$\begin{array}{ll}\text { Course Notes 4.5: Matrix Inverses } \\ 0000000000000000000 & \text { 4.6: Determinants } \\ 000000000000000\end{array}$
Outline

Week 8: Inverses and determinants

Course Notes: 4.5, 4.6

Goals: Be able to calculate a matrix's inverse;
understand the relationship between the invertibility of a matrix and the solutions of associated linear systems; calculate the determinant of a square matrix of any size, and learn some tricks to make the computation more efficient.

Course Notes 4.5: Matrix Inver
6: Determinants 00000000000000

Calculate:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Calculate:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
I=\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & & 0 & 0 & 0 & 0 \\
& \vdots & & & \ddots & & & \vdots & \\
0 & 0 & 0 & 0 & & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & & 0 & 0 & 0 & 1
\end{array}\right]
$$

The identity matrix, I, is a square matrix with 1 s along its main diagonal, and 0 s everywhere else.

For any matrix A that can be multiplied with $I, A I=I A=A$.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
(a+5) x=7 x
$$

Divide both sides by $x^{* * *}$ as long as*** $x \neq 0$
There are some numbers we can't divide by.

$$
(a+5) \frac{x}{x}=7 \frac{x}{x}
$$

To divide by x, we multiply by a special number (in this case, $1 / x$) that has the following property: $x(1 / x)$ gives the multiplicative identity.

$$
(a+5)(1)=7(1)
$$

1 is the multiplicative identity. If you multiply it by a number, that number doesn't change.

$$
(a+5)=7
$$

Course Notes 4.5: Matrix Invers

4.6: Determinants

What is Division?

To divide by x, we multiply by a special number (in this case, $1 / x$) that has the following property: $x(1 / x)$ gives the multiplicative identity.
To replicate "division" in matrices, we want to find a matrix A (called A^{-1}) with the property that $A A^{-1}=I$, the identity matrix.

For example, $4 \times 0.25=1$, so dividing by 4 is the same as multiplying by 0.25 .
$0.1 \times 10=1$, so dividing by 0.1 is the same as multiplying by 10 .
We can't divide by 0 because there is NO number x such that $0 \times x=1$.
There are MANY matrices A such that $A B \neq I$ no matter what matrix B we try.

Course Notes 4.5: Matrix Invers 0000000000000000000
 Matrix Inverses: The Closest we can Get to Division 4.6: Determinants 000000000000000

Linear System Setup:

$$
\begin{gathered}
\left\{\begin{array}{r}
x+2 y+3 z=10 \\
4 x+5 y+6 z=20 \\
7 x+8 y+9 z=30
\end{array}\right. \\
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad \mathbf{x}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right] \\
A \mathbf{x}=\mathbf{b}
\end{gathered}
$$

Solve for \mathbf{x}

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
Course Notes 4.5: Matrix Inverses 4.6: Determinants
00000\bullet0000000000000
    4.6: Determinants
    000000000000000
```

Definition
A matrix A^{-1} is the inverse of a square matrix A if $A^{-1} A=I$, where I is the identity matrix. In this case, also ${ }^{a} A A^{-1}=I$.
${ }^{a}$ we wont prove this bit

What do you think the inverse of the following matrix should be?

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

What do you think the inverse of the following matrix should be?

$$
\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

Course Notes 4.5: Matrix Inverses 4.6: Determinants
 Check:

Check your guesses!

Course Notes 4.5: Matrix Inverses	4.6: Determinants
0.0000000000000000000	
Existence of Matrix Inverses	

Definition
A matrix A^{-1} is the inverse of a square matrix A if

$$
A^{-1} A=1
$$

where I is the identity matrix.
Find the inverses of the following matrices:
$A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$
$B=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$
$C=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$D=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

If $A \mathbf{x}=\mathbf{b}$ and A^{-1} exists, then $\mathbf{x}=A^{-1} \mathbf{b}$
If A^{-1} exists, then $A \mathbf{x}=\mathbf{b}$ has a unique solution.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 4.5: Matrix Inverses 4.6: Determinants
If an Inverse Exists.
4.0. Determinants

Theorem
If an n-by- n matrix A has an inverse A^{-1}, then for any \mathbf{b} in \mathbb{R}^{n},

$$
A \mathbf{x}=\mathbf{b}
$$

has precisely one solution, and that solution is

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

So, if $A \mathbf{x}=\mathbf{b}$ has no solutions:

If $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions:

Course Notes 4.5: Matrix Inverses
 4.6: Determinants

Solutions to Systems of Equations

Let A be an n-by- n matrix. The following statements are equivalent:

1) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for any \mathbf{b}.
2) $\mathbf{A x}=\mathbf{0}$ has no nonzero solutions.
3) The rank of A is n.
4) The reduced form of A has no zeroes along the main diagonal.

By previous theorem, if A is invertible, all these statements hold.

If $A \mathbf{x}=\mathbf{b}$ has a unique solution for every \mathbf{b}, is A invertible?

If T^{-1} is a linear transformation, then we can find a matrix B such that

$$
T^{-1}(\mathbf{b})=B \mathbf{b}
$$

for every \mathbf{b}. Then: $\mathbf{x}=B \mathbf{b}=B(A \mathbf{x})=(B A) \mathbf{x}$, so $B A=I$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Consider $T^{-1}(A \mathbf{x})$. Note $T^{-1}(A \mathbf{x})=\mathbf{x}$ for every \mathbf{x} in \mathbb{R}^{n}, so $B(A \mathbf{x})=\mathbf{x}$ for every \mathbf{x}. Therefore, $B A=I$, so $B=A^{-1}$.

Course Notes 4.5. Matrix IINereses OuOC

Solutions to Systems of Equations

Let A be an n-by- n matrix. The following statements are equivalent:

1) $A \mathbf{x}=\boldsymbol{b}$ has exactly one solution for any \mathbf{b}.
2) $A \boldsymbol{x}=\mathbf{0}$ has no nonzero solutions.
3) The rank of A is n.
4) The reduced form of A has no zeroes along the main diagonal.
5) A is invertible

By previous theorem, if A is invertible, all these statements hold.
And now we've shown that if the statements hold, then A is invertible

Course Notes 4.5: Matrix Inverses
ou00000000000000000

Theorem:
A is invertible if and only if $A \mathbf{x}=\mathbf{b}$ has exactly one solution for every b .

Suppose A is a matrix with the following reduced form. Is A invertible?
$\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 4.5: Matrix Inverses 4.6: Determinants
An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.
$\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=$
$\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=$
$\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=$

Course Notes 4.5: Matrix Inverses
0000000000000000000
An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

$$
A \rightarrow \rightarrow \rightarrow I
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculate the inverse of $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\underbrace{\left[\begin{array}{ll|ll}2 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]}_{[A \mid l]} \xrightarrow{R 1-R 2}\left[\begin{array}{ll|ll}2 & 0 & 1 & -1 \\ 0 & 1 & 0 & 1\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}} \underbrace{\left[\begin{array}{cc|cc}1 & 0 & \frac{1}{2} & \frac{-1}{2} \\ 0 & 1 & 0 & 1\end{array}\right]}_{\left[| | A^{-1}\right]}$
Calculate the inverse of $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7\end{array}\right]$

Using Inverses
Suppose $M=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$. Then (as we just found) $M^{-1}=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ 0 & 1\end{array}\right]$.
If $M \mathbf{x}=\left[\begin{array}{c}5 \\ 18\end{array}\right]$, what is \mathbf{x} ?

Suppose $A=\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7\end{array}\right]$ and $A^{-1}=\left[\begin{array}{ccc}7 & 0 & -3 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$.
If $B A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, what is B ?

Course Notes 4.5: Matrix Inverses
0000000000000000000
Inverses and Products

Suppose A and B are invertible matrices, with the same dimensions. Simplify:

$$
A B B^{-1} A^{-1}
$$

What is $(A B C)^{-1}$?

Simplify:

$$
\left[(A C)^{-1} A(A B)^{-1}\right]^{-1}
$$

Course Notes 4.5: Matrix Inverses	4.6: Determinants
0000000000000000000	$\bullet 00000000000000$
Determinants	

Recall:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-b c
$$

In general:
$\operatorname{det}\left[\begin{array}{cccc}a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\ & & \vdots & \\ a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}\end{array}\right]=a_{1,1} D_{1,1}-a_{1,2} D_{1,2}+a_{1,3} D_{1,3} \cdots \pm a_{1, n} D_{1, n}$
where $D_{i, j}$ is the determinant of the matrix obtained from A by deleting row i and column j.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{ll}\text { Course Notes 4.5: Matrix Inverses } \\ \text { O.00000000000000000 } & \text { 4.6: Determinants }\end{array}$
Calculate
$\operatorname{det}\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0\end{array}\right]=$
$\operatorname{det}\left[\begin{array}{cccc}0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1\end{array}\right]=$

Course Notes 4.5: Matrix Inverses
Determinants of Triangular Matrices

Calculate, where $*$ is any number:
$\operatorname{det}\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ * & 2 & 0 & 0 & 0 \\ * & * & 3 & 0 & 0 \\ * & * & * & 4 & 0 \\ * & * & * & * & 5\end{array}\right]$
$\operatorname{det}\left[\begin{array}{lllll}1 & * & * & * & * \\ 0 & 2 & * & * & * \\ 0 & 0 & 3 & * & * \\ 0 & 0 & 0 & 4 & * \\ 0 & 0 & 0 & 0 & 5\end{array}\right]$

Fact: for any square matrix $A, \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$

Is the determinant of ANY triangular matrix the product of the diagonal entries?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
若
\square 4.6: Determinants
000000000000000 0000000000000

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
$\operatorname{det}\left[\begin{array}{ccccc}10 & 9 & 8 & 4 & 12 \\ 0 & 5 & 9 & 7 & 15 \\ 0 & 0 & \frac{1}{2} & \frac{1}{3} & \frac{2}{7} \\ 0 & 0 & 0 & 2 & 32 \\ 0 & 0 & 0 & 0 & 5\end{array}\right]$

Careful: this ONLY works with triangular matrices!

Helpful Facts for Calculating the Determinant of a Square Matrix A :

1. If B is obtained from A by multiplying one row of A by the constant c then $\operatorname{det} B=c \operatorname{det} A$.
2. If B is obtained from A by switching two rows of A then $\operatorname{det} B=-\operatorname{det} A$.
3. If B is obtained from A by adding a multiple of one row to another then $\operatorname{det} B=\operatorname{det} A$.
4. $\operatorname{det}(A)=0$ if and only if A is not invertible
5. For all matrices B of the same size as A, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
6. $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$

Remark: You should understand how the first three lead to the fourth; otherwise, the proofs are optional, found in the notes.

Notes

A is invertible
\Rightarrow we can row-reduce A to the identity matrix
$\Rightarrow \quad$ we can row-reduce A to a matrix with determinant 1

- Adding a multiple of one row to another row does not
change the determinant
- Swapping two rows multiplies the determinant by -1
- Multiplying a row by a constant a multiplies the deter-
minant by a
$\Rightarrow \quad c \operatorname{det}(A)=1$, where c is some constant
$\Rightarrow \quad \operatorname{det}(A) \neq 0$

Notes
\qquad
$\begin{array}{ll}\text { Course Notes 4.5: Matrix Inverses } & \text { 4.6: Determinants } \\ \text { 00000000000000000000 } & 0.00000000000\end{array}$
Solutions to Systems of Equations
Let A be an n-by- n matrix. The following statements are equivalent:

1) $A \mathbf{x}=\mathbf{b}$ has exactly one solution for any \mathbf{b}
2) $A \mathbf{x}=\mathbf{0}$ has no nonzero solutions.
3) The rank of A is n.
4) The reduced form of A has no zeroes along the main diagonal.
5) A is invertible
6) $\operatorname{det}(A) \neq 0$

Is A invertible?

$$
A=\left[\begin{array}{cccc}
72 & 9 & 8 & 16 \\
0 & 4 & 3 & -9 \\
0 & 0 & 5 & 3 \\
0 & 0 & 0 & 21
\end{array}\right]
$$

$\operatorname{det}\left[\begin{array}{cccc}0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1\end{array}\right]=-210 ; \quad \operatorname{det}\left[\begin{array}{cccc}0 & 1 & 2 & 0 \\ 10 & 5 & 0 & 1 \\ 10 & 0 & 5 & 3 \\ 0 & 2 & 1 & 1\end{array}\right]=?$

Calculate:

$$
\operatorname{det}\left[\begin{array}{cccc}
1 & 5 & 10 & 15 \\
0 & 1 & 1 & 1 \\
0 & 2 & 1 & 2 \\
0 & 1 & 2 & 1
\end{array}\right]
$$

Course Notes 4.5: Matrix Inverse

4.6: Determinants 000000000000000

$$
\operatorname{det}\left[\begin{array}{cccc}
0 & 10 & 10 & 0 \\
1 & 5 & 0 & 2 \\
2 & 0 & 5 & 1 \\
0 & 1 & 3 & 1
\end{array}\right]=-210 ; \quad \operatorname{det}\left[\begin{array}{cccc}
0 & 20 & 20 & 0 \\
1 & 5 & 0 & 2 \\
2 & 0 & 5 & 1 \\
0 & 1 & 3 & 1
\end{array}\right]
$$

$\operatorname{det}\left[\begin{array}{cccc}2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1\end{array}\right] \quad \operatorname{det}\left[\begin{array}{cccc}2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1\end{array}\right]$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Suppose $\operatorname{det} A=5$ for an invertible matrix A. What is $\operatorname{det}\left(A^{-1}\right)$?

Suppose A is an n-by- n matrix with determinant 5 . What is the determinant of $3 A$?

Suppose A is an n-by- n matrix, and \mathbf{x} and \mathbf{y} are distinct vectors in \mathbb{R}^{n} with $A \mathbf{x}=A \mathbf{y}$. What is $\operatorname{det}(A)$?

Course Notes 4.5: Matix Inverses
 4.6: Determinants $00000000000 \bullet 000$
 Using Row Reduction to Calculate a Determinant


``` \(\operatorname{det}\left(\left[\begin{array}{llll}2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cccc}0 & 0 & 0 & -1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4\end{array}\right]\right)=-(-1) \operatorname{det}\left(\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 8 \\ 9 & 6 & 1\end{array}\right]\right)\)
\(=\operatorname{det}\left(\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 5 \\ 0 & -3 & -8\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & 5 & -8\end{array}\right]\right)=1 \operatorname{det}\left(\left[\begin{array}{cc}2 & 5 \\ -3 & -8\end{array}\right]\right)\)
\(=-16+15=-1\)
```

Is the original 4 -by- 4 matrix invertible?

Course Notes 4.5: Matrix Inver

Suppose a matrix has the following reduced form. Is the matrix invertible? What is its determinant?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 4.5: Matrix Inverses
Determinant Expansion across Alternate Lines
"Line" means "row or column" 02
$\left[\begin{array}{llll}+ & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & +\end{array}\right]$
$\operatorname{det}\left(\left[\begin{array}{llllc}9 & 8 & 5 & 6 & 10 \\ 1 & 0 & 0 & 0 & 1 \\ 7 & 0 & 1 & 1 & 1 \\ 8 & 0 & 1 & 1 & 1 \\ 4 & 3 & 5 & 6 & 7\end{array}\right]\right)$
$\operatorname{det}\left(\left[\begin{array}{llll}8 & 9 & 5 & 6 \\ 0 & 1 & 1 & 0 \\ 0 & 7 & 1 & 1 \\ 0 & 8 & 1 & 1\end{array}\right]\right)$

Course Notes 4.5: Matix Inverses
ooocoocoocoo000000000
More practice
4.6: Determinants

000000000000000•

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2 & 5 & 3 & 4 \\
0 & 1 & 2 & 0 \\
4 & 4 & 6 & 9 \\
10 & 5 & 7 & 4
\end{array}\right]\right)
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

