{x}=7\frac{x}{x}$$

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

(a+5)(1) = 7(1)

 $1 \mbox{ is the } multiplicative identity. If you multiply it by a number, that number doesn't change.$

$$(a+5) = 7$$

000000000000000000000000000000000000000	0000000
What is Division?	

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

To replicate "division" in matrices, we want to find a matrix A (called A^{-1}) with the property that $AA^{-1} = I$, the identity matrix.

For example, $4\times 0.25=1,$ so dividing by 4 is the same as multiplying by 0.25.

 $0.1\times 10=1,$ so dividing by 0.1 is the same as multiplying by 10.

We can't divide by 0 because there is NO number x such that $0 \times x = 1$.

There are MANY matrices A such that $AB \neq I$ no matter what matrix B we try.

Matrix Inverses: The Closest we can Get to Division
Linear System Setup:
$\begin{cases} x + 2y + 3z = 10 \\ 4x + 5y + 6z = 20 \\ 7x + 8y + 9z = 30 \end{cases}$
$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$
$A\mathbf{x} = \mathbf{b}$ Solve for \mathbf{x} .

Notes

4.6: Determinants 0000000000000000

Definition A matrix A^{-1} is the **inverse** of a square matrix A if $A^{-1}A = I$, where I is the identity matrix. In this case, also^a $AA^{-1} = I$.

"we won't prove this bit

What do you think the inverse of the following matrix should be?

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

What do you think the inverse of the following matrix should be?

$$\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$

Course Notes 4.5: Matrix Inverses	4.6: Determinants
Check:	

Check your guesses!

Course A15: Matrix Inverses 46: Determinants Definition A matrix A^{-1} is the inverse of a square matrix A if $A^{-1}A = I$ where I is the identity matrix. Find the inverses of the following matrices: $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$ $C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

If $A\mathbf{x} = \mathbf{b}$ and A^{-1} exists, then $\mathbf{x} = A^{-1}\mathbf{b}$ If A^{-1} exists, then $A\mathbf{x} = \mathbf{b}$ has a **unique** solution. Notes

Notes

If an Inverse Exists....

Theorem

If an *n*-by-*n* matrix A has an inverse A^{-1} , then for any **b** in \mathbb{R}^n ,

 $A\mathbf{x} = \mathbf{b}$

has precisely one solution, and that solution is

 $\mathbf{x} = A^{-1}\mathbf{b}.$

So, if $A\mathbf{x} = \mathbf{b}$ has no solutions:

If $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions:

Course Notes 4.5: Matrix Inverses 000000000000000000	4.6: Determinants 00000000000000000
Solutions to Systems of Equations	
Let A be an <i>n</i> -by- <i>n</i> matrix. The following statements are 1 A $\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .	equivalent:
2) $A\mathbf{x} = 0$ has no nonzero solutions.	

- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.
- By previous theorem, if A is invertible, all these statements hold.

If \mathcal{T}^{-1} is a **linear** transformation, then we can find a matrix B such that

Notes

Notes

00000000000000000

If $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} , is A invertible?

Need to show: T^{-1} is a **linear** transformation.

- Fix *A*.
- Given **b**, we can solve $A\mathbf{x} = \mathbf{b}$ for **x**.
- So, given **b**, we find **x**.
- This is a transformation: $T^{-1}(\mathbf{b}) = \mathbf{x}$. That is, given input \mathbf{b} , the output \mathbf{x} is the vector we multiply A by to get \mathbf{b} .
- T⁻¹ is linear:
 - Let $T^{-1}(\mathbf{b}_1) = \mathbf{x}_1$ and $T^{-1}(\mathbf{b}_2) = \mathbf{x}_2$. - Note $A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{b}_1 + \mathbf{b}_2$. So, $T^{-1}(\mathbf{b}_1 + \mathbf{b}_2) = \mathbf{x}_1 + \mathbf{x}_2 = T^{-1}(\mathbf{b}_1) + T^{-1}(\mathbf{b}_2)$. So, T^{-1} preserves addition.
 - Note $A(s\mathbf{x}_1) = sA(\mathbf{x}_1) = s\mathbf{b}_1$, so $T^{-1}(s\mathbf{b}_1) = s\mathbf{x}_1 = sT^{-1}(\mathbf{b}_1)$. So, T^{-1} preserves scalar multiplication.
- Since T⁻¹ is a linear transformation from one collection of vectors to another, there exists some matrix B such that T⁻¹(b) = Bb.
- Consider $T^{-1}(A\mathbf{x})$. Note $T^{-1}(A\mathbf{x}) = \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^n , so $B(A\mathbf{x}) = \mathbf{x}$ for every \mathbf{x} . Therefore, BA = I, so $B = A^{-1}$.

Course Notes 4.5: Matrix Inverses	4.6: Determin 000000000

Notes

Notes

Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) Ax=b has exactly one solution for any b .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.
- 5) A is invertible
- By previous theorem, if A is invertible, all these statements hold.

And now we've shown that if the statements hold, then A is invertible

Course Notes 4.5: Matrix Inverses

Solutions to Systems of Equations

Theorem:

A is invertible if and only if $A {\bf x} = {\bf b}$ has exactly one solution for every ${\bf b}$.

Suppose A is a matrix with the following reduced form. Is A invertible?

Γ1	0	3]			0]	[1	0	0]	
0	1	2	0	1	0	0	0	1	
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0	0	L0	0	1	0	0 0 0	0	

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

2	0	0	a	b	c	=
0	1	0	d	e	f	
0	0	1	g	h	i	
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	1 1 0	0 0 1	a d g	b e h	c f i	=
[0	0	1	a	b	c	=
0	1	0	d	e	f	
1	0	0	g	h	i	

Notes

4.6: Det

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

 $A \rightarrow \rightarrow \rightarrow I$

$\underbrace{\begin{bmatrix} 2 & 1 & & 1 & 0 \\ 0 & 1 & & 0 & 1 \end{bmatrix}}_{I \to I \to I} \xrightarrow{\underline{R_1 - R_2}} \begin{bmatrix} 2 & 0 & & 1 & -1 \\ 0 & 1 & & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix}}_{I \to I} \underbrace{\begin{bmatrix} 1 \\ 0 \end{bmatrix} \underbrace{\begin{bmatrix} 1 \\ 0 \end{smallmatrix} \underbrace{\begin{bmatrix} 1$	
[4]/] [1 0 3]	[/ A ⁻¹]
Calculate the inverse of $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$	
Calculate the inverse of $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	

Notes

Using Inverses

Suppose $M = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Then (as we just found) $M^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}$. If $M\mathbf{x} = \begin{bmatrix} 5 \\ 18 \end{bmatrix}$, what is \mathbf{x} ?

Suppose
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 0 & 7 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 7 & 0 & -3 \\ -2 & 0 & 1 \end{bmatrix}$.
If $BA = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, what is B ?

Course Notes 4.5: Matrix Inverses		4.6: Determinants 0000000000000000	
Inverses and Produc	ts		Notes
Suppose <i>A</i> and <i>B</i> are dimensions. Simplify:	invertible matrices, with the same $\label{eq:ABB} ABB^{-1}A^{-1}$		
What is $(ABC)^{-1}$?			
Simplify:	$[(AC)^{-1}A(AB)^{-1}]^{-1}$		

4.6: Determinants •000000000000000

Notes

Course Notes 4.5: Matrix Inverse 000000000000000000000

Determinants

Recall:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

In general:

 $\det \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} = a_{1,1}D_{1,1} - a_{1,2}D_{1,2} + a_{1,3}D_{1,3} \cdots \pm a_{1,n}D_{1,n}$

where $D_{i,j}$ is the determinant of the matrix obtained from A by deleting row i and column j.

Notes

4.6: Determ

Course Notes 4.5: Matrix Inverses 00000000000000000
Calculate

 $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix}$ det = [0 10 10 0] $\begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix}$ det =

Course Notes 4.5: Matrix Inverses						4.6: Determinants
Determinants of Triang	ular	M	lat	rice	es	
Calculate, where \ast is any	num	ber	:			
	[1	0	0	0	0]	
	*	2	0	0	0	
det	: *	*	3	0	0	
	1 * * *	*	*	4	0	
	*	*	*	*	5	
	Γ1	*	*	*	*]	
	0	2	*	*	*	
det	: 0	0	3	*	*	
	0	0	0	4	*	
	$\begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix}$	0	0	0	5	
Fact: for any square matr	ix A	, de	t(A) =	de	(A^T)

Course Notes 4.5: Matrix Inverses

4.6: Determinants Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?

Notes

4.6: Determinants

Notes

4.6: Determinants 00000000000000000

Notes

	10	9 5	8	4	12]
	0	5	9	7	15
det	0	0	$\frac{1}{2}$	4 7 <u>1</u> 3 2 0	27
	0	0	Ō	2	32
	0	0	0	0	5

Careful: this ONLY works with triangular matrices!

es 4.5: Matrix Inv

Course Notes 4.5: Matrix Inverses 00000000000000000	4.6: Determinants 000000000000000	
More Determinant Tricks		Notes
Helpful Facts for Calculating the Determinant of a A:	a Square Matrix	
1. If B is obtained from A by multiplying one ro	ow of A by the	

- If B is obtained from A by multiplying one row of A by the constant c then det B = c det A.
- 2. If *B* is obtained from *A* by **switching** two rows of *A* then $\det B = -\det A$.
- 3. If B is obtained from A by adding a multiple of one row to another then det $B = \det A$.
- 4. det(A) = 0 if and only if A is not invertible
- 5. For all matrices B of the same size as A,

det(AB) = det(A) det(B).

6. $\det(A^T) = \det(A)$

Remark: You should understand how the first three lead to the fourth; otherwise, the proofs are optional, found in the notes.

Course Notes 4.5: Matrix Inverses

4.6: Determinants 000000000000000

Notes

A is invertible

If A is invertible, then $det(A) \neq 0$

- \Rightarrow we can row-reduce A to the identity matrix
- ⇒ we can row-reduce A to a matrix with determinant 1
 Adding a multiple of one row to another row does not change the determinant
 - \bullet Swapping two rows multiplies the determinant by -1
 - \bullet Multiplying a row by a constant a multiplies the deter-
 - minant by a
- \Rightarrow $c \det(A) = 1$, where c is some constant

 $\Rightarrow \det(A) \neq 0$

Course Notes 4.5: Matrix Inverses cococococococococo Solutions to Systems of Equations

Notes

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.
- 5) A is invertible
- 6) det(A) \neq 0

Course Notes 4.5: Matrix Inverses 000000000000000000	4.6: Determinants 0000000000000000000
Is A invertible? $A = \begin{bmatrix} 72 & 9 & 8 & 16 \\ 0 & 4 & 3 & -9 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 21 \end{bmatrix}$	
$det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad det \begin{bmatrix} 0 \\ 10 \\ 10 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 0 \\ 5 & 0 & 1 \\ 0 & 5 & 3 \\ 2 & 1 & 1 \end{bmatrix} = ?$
Calculate: $det \begin{bmatrix} 1 & 5 & 10 & 15 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$	

Notes			

Course Notes 4.5: Matrix Inverses 000000000000000000	4.6: Determinants 00000000●00000
$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210;$	$\det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix}$
$det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix}$	$det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix}$

urse	ivotes	4.5:	IVIatrix	Inve	rses
0000	0000	0000		00	

Notes

Notes

Suppose det A = 5 for an invertible matrix A. What is det (A^{-1}) ?

Suppose A is an *n*-by-*n* matrix with determinant 5. What is the determinant of 3A?

Suppose A is an n-by-n matrix, and ${\bf x}$ and ${\bf y}$ are distinct vectors in \mathbb{R}^n with $A{\bf x}=A{\bf y}.$ What is $\det(A)?$

ourse Notes 4.5: Matrix Inverses	4.6: Determinants 000000000000000000000000000000000000
Jsing Row Reduction to Calculate a Determinan	t
$ \begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2} R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} det: -2 \xrightarrow{R_2 + R_1} det: -2 \xrightarrow{2R_2} det: -1 \xrightarrow{R_3 + R_2} det: -1 $	$\begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$ det : -1
$\det \begin{pmatrix} \begin{bmatrix} 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \end{pmatrix} = -(-1)\det$	$t\left(\begin{bmatrix}1&1&1\\3&5&8\\9&6&1\end{bmatrix}\right)$
$= \det \left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 5 \\ 0 & -3 & -8 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & 5 & -8 \end{bmatrix} \right) = 1 \det \left(\begin{bmatrix} 2 \\ -3 \\ -3 \end{bmatrix} \right)$ $= -16 + 15 = -1$	$\begin{bmatrix} 5\\-8 \end{bmatrix}$

Is the original 4-by-4 matrix invertible?

Course Notes 4.5: Matrix Inverses

4.6: Determinants 000000000000000000

Notes

Suppose a matrix has the following $\ensuremath{\textbf{reduced}}$ form. Is the matrix invertible? What is its determinant?

$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	2 4 0	3 5 6]
$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	2 4 0	3 5 0
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 1 0	0 0 1

"Line" means "row or column" 02

$$\begin{pmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \\ \end{pmatrix} \\ det \left(\begin{bmatrix} 9 & 8 & 5 & 6 & 10 \\ 1 & 0 & 0 & 0 & 1 \\ 7 & 0 & 1 & 1 & 1 \\ 8 & 0 & 1 & 1 & 1 \\ 4 & 3 & 5 & 6 & 7 \\ \end{bmatrix} \right) \\ det \left(\begin{bmatrix} 8 & 9 & 5 & 6 \\ 0 & 1 & 1 & 0 \\ 0 & 7 & 1 & 1 \\ 0 & 8 & 1 & 1 \\ \end{bmatrix} \right)$$

Course Notes 4.5: Matrix Inverses 000000000000000000	4.6: Determinants 000000000000●
More practice	

$$\det\left(\begin{bmatrix} 2 & 5 & 3 & 4\\ 0 & 1 & 2 & 0\\ 4 & 4 & 6 & 9\\ 10 & 5 & 7 & 4\end{bmatrix}\right)$$

Notes

Notes