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Week 8: Inverses and determinants

Course Notes: 4.5, 4.6

Goals: Be able to calculate a matrix's inverse;

understand the relationship between the invertibility of a matrix
and the solutions of associated linear systems;

calculate the determinant of a square matrix of any size, and learn
some tricks to make the computation more efficient.
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Calculate:
1 0 0]f1 2 3
0 1 0|4 56
00 1|7 8 9
Calculate:
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Identity Matrix

1000 0000
0100 0000
0010 0000
000 1 0000

= :
0000 1000
0000 0100
0000 0010
0 000 000 1]

The identity matrix, /, is a square matrix with 1s along its main
diagonal, and Os everywhere else.

For any matrix A that can be multiplied with /, Al = IA = A.

Notes

Notes

Notes
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What is Division? Notes

(a+5)x=7x

Divide both sides by x ***as long as*** x #£ 0

There are some numbers we can't divide by.

X X
272
(a+5)x x

To divide by x, we multiply by a special number (in this case, 1/x)

that has the following property: x(1/x) gives the multiplicative
identity.

(a+5)(1) = 7(1)
1 is the multiplicative identity. If you multiply it by a number, that

number doesn’t change.

(a+5)=7
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What is Division? Notes

To divide by x, we multiply by a special number (in this case, 1/x)
that has the following property: x(1/x) gives the multiplicative
identity.

To replicate “division” in matrices, we want to find a matrix A
(called A~1) with the property that AA~! = /, the identity matrix.

For example, 4 x 0.25 =1, so dividing by 4 is the same as

multiplying by 0.25.

0.1 x 10 = 1, so dividing by 0.1 is the same as multiplying by 10.

We can't divide by 0 because there is NO number x such that

0xx=1.
There are MANY matrices A such that AB # | no matter what

matrix B we try.
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Matrix Inverses: The Closest we can Get to Division Notes

Linear System Setup:

4x+5y+6z = 20

x+2y+3z = 10
x+8y+9z = 30

Solve for x .
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Notes
Definition
A matrix A~! is the inverse of a square matrix A if A1A=1,
where [ is the identity matrix. In this case, also? AA"L = .
“we won't prove this bit
What do you think the inverse of the following matrix should be?
cosf —sinf
sinf  cosf
What do you think the inverse of the following matrix should be?
cosf  sinf
sinff —cosf
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Check: Notes
Check your guesses!
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Notes

Existence of Matrix Inverses

Definition

A matrix A~ is the inverse of a square matrix A if

ATTA=]

where [ is the identity matrix.

Find the inverses of the following matrices:

IS

Il
—
=
==
[t

If Ax =b and A~ exists, then x = A~'b

If A=! exists, then Ax = b has a unique solution.
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If an Inverse Exists.... Notes

Theorem

If an n-by-n matrix A has an inverse A~ then for any b in R",

Ax=b

has precisely one solution, and that solution is

x=A"b.

So, if Ax = b has no solutions:

If Ax = b has infinitely many solutions:
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Solutions to Systems of Equations Notes

Let A be an n-by-n matrix. The following statements are equivalent:

1) Ax = b has exactly one solution for any b .

2) Ax = 0 has no nonzero solutions.

3) The rank of A'is n.

4) The reduced form of A has no zeroes along the main diagonal.

By previous theorem, if A is invertible, all these statements hold.
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Notes
If Ax = b has a unique solution for every b, is A invertible?

R” R"”

T (ki) b Axe =1 by

T(R) (b abn

If T=1is a linear transformation, then we can find a matrix B such that

T~}(b) = Bb

for every b. Then: x = Bb = B(Ax) = (BA)x, so BA=
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If Ax = b has a unique solution for every b, is A invertible?

Need to show: T~!is a linear transformation.
e Fix A.

e Given b, we can solve Ax = b for x.

So, given b, we find x.

output x is the vector we multiply A by to get b.
o T~ 1is linear:
Let T~1(by) = x1 and T~(b2) = xo.
Note A(x1 + x2) = Ax1 + Axa = by + ba.
So, Tﬁl(bl + b2) =X1 + X2 = Tﬁl(bl) + Tﬁl(bz)_
So, T~! preserves addition.

- Note A(sx1) = sA(x1) = sby, so T71(sby) = sx; = sT~}(by).

So, T~ preserves scalar multiplication.

Consider T~1(Ax). Note T~(Ax) = x for every x in R", so
B(Ax) = x for every x. Therefore, BA= 1, so B = AL
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Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

1) Ax = b has exactly one solution for any b .
2) Ax = 0 has no nonzero solutions.

3) The rank of Ais n.

4)
5) Ais invertible

By previous theorem, if A is invertible, all these statements hold.

And now we've shown that if the statements hold, then A is invertible

invertible
invertible statements 1-4
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Solutions to Systems of Equations

Theorem:

A is invertible if and only if Ax = b has exactly one solution for

every b .

Suppose A is a matrix with the following reduced form.
Is A invertible?

[
[
o
—

o o
o = o
O N W
o
o = o
o
o

o
J—
o

Notes

This is a transformation: T’l(b) = x. That is, given input b, the

Since T~ ! is a linear transformation from one collection of vectors
to another, there exists some matrix B such that T~1(b) = Bb.

Notes

The reduced form of A has no zeroes along the main diagonal.

Notes

o o o
o = o
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4.6: Determinants
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An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.
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2 0 0] [a
0 1 0f |d
10 0 1] |g
[1 1 0] [a
01 0f|d
10 0 1] |g
[0 0 17 [a
0 1 0f |d
11 0 0] |g

o

o

4.6: Determinants
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An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.
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More Conveniently Computing the Inverse (when it exists)

Calculate the inverse of A =

Calculate the inverse of B = F 1}

A——

> |

4.6: Determinants
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AN

1
N =
o = O

11

IR [1 0 % %1
01 0 1
—_—

[1A=1]

Notes

Notes

Notes
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Using Inverses Notes

Suppose M = [3 1]. Then (as we just found) M~1 = {1(/)2 ’11/2].
If Mx =[], whatis x 7

7 0-3
Suppose A = [%?g] and A*1:[ 1 o]
207 01

IfBA:[ m,what is B?

e
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Inverses and Products Notes

Suppose A and B are invertible matrices, with the same
dimensions. Simplify:
ABBrAT!

What is (ABC)~1?

Simplify:
[(AC)'A(AB) 1]

Course Notes 4.5: Matrix Inverses 4.6: Determinants
©000000000000000000 ©00000000000000

Determinants Notes

Recall: B
a b
det =ad — bc
lc d
In general:
a1 d12 -+t din
a1 @2 - axn
det . =a11Diy-a12D1p+a13D13---+a1 D1
anl dn2 - an,n_

where D; ; is the determinant of the matrix obtained from A

by deleting row i and column j.
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Calculate
123 4}
0101
det _
“l2 01 0
b 0 2 OJ
0 10 10 0
et |15 02
@l o 5 1| T
01 3 1
Course Notes 4.5: Matrix Inverses 4.6: Determinants

Determinants of Triangular Matrices

Calculate, where x is any number:

det

* X X N O
* ¥ W O O
¥ H O O O
oo O oo

L R N

det

[oleleNellS
O O ON ¥
O O W *x *
o b~ ¥ ¥ ¥
(SN TR I

Fact: for any square matrix A, det(A) = det(AT)
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Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the
diagonal entries?

Notes

Notes

Notes
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Notes
10 9 8 4 12
0 59 7 15
11 2
det |0 0 5 3 7%
0 00 2 32
0 00 0 5
Careful: this ONLY works with triangular matrices!
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More Determinant Tricks Notes
Helpful Facts for Calculating the Determinant of a Square Matrix
A:
1. If B is obtained from A by multiplying one row of A by the
constant ¢ then det B = cdet A.
2. If B is obtained from A by switching two rows of A then
det B = —det A.
3. If B is obtained from A by adding a multiple of one row to
another then det B = det A.
4. det(A) = 0 if and only if A is not invertible
5. For all matrices B of the same size as A,
det(AB) = det(A) det(B).
6. det(AT) = det(A)
Remark: You should understand how the first three lead to the fourth;
otherwise, the proofs are optional, found in the notes.
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If Ais invertible, then det(A) # 0 Notes

A is invertible

we can row-reduce A to the identity matrix
we can row-reduce A to a matrix with determinant 1

4

e Adding a multiple of one row to another row does not
change the determinant

e Swapping two rows multiplies the determinant by —1
e Multiplying a row by a constant a multiplies the deter-
minant by a

cdet(A) = 1, where c is some constant
det(A) # 0

4
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Solutions to Systems of Equations Notes

Let A be an n-by-n matrix. The following statements are

equivalent:
1) Ax = b has exactly one solution for any b .

N

) Ax = 0 has no nonzero solutions.
) The rank of A is n.

w

~

) The reduced form of A has no zeroes along the main diagonal.

5) As invertible
6) det(A) # 0

nonzero determinant,

invertible statements 1-4
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Is A invertible?
72 9 8 16
0 4 3 -9
A= 0 05 3
0 00 21
0 10 10 0 0120
1 5 0 2 10 5 0 1
= —210: —?
det 50 5 1 210; det 005 3
01 3 1 0 211
1 5 10 15
01 1 1
Calculate: det 02 1 2
01 2 1
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Notes
0 10 10 O 0 20 20 0
1 5 0 2 1 5 0 2
det s 0 5 1|7 —210; det 20 5 1
01 3 1 01 3 1
2 0 5 1 2 0 5 1
det 1 5 0 2 det 0 10 10 0
1o 10 10 0 1 s 0 2
01 3 1 01 3 1
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Notes
Suppose det A =5 for an invertible matrix A. What is det(A~1)?
Suppose A is an n-by-n matrix with determinant 5. What is the
determinant of 3A?
Suppose A is an n-by-n matrix, and x and y are distinct vectors in
R” with Ax = Ay. What is det(A)?
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Using Row Reduction to Calculate a Determinant Notes
10 4 10 4 in 10 4 10 4
128 BB do o sl 22 o1 2] BRy o1 2
01 1 01 1 01 1 00 -1
det: —2 Lot det: —2 R det: —1 Lotk det: —1
2 2 21 00 0 -1
111
1111 111 1
det 35 8 7 = det 3538 7 = —(—1)det <|:3 2 ii:|>
9 6 1 4 9 6 1 4
111 10 0 5
=det 0 2 5 = det 1 2 -3 :1det([ 3 8])
-3 -8 5 -8
=-16+15=-1
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Notes

Suppose a matrix has the following reduced form. Is the matrix
invertible? What is its determinant?

o o
o N
[ BN}
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Determinant Expansion across Alternate Lines Notes

“Line” means “row or column”02

. — + —
— 4
4+ — + —
— 4
[9 8 5 6 10]
1000 1
det 70111
8 01 1 1
4 356 7]
8 9 5 6
0110
detilog 711
0811
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More practice Notes
2 5 3 4
det 0120
4 4 6 9
10 5 7 4

Notes




