

Outline

Week 8: Inverses and determinants

Course Notes: 4.5, 4.6

Goals: Be able to calculate a matrix's inverse; understand the relationship between the invertibility of a matrix and the solutions of associated linear systems; calculate the determinant of a square matrix of any size, and learn some tricks to make the computation more efficient.

4.6: Determinants

Calculate:

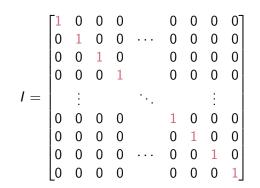
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Calculate:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

4.6: Determinants

Identity Matrix



The identity matrix, *I*, is a square matrix with 1s along its main diagonal, and 0s everywhere else.

For any matrix A that can be multiplied with I, AI = IA = A.

4.6: Determinants

What is Division?

$$(a+5)x = 7x$$

4.6: Determinants

What is Division?

$$(a+5)x = 7x$$

4.6: Determinants

What is Division?

$$(a+5)x = 7x$$

$$(a+5)\frac{x}{x}=7\frac{x}{x}$$

4.6: Determinants

What is Division?

$$(a+5)x = 7x$$

$$(a+5)\frac{x}{x}=7\frac{x}{x}$$

$$(a+5)(1) = 7(1)$$

4.6: Determinants

What is Division?

$$(a+5)x = 7x$$

$$(a+5)\frac{x}{x}=7\frac{x}{x}$$

$$(a+5)(1) = 7(1)$$

$$(a+5) = 7$$

4.6: Determinants

What is Division?

$$(a+5)x = 7x$$

$$(a+5)\frac{x}{x}=7\frac{x}{x}$$

$$(a+5)(1) = 7(1)$$

$$(a+5) = 7$$

4.6: Determinants

What is Division?

$$(a+5)x = 7x$$

Divide both sides by x ***as long as*** $x \neq 0$ There are some numbers we can't divide by.

$$(a+5)\frac{x}{x}=7\frac{x}{x}$$

$$(a+5)(1) = 7(1)$$

$$(a+5) = 7$$

4.6: Determinants

What is Division?

$$(a+5)x = 7x$$

Divide both sides by x ***as long as*** $x \neq 0$ There are some numbers we can't divide by.

$$(a+5)\frac{x}{x}=7\frac{x}{x}$$

$$(a+5)(1) = 7(1)$$

1 is the *multiplicative identity*. If you multiply it by a number, that number doesn't change.

$$(a+5) = 7$$

4.6: Determinants

What is Division?

$$(a+5)x=7x$$

Divide both sides by x ***as long as*** $x \neq 0$ There are some numbers we can't divide by.

$$(a+5)\frac{x}{x}=7\frac{x}{x}$$

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

$$(a+5)(1) = 7(1)$$

1 is the *multiplicative identity*. If you multiply it by a number, that number doesn't change.

$$(a+5) = 7$$

4.6: Determinants

What is Division?

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

4.6: Determinants

What is Division?

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

For example, $4 \times 0.25 = 1$, so dividing by 4 is the same as multiplying by 0.25.

4.6: Determinants

What is Division?

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

For example, $4 \times 0.25 = 1$, so dividing by 4 is the same as multiplying by 0.25.

 $0.1 \times 10 = 1$, so dividing by 0.1 is the same as multiplying by 10.

4.6: Determinants

What is Division?

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

For example, $4 \times 0.25 = 1$, so dividing by 4 is the same as multiplying by 0.25.

 $0.1 \times 10 = 1$, so dividing by 0.1 is the same as multiplying by 10.

We can't divide by 0 because there is NO number x such that $0 \times x = 1$.

What is Division?

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

To replicate "division" in matrices, we want to find a matrix A (called A^{-1}) with the property that $AA^{-1} = I$, the identity matrix.

For example, $4 \times 0.25 = 1$, so dividing by 4 is the same as multiplying by 0.25.

 $0.1 \times 10 = 1$, so dividing by 0.1 is the same as multiplying by 10.

We can't divide by 0 because there is NO number x such that $0 \times x = 1$.

What is Division?

To divide by x, we multiply by a special number (in this case, 1/x) that has the following property: x(1/x) gives the multiplicative identity.

To replicate "division" in matrices, we want to find a matrix A (called A^{-1}) with the property that $AA^{-1} = I$, the identity matrix.

For example, $4 \times 0.25 = 1$, so dividing by 4 is the same as multiplying by 0.25.

 $0.1 \times 10 = 1$, so dividing by 0.1 is the same as multiplying by 10.

We can't divide by 0 because there is NO number x such that $0 \times x = 1$. There are MANY matrices A such that $AB \neq I$ no matter what matrix B we try.

4.6: Determinants

Matrix Inverses: The Closest we can Get to Division

Linear System Setup:

$$\begin{cases} x + 2y + 3z &= 10\\ 4x + 5y + 6z &= 20\\ 7x + 8y + 9z &= 30 \end{cases}$$

4.6: Determinants

Matrix Inverses: The Closest we can Get to Division

Linear System Setup:

$$\begin{cases} x + 2y + 3z &= 10\\ 4x + 5y + 6z &= 20\\ 7x + 8y + 9z &= 30 \end{cases}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

4.6: Determinants

Matrix Inverses: The Closest we can Get to Division

Linear System Setup:

$$\begin{cases} x + 2y + 3z &= 10\\ 4x + 5y + 6z &= 20\\ 7x + 8y + 9z &= 30 \end{cases}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

 $A\mathbf{x} = \mathbf{b}$

Solve for ${\boldsymbol x}$.

4.6: Determinants

Matrix Inverses: The Closest we can Get to Division

Linear System Setup:

$$\begin{cases} x + 2y + 3z &= 10\\ 4x + 5y + 6z &= 20\\ 7x + 8y + 9z &= 30 \end{cases}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

 $A\mathbf{x} = \mathbf{b}$

Solve for \boldsymbol{x} .

Can't we just divide by A?

4.6: Determinants

Matrix Inverses: The Closest we can Get to Division

Linear System Setup:

$$\begin{cases} x + 2y + 3z &= 10\\ 4x + 5y + 6z &= 20\\ 7x + 8y + 9z &= 30 \end{cases}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

$$A\mathbf{x} = \mathbf{b}$$

Solve for \boldsymbol{x} .

Can't we just divide by A? Wanted: a matrix A^{-1} with the property $A^{-1}A = I$, identity matrix.

4.6: Determinants

Matrix Inverses: The Closest we can Get to Division

Linear System Setup:

$$\begin{cases} x + 2y + 3z = 10 \\ 4x + 5y + 6z = 20 \\ 7x + 8y + 9z = 30 \end{cases}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

$$A\mathbf{x} = \mathbf{b}$$

Solve for ${\boldsymbol x}$.

Can't we just divide by A? Wanted: a matrix A^{-1} with the property $A^{-1}A = I$, identity matrix. Then: $A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$, so $\mathbf{x} = A^{-1}\mathbf{b}$

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if $A^{-1}A = I$, where I is the identity matrix. In this case, also^a $AA^{-1} = I$.

"we won't prove this bit

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if $A^{-1}A = I$, where I is the identity matrix. In this case, also^a $AA^{-1} = I$.

^awe won't prove this bit

What do you think the inverse of the following matrix should be?

$$\begin{array}{c} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}$$

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if $A^{-1}A = I$, where I is the identity matrix. In this case, also^a $AA^{-1} = I$.

^awe won't prove this bit

What do you think the inverse of the following matrix should be?

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

What do you think the inverse of the following matrix should be?

$$\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

=

=

4.6: Determinants

Check:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$$

$$\begin{bmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{bmatrix}$$

=

4.6: Determinants

Check:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$$
$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^2 \theta + \sin^2 \theta & 0 \\ 0 & \sin^2 \theta + \cos^2 \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

4.6: Determinants

Check:

$$\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos(-\theta) & -\sin(-\theta)\\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0\\ 0 & \sin^2\theta + \cos^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{bmatrix} \begin{bmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^{2}\theta + \sin^{2}\theta & 0\\ 0 & \sin^{2}\theta + \cos^{2}\theta \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

Existence of Matrix Inverses

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if

$$A^{-1}A = I$$

where I is the identity matrix.

Existence of Matrix Inverses

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if

$$A^{-1}A = I$$

where I is the identity matrix.

Find the inverses of the following matrices:

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

4.6: Determinants

Existence of Matrix Inverses

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if

$$A^{-1}A = I$$

where I is the identity matrix.

Find the inverses of the following matrices:

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

Existence of Matrix Inverses

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if

$$A^{-1}A = I$$

where I is the identity matrix.

Find the inverses of the following matrices:

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

4.6: Determinants

Existence of Matrix Inverses

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if

$$A^{-1}A = I$$

where I is the identity matrix.

Find the inverses of the following matrices:

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

If $A\mathbf{x} = \mathbf{b}$ and A^{-1} exists, then $\mathbf{x} = A^{-1}\mathbf{b}$

4.6: Determinants

Existence of Matrix Inverses

Definition

A matrix A^{-1} is the **inverse** of a square matrix A if

$$A^{-1}A = I$$

where I is the identity matrix.

Find the inverses of the following matrices:

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$$

If $A\mathbf{x} = \mathbf{b}$ and A^{-1} exists, then $\mathbf{x} = A^{-1}\mathbf{b}$ If A^{-1} exists, then $A\mathbf{x} = \mathbf{b}$ has a **unique** solution.

If an Inverse Exists....

Theorem

If an *n*-by-*n* matrix A has an inverse A^{-1} , then for any **b** in \mathbb{R}^n ,

$$A\mathbf{x} = \mathbf{b}$$

has precisely one solution, and that solution is

$$\mathbf{x} = A^{-1}\mathbf{b}.$$

If an Inverse Exists....

Theorem

If an *n*-by-*n* matrix A has an inverse A^{-1} , then for any **b** in \mathbb{R}^n ,

$$A\mathbf{x} = \mathbf{b}$$

has precisely one solution, and that solution is

$$\mathbf{x} = A^{-1}\mathbf{b}.$$

So, if $A\mathbf{x} = \mathbf{b}$ has no solutions:

4.6: Determinants

If an Inverse Exists....

Theorem

If an *n*-by-*n* matrix A has an inverse A^{-1} , then for any **b** in \mathbb{R}^n ,

$A\mathbf{x} = \mathbf{b}$

has precisely one solution, and that solution is

$$\mathbf{x} = A^{-1}\mathbf{b}.$$

So, if $A\mathbf{x} = \mathbf{b}$ has no solutions: A is not invertible. 4.6: Determinants

If an Inverse Exists....

Theorem

If an *n*-by-*n* matrix A has an inverse A^{-1} , then for any **b** in \mathbb{R}^n ,

$A\mathbf{x} = \mathbf{b}$

has precisely one solution, and that solution is

$$\mathbf{x} = A^{-1}\mathbf{b}.$$

So, if $A\mathbf{x} = \mathbf{b}$ has no solutions: A is not invertible.

If $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions:

4.6: Determinants

If an Inverse Exists....

Theorem

If an *n*-by-*n* matrix A has an inverse A^{-1} , then for any **b** in \mathbb{R}^n ,

$A\mathbf{x} = \mathbf{b}$

has precisely one solution, and that solution is

$$\mathbf{x} = A^{-1}\mathbf{b}.$$

So, if $A\mathbf{x} = \mathbf{b}$ has no solutions: A is not invertible.

If $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions: A is not invertible.

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.

Let A be an n-by-n matrix. The following statements are equivalent:

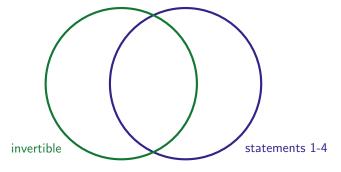
- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.

4.6: Determinants

Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.

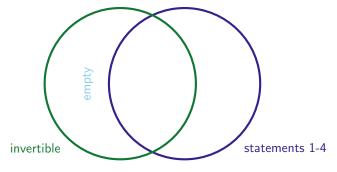


4.6: Determinants

Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.

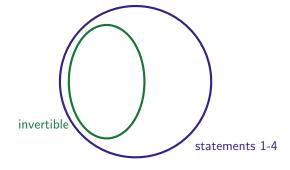


4.6: Determinants

Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.

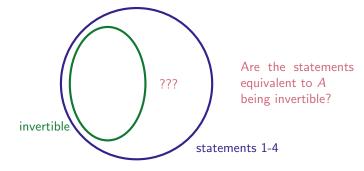


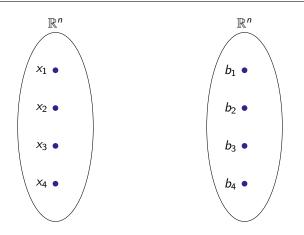
4.6: Determinants

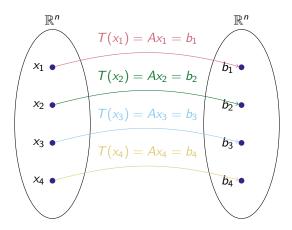
Solutions to Systems of Equations

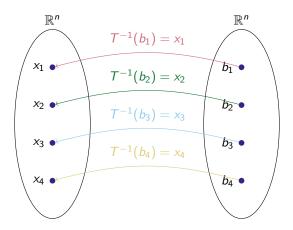
Let A be an n-by-n matrix. The following statements are equivalent:

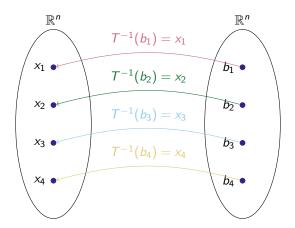
- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.







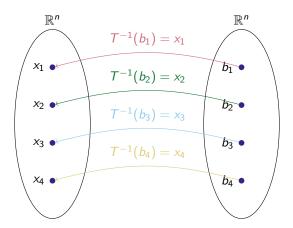




If T^{-1} is a **linear** transformation, then we can find a matrix B such that

$$T^{-1}(\mathbf{b}) = B\mathbf{b}$$

for every **b**.



If T^{-1} is a **linear** transformation, then we can find a matrix B such that

$$T^{-1}(\mathbf{b}) = B\mathbf{b}$$

for every **b**. Then: $\mathbf{x} = B\mathbf{b} = B(A\mathbf{x}) = (BA)\mathbf{x}$, so BA = I

Need to show: T^{-1} is a **linear** transformation.

- Fix *A*.
- Given **b**, we can solve $A\mathbf{x} = \mathbf{b}$ for **x**.
- So, given \mathbf{b} , we find \mathbf{x} .
- This is a transformation: T⁻¹(b) = x. That is, given input b, the output x is the vector we multiply A by to get b.
- T⁻¹ is linear:

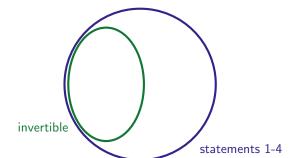
- Let
$$T^{-1}(\mathbf{b}_1) = \mathbf{x}_1$$
 and $T^{-1}(\mathbf{b}_2) = \mathbf{x}_2$.
- Note $A(\mathbf{x}_1 + \mathbf{x}_2) = A\mathbf{x}_1 + A\mathbf{x}_2 = \mathbf{b}_1 + \mathbf{b}_2$.
So, $T^{-1}(\mathbf{b}_1 + \mathbf{b}_2) = \mathbf{x}_1 + \mathbf{x}_2 = T^{-1}(\mathbf{b}_1) + T^{-1}(\mathbf{b}_2)$.
So, T^{-1} preserves addition.
- Note $A(s\mathbf{x}_1) = sA(\mathbf{x}_1) = s\mathbf{b}_1$, so $T^{-1}(s\mathbf{b}_1) = s\mathbf{x}_1 = sT^{-1}(\mathbf{b}_1)$.

- So, T^{-1} preserves scalar multiplication.
- Since T^{-1} is a linear transformation from one collection of vectors to another, there exists some matrix B such that $T^{-1}(\mathbf{b}) = B\mathbf{b}$.
- Consider $T^{-1}(A\mathbf{x})$. Note $T^{-1}(A\mathbf{x}) = \mathbf{x}$ for every \mathbf{x} in \mathbb{R}^n , so $B(A\mathbf{x}) = \mathbf{x}$ for every \mathbf{x} . Therefore, BA = I, so $B = A^{-1}$.

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.

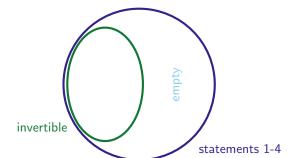
By previous theorem, if A is invertible, all these statements hold. And now we've shown that if the statements hold, then A is invertible



Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.

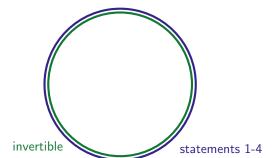
By previous theorem, if A is invertible, all these statements hold. And now we've shown that if the statements hold, then A is invertible



Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.

By previous theorem, if A is invertible, all these statements hold. And now we've shown that if the statements hold, then A is invertible

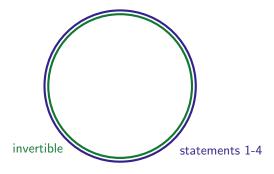


4.6: Determinants

Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.
- 5) A is invertible



4.6: Determinants

Solutions to Systems of Equations

Theorem:

A is invertible if and only if $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every \mathbf{b} .

4.6: Determinants

Solutions to Systems of Equations

Theorem: *A* is invertible if and only if $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every \mathbf{b} .

Γ1	0	3]	[1 0 0]	[1 0 0]
0	1	2	0 1 0	0 0 1
$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	0	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

4.6: Determinants

Solutions to Systems of Equations

Theorem: *A* is invertible if and only if $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every \mathbf{b} .

Γ1	0	3		[1	0	0]	Γ1	0	0]
0	1	2	no				0	0	1
[0	0 1 0	0		[0	0	0 1	0	0	0 1 0

4.6: Determinants

Solutions to Systems of Equations

Theorem: *A* is invertible if and only if $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every \mathbf{b} .

[1	0	3		[1	0	0]		[1	0	0]
0	1	2	no	0	1	0	yes	0	0	1
[0	0 1 0	0_		0	0	1		0	0	0 1 0]

Solutions to Systems of Equations

Theorem: *A* is invertible if and only if $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every \mathbf{b} .

$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \quad no \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad yes \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad no$$

4.6: Determinants

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

4.6: Determinants

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

4.6: Determinants

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication. Row $1 \rightarrow 2 ({\rm Row} \ 1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

4.6: Determinants

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication. Row $1 \rightarrow 2 ({\rm Row}~1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

Row $1 \rightarrow (\text{Row } 1 + \text{Row } 2)$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

4.6: Determinants

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication. Row $1 \rightarrow 2 ({\rm Row} \ 1)$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

Row $1 \rightarrow (\text{Row } 1 + \text{Row } 2)$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

Row 1 \leftrightarrow Row 3

$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

4.6: Determinants

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

 $A \to \to \to I$

We row-reduce A until it becomes the identity matrix. The operations used are equivalent to multiplications:

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

 $A \to \to \to I$

We row-reduce A until it becomes the identity matrix. The operations used are equivalent to multiplications:

 $[E_3 E_2 E_1] A = I$

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

 $A \to \to \to I$

We row-reduce A until it becomes the identity matrix. The operations used are equivalent to multiplications:

 $[E_3 E_2 E_1] A = I$

So, $[E_3E_2E_1] = E$ is the inverse of A. But, how do we find it?

An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

 $A \to \to \to I$

We row-reduce A until it becomes the identity matrix. The operations used are equivalent to multiplications:

 $[E_3 E_2 E_1] A = I$

So, $[E_3E_2E_1] = E$ is the inverse of A. But, how do we find it?

EI = E

so, we reduce I at the same time as A, using the same operations.

 $I \to \to \to [E_3 E_2 E_1]I = E$

4.6: Determinants

$$\begin{bmatrix} A & | & I \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} I & | & A^{-1} \end{bmatrix}$$

4.6: Determinants

$$\begin{bmatrix} A & | & I \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} I & | & A^{-1} \end{bmatrix}$$

4.6: Determinants

$$\begin{bmatrix} A & | & I \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} I & | & A^{-1} \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} 2 & 1 & | & 1 & 0 \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[A|I]} \xrightarrow{R1-R2} \begin{bmatrix} 2 & 0 & | & 1 & -1 \\ 0 & 1 & | & 0 & 1 \end{bmatrix}$$

4.6: Determinants

$$\begin{bmatrix} A & | & I \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} I & | & A^{-1} \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} 2 & 1 & | & 1 & 0 \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[A|I]} \xrightarrow{R1-R2} \begin{bmatrix} 2 & 0 & | & 1 & -1 \\ 0 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \underbrace{\begin{bmatrix} 1 & 0 & | & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[I|A^{-1}]}$$

4.6: Determinants

More Conveniently Computing the Inverse (when it exists)

$$\begin{bmatrix} A & | & I \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} I & | & A^{-1} \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} 2 & 1 & | & 1 & 0 \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[A|I]} \xrightarrow{R1-R2} \begin{bmatrix} 2 & 0 & | & 1 & -1 \\ 0 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \underbrace{\begin{bmatrix} 1 & 0 & | & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[I|A^{-1}]}$$

Calculate the inverse of
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$$

4.6: Determinants

$$\begin{bmatrix} A & | & I \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} I & | & A^{-1} \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} 2 & 1 & | & 1 & 0 \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[A|I]} \xrightarrow{R1-R2} \begin{bmatrix} 2 & 0 & | & 1 & -1 \\ 0 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \underbrace{\begin{bmatrix} 1 & 0 & | & \frac{1}{2} & \frac{-1}{2} \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[I|A^{-1}]}$$

Calculate the inverse of
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$$
 $A^{-1} = \begin{bmatrix} 7 & 0 & -3 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

4.6: Determinants

$$\begin{bmatrix} A & | & I \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} I & | & A^{-1} \end{bmatrix}$$

$$\underbrace{\begin{bmatrix} 2 & 1 & | & 1 & 0 \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[A|I]} \xrightarrow{R1-R2} \begin{bmatrix} 2 & 0 & | & 1 & -1 \\ 0 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_1} \underbrace{\begin{bmatrix} 1 & 0 & | & \frac{1}{2} & \frac{-1}{2} \\ 0 & 1 & | & 0 & 1 \end{bmatrix}}_{[I|A^{-1}]}$$

Calculate the inverse of
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$$
 $A^{-1} = \begin{bmatrix} 7 & 0 & -3 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$
Calculate the inverse of $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

4.6: Determinants

Using Inverses

Suppose
$$M = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
. Then (as we just found) $M^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}$.

4.6: Determinants

Using Inverses

Suppose $M = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Then (as we just found) $M^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}$. If $M\mathbf{x} = \begin{bmatrix} 5 \\ 18 \end{bmatrix}$, what is \mathbf{x} ?

4.6: Determinants

Using Inverses

Suppose
$$M = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$
. Then (as we just found) $M^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}$.
If $M\mathbf{x} = \begin{bmatrix} 5 \\ 18 \end{bmatrix}$, what is \mathbf{x} ?

Suppose
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 7 & 0 & -3 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$.

4.6: Determinants

Using Inverses

Suppose $M = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Then (as we just found) $M^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}$. If $M\mathbf{x} = \begin{bmatrix} 5 \\ 18 \end{bmatrix}$, what is \mathbf{x} ?

Suppose
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 7 & 0 & -3 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$.
If $BA = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, what is B ?

Using Inverses

Suppose $M = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Then (as we just found) $M^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}$. If $M\mathbf{x} = \begin{bmatrix} 5 \\ 18 \end{bmatrix}$, what is \mathbf{x} ?

Fact: the equation

 $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 5 \\ 18 \end{bmatrix}$

has NO solution \mathbf{x} . The matrix $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ is not invertible.

Suppose
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 7 & 0 & -3 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$.
If $BA = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, what is B ?

Using Inverses

Suppose $M = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Then (as we just found) $M^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}$. If $M\mathbf{x} = \begin{bmatrix} 5 \\ 18 \end{bmatrix}$, what is \mathbf{x} ?

Fact: the equation

 $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 5 \\ 18 \end{bmatrix}$

has NO solution \mathbf{x} . The matrix $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ is not invertible.

Suppose
$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 7 & 0 & -3 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$.
If $BA = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, what is B ?

Fact: the equation

$$B\begin{bmatrix}1&0&3\\1&0&3\\2&0&7\end{bmatrix} = \begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}$$

has INFINITELY MANY solutions: $B = \begin{bmatrix} a & (5-a) & -2 \\ a & (5-a) & -2 \\ a & (5-a) & -2 \end{bmatrix}$.

4.6: Determinants

Inverses and Products

Suppose A and B are invertible matrices, with the same dimensions. Simplify:

 $ABB^{-1}A^{-1}$

4.6: Determinants

Inverses and Products

Suppose A and B are invertible matrices, with the same dimensions. Simplify:

 $ABB^{-1}A^{-1}$

Since $ABB^{-1}A^{-1} = I$, we conclude that the inverse of AB is $B^{-1}A^{-1}$.

4.6: Determinants

Inverses and Products

Suppose A and B are invertible matrices, with the same dimensions. Simplify:

 $ABB^{-1}A^{-1}$

Since $ABB^{-1}A^{-1} = I$, we conclude that the inverse of AB is $B^{-1}A^{-1}$.

What is $(ABC)^{-1}$?

4.6: Determinants

Inverses and Products

Suppose A and B are invertible matrices, with the same dimensions. Simplify:

 $ABB^{-1}A^{-1}$

Since $ABB^{-1}A^{-1} = I$, we conclude that the inverse of AB is $B^{-1}A^{-1}$.

What is $(ABC)^{-1}$?

Simplify:

 $[(AC)^{-1}A(AB)^{-1}]^{-1}$

Determinants

Recall:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Determinants

Recall:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$$

Determinants

Recall: $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$ $\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$

Determinants

Recall: $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$ $\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$

Determinants

Recall: $\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$ $\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$

Determinants

Recall:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$
$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$$

In general:

$$\det \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ & & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} = a_{1,1}D_{1,1} - a_{1,2}D_{1,2} + a_{1,3}D_{1,3} \cdots \pm a_{1,n}D_{1,n}$$

where $D_{i,j}$ is the determinant of the matrix obtained from A by deleting row i and column j.

Calculate

$$det \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix}$$

Calculate

$$\det \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} = 6$$

Calculate

$$\det \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} = 6$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix}$$

Calculate

$$\det \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} = 6$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210$$

4.6: Determinants

Determinants of Triangular Matrices

Calculate, where * is any number:

det	[1	0	0	0	0	
	*	2	0	0	0	
	*	*	3	0	0	
	*	*	*	4	0	
	*	0 2 * *	*	*	5	

4.6: Determinants

Determinants of Triangular Matrices

Calculate, where * is any number:

det	[1	0	0	0	0	
	*	2	0	0	0	
	*	*	3	0	0	
	*	*	*	4	0 5	
	*	0 2 * *	*	*	5	

$$det \begin{bmatrix} 1 & * & * & * & * \\ 0 & 2 & * & * & * \\ 0 & 0 & 3 & * & * \\ 0 & 0 & 0 & 4 & * \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

4.6: Determinants

Determinants of Triangular Matrices

Calculate, where * is any number:

	Γ1	0	0	0	0]
det	*	2	0	0	0
	*	*	3	0	0
	*	*	*	4	0
	*	*	*	*	5
	F 4				_
	1	*	*	*	*
det	0	2 0	*	*	*
	0	0	3	*	*
	0	0	0	4	*
	0	0	0	0	5

Fact: for any square matrix A, $det(A) = det(A^T)$

Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?

4.6: Determinants

Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?

$$\det \begin{bmatrix} a & * \\ 0 & b \end{bmatrix} = ab$$

Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?

$$\det \begin{bmatrix} a & * \\ 0 & b \end{bmatrix} = ab$$

For 2-by-2 matrices: yes.

Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?

$$\det \begin{bmatrix} a & * \\ 0 & b \end{bmatrix} = ab$$

For 2-by-2 matrices: yes.

$$\det \begin{bmatrix} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{bmatrix} = a \det \begin{bmatrix} b & * \\ 0 & c \end{bmatrix} - * \det \begin{bmatrix} 0 & * \\ 0 & c \end{bmatrix} + * \det \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$$

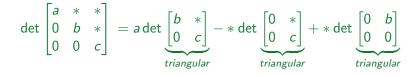
4.6: Determinants

Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?

$$\det \begin{bmatrix} a & * \\ 0 & b \end{bmatrix} = ab$$

For 2-by-2 matrices: yes.



4.6: Determinants

Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?

$$\det \begin{bmatrix} a & * \\ 0 & b \end{bmatrix} = ab$$

For 2-by-2 matrices: yes.

$$\det \begin{bmatrix} a & * & * \\ 0 & b & * \\ 0 & 0 & c \end{bmatrix} = a \det \underbrace{\begin{bmatrix} b & * \\ 0 & c \end{bmatrix}}_{triangular} - * \det \underbrace{\begin{bmatrix} 0 & * \\ 0 & c \end{bmatrix}}_{triangular} + * \det \underbrace{\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}}_{triangular}$$
$$= a(bc) - *(0 \cdot c) + *(0 \cdot 0)$$
$$= abc$$

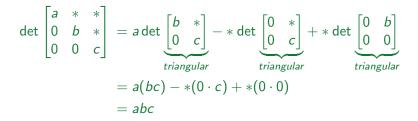
4.6: Determinants

Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?

$$\det \begin{bmatrix} a & * \\ 0 & b \end{bmatrix} = ab$$

For 2-by-2 matrices: yes.



The determinant of any triangular matrix (upper or lower) is the product of the diagonal entries.

4.6: Determinants

$$\det \begin{bmatrix} 10 & 9 & 8 & 4 & 12 \\ 0 & 5 & 9 & 7 & 15 \\ 0 & 0 & \frac{1}{2} & \frac{1}{3} & \frac{2}{7} \\ 0 & 0 & 0 & 2 & 32 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

$$\det \begin{bmatrix} 10 & 9 & 8 & 4 & 12 \\ 0 & 5 & 9 & 7 & 15 \\ 0 & 0 & \frac{1}{2} & \frac{1}{3} & \frac{2}{7} \\ 0 & 0 & 0 & 2 & 32 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix} = (10)(5) \left(\frac{1}{2}\right)(2)(5) = 250$$

$$\det \begin{bmatrix} 10 & 9 & 8 & 4 & 12 \\ 0 & 5 & 9 & 7 & 15 \\ 0 & 0 & \frac{1}{2} & \frac{1}{3} & \frac{2}{7} \\ 0 & 0 & 0 & 2 & 32 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix} = (10)(5) \left(\frac{1}{2}\right)(2)(5) = 250$$

Careful: this ONLY works with triangular matrices!

- 1. If B is obtained from A by multiplying one row of A by the constant c then det $B = c \det A$.
- If B is obtained from A by switching two rows of A then det B = - det A.
- 3. If B is obtained from A by adding a multiple of one row to another then det $B = \det A$.
- 4. det(A) = 0 if and only if A is not invertible
- 5. For all matrices B of the same size as A, det(AB) = det(A) det(B).
- 6. $det(A^T) = det(A)$

- 1. If *B* is obtained from *A* by multiplying one row of *A* by the constant *c* then det B = c det *A*.
- If B is obtained from A by switching two rows of A then det B = - det A.
- 3. If *B* is obtained from *A* by adding a multiple of one row to another then det *B* = det *A*.
- 4. det(A) = 0 if and only if A is not invertible
- 5. For all matrices B of the same size as A, det(AB) = det(A) det(B).
- 6. $det(A^T) = det(A)$

- 1. If *B* is obtained from *A* by multiplying one row of *A* by the constant *c* then det B = c det *A*.
- If B is obtained from A by switching two rows of A then det B = - det A.
- 3. If B is obtained from A by adding a multiple of one row to another then det $B = \det A$.
- 4. det(A) = 0 if and only if A is not invertible
- 5. For all matrices B of the same size as A, det(AB) = det(A) det(B).
- 6. $det(A^T) = det(A)$

- 1. If *B* is obtained from *A* by multiplying one row of *A* by the constant *c* then det B = c det *A*.
- If B is obtained from A by switching two rows of A then det B = - det A.
- 3. If B is obtained from A by adding a multiple of one row to another then det $B = \det A$.
- 4. det(A) = 0 if and only if A is not invertible
- 5. For all matrices B of the same size as A, det(AB) = det(A) det(B).
- 6. $\det(A^{T}) = \det(A)$

Helpful Facts for Calculating the Determinant of a Square Matrix *A*:

- 1. If *B* is obtained from *A* by multiplying one row of *A* by the constant *c* then det $B = c \det A$.
- If B is obtained from A by switching two rows of A then det B = - det A.
- 3. If B is obtained from A by adding a multiple of one row to another then det $B = \det A$.
- 4. det(A) = 0 if and only if A is not invertible
- 5. For all matrices B of the same size as A, det(AB) = det(A) det(B).
- 6. $\det(A^{T}) = \det(A)$

Remark: You should understand how the first three lead to the fourth; otherwise, the proofs are optional, found in the notes.

4.6: Determinants

If A is invertible, then $det(A) \neq 0$

A is invertible

4.6: Determinants

If A is invertible, then $det(A) \neq 0$

A is invertible

 \Rightarrow we can row-reduce A to the identity matrix

4.6: Determinants

If A is invertible, then $det(A) \neq 0$

A is invertible

- \Rightarrow we can row-reduce A to the identity matrix
- \Rightarrow we can row-reduce A to a matrix with determinant 1

If A is invertible, then $det(A) \neq 0$

A is invertible

- \Rightarrow we can row-reduce A to the identity matrix
- ⇒ we can row-reduce A to a matrix with determinant 1
 Adding a multiple of one row to another row does not

change the determinant

- \bullet Swapping two rows multiplies the determinant by -1
- Multiplying a row by a constant *a* multiplies the determinant by *a*

If A is invertible, then $det(A) \neq 0$

A is invertible

- \Rightarrow we can row-reduce A to the identity matrix
- ⇒ we can row-reduce A to a matrix with determinant 1
 Adding a multiple of one row to another row does not change the determinant
 - \bullet Swapping two rows multiplies the determinant by -1
 - Multiplying a row by a constant *a* multiplies the determinant by *a*
- \Rightarrow $c \det(A) = 1$, where c is some constant

If A is invertible, then $det(A) \neq 0$

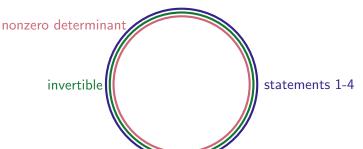
A is invertible

- \Rightarrow we can row-reduce A to the identity matrix
- ⇒ we can row-reduce A to a matrix with determinant 1
 Adding a multiple of one row to another row does not change the determinant
 - ullet Swapping two rows multiplies the determinant by -1
 - Multiplying a row by a constant *a* multiplies the determinant by *a*
- \Rightarrow $c \det(A) = 1$, where c is some constant
- $\Rightarrow \det(A) \neq 0$

Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:

- 1) $A\mathbf{x} = \mathbf{b}$ has exactly one solution for any \mathbf{b} .
- 2) $A\mathbf{x} = \mathbf{0}$ has no nonzero solutions.
- 3) The rank of A is n.
- 4) The reduced form of A has no zeroes along the main diagonal.
- 5) A is invertible
- 6) det(A) \neq 0



Is A invertible?

$$A = \begin{bmatrix} 72 & 9 & 8 & 16 \\ 0 & 4 & 3 & -9 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 21 \end{bmatrix}$$

Is A invertible?

$$A = \begin{bmatrix} 72 & 9 & 8 & 16 \\ 0 & 4 & 3 & -9 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 21 \end{bmatrix}$$

$$det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad det \begin{bmatrix} 0 & 1 & 2 & 0 \\ 10 & 5 & 0 & 1 \\ 10 & 0 & 5 & 3 \\ 0 & 2 & 1 & 1 \end{bmatrix} = ?$$

Is A invertible?

$$A = \begin{bmatrix} 72 & 9 & 8 & 16 \\ 0 & 4 & 3 & -9 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 21 \end{bmatrix}$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad \det \begin{bmatrix} 0 & 1 & 2 & 0 \\ 10 & 5 & 0 & 1 \\ 10 & 0 & 5 & 3 \\ 0 & 2 & 1 & 1 \end{bmatrix} = ?$$

Calculate:

$$\det \begin{bmatrix} 1 & 5 & 10 & 15 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad \det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ?$$

$$det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ? \qquad \qquad det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ?$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad \det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ?$$

$$\det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ? \qquad \qquad \det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ?$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad \det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -420$$

$$det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ? \qquad det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ?$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad \det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -420$$

$$\det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ? \qquad \qquad \det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ?$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad \det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -420$$

$$det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix} = 210 \qquad \qquad det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ?$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad \det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -420$$

$$\det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix} = 210 \qquad \qquad \det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix} = ?$$

$$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210; \qquad \det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -420$$

$$det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix} = 210 \qquad \qquad det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210$$

Suppose det A = 5 for an invertible matrix A. What is det (A^{-1}) ?

Suppose A is an *n*-by-*n* matrix with determinant 5. What is the determinant of 3A?

Suppose A is an *n*-by-*n* matrix, and **x** and **y** are distinct vectors in \mathbb{R}^n with $A\mathbf{x} = A\mathbf{y}$. What is det(A)?

4.6: Determinants

4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix}$$

4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

$$det: -1$$

4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{R_3 - R_2}{R_3 - R_2}} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix} \xrightarrow{\frac{R_3 + R_2}{R_3 + R_2}} det: -1$$

4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

$$det: -1 \xrightarrow{R_3 + R_2} det: -1$$

4.6: Determinants

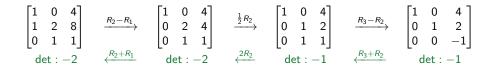
$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{R_3 - R_2}{R_3 - R_2}} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix} \xrightarrow{\frac{2R_2}{R_3 - R_2}} det: -1 \xrightarrow{\frac{R_3 + R_2}{R_3 - R_2}} det: -1$$

4.6: Determinants

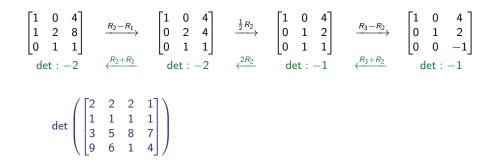
$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$

$$det: -2 \xrightarrow{2R_2} det: -1 \xrightarrow{R_3 + R_2} det: -1$$

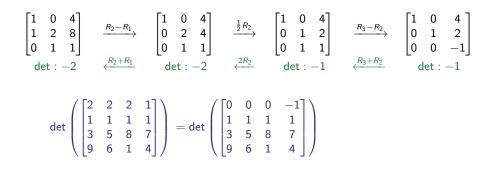
4.6: Determinants



4.6: Determinants



4.6: Determinants



4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$
$$\det : -2 \quad \xleftarrow{R_2 + R_1} \quad \det : -2 \quad \xleftarrow{2R_2} \quad \det : -1 \quad \xleftarrow{R_3 + R_2} \quad \det : -1$$
$$\det \left(\begin{bmatrix} 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \right) = \det \left(\begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \right) = -(-1)\det \left(\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 8 \\ 9 & 6 & 1 \end{bmatrix} \right)$$

4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$
$$det: -2 \qquad \stackrel{\langle R_2 + R_1 \rangle}{det: -2} \qquad det: -2 \qquad \stackrel{\langle 2R_2 \rangle}{det: -1} \qquad det: -1 \qquad \stackrel{\langle R_3 + R_2 \rangle}{det: -1} \qquad det: -1$$
$$det \left(\begin{bmatrix} 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \right) = det \left(\begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \right) = -(-1)det \left(\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 8 \\ 9 & 6 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 5 \\ 0 & -3 & -8 \end{bmatrix} \right)$$

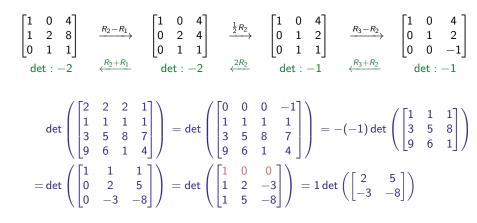
4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$
$$det: -2 \qquad \stackrel{\langle R_2 + R_1 \rangle}{det: -2} \qquad det: -2 \qquad \stackrel{\langle 2R_2 \rangle}{det: -1} \qquad det: -1 \qquad \stackrel{\langle R_3 + R_2 \rangle}{det: -1} \qquad det: -1$$
$$det \left(\begin{bmatrix} 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \right) = det \left(\begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \right) = -(-1)det \left(\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 8 \\ 9 & 6 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 5 \\ 0 & -3 & -8 \end{bmatrix} \right)$$

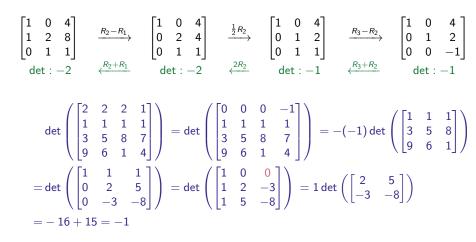
4.6: Determinants

$$\begin{bmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$
$$det: -2 \qquad \stackrel{\langle R_2 + R_1 \rangle}{det: -2} \qquad det: -2 \qquad \stackrel{\langle 2R_2 \rangle}{det: -1} \qquad det: -1 \qquad \stackrel{\langle R_3 + R_2 \rangle}{det: -1} \qquad det: -1$$
$$det \left(\begin{bmatrix} 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \right) = det \left(\begin{bmatrix} 0 & 0 & 0 & -1 \\ 1 & 1 & 1 & 1 \\ 3 & 5 & 8 & 7 \\ 9 & 6 & 1 & 4 \end{bmatrix} \right) = -(-1)det \left(\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 8 \\ 9 & 6 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 5 \\ 0 & -3 & -8 \end{bmatrix} \right) = det \left(\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & -3 \\ 1 & 5 & -8 \end{bmatrix} \right)$$

4.6: Determinants

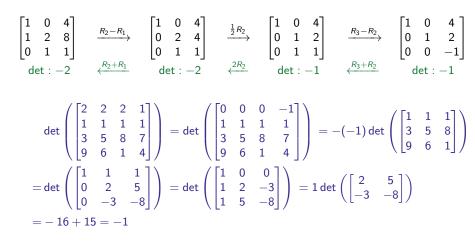


4.6: Determinants



4.6: Determinants

Using Row Reduction to Calculate a Determinant



Is the original 4-by-4 matrix invertible?

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Invertible; determinant unknowable but nonzero

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Invertible; determinant unknowable but nonzero

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

Not invertible; determinant 0

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Invertible; determinant unknowable but nonzero

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix}$$

Not invertible; determinant 0

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Invertible; determinant unknowable but nonzero

4.6: Determinants

Determinant Expansion across Alternate Lines

"Line" means "row or column" 02

$$\begin{bmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{bmatrix}$$

4.6: Determinants

Determinant Expansion across Alternate Lines

"Line" means "row or column" 02

$$\begin{bmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{bmatrix}$$

$$\det\left(\begin{bmatrix}9 & 8 & 5 & 6 & 10\\1 & 0 & 0 & 0 & 1\\7 & 0 & 1 & 1 & 1\\8 & 0 & 1 & 1 & 1\\4 & 3 & 5 & 6 & 7\end{bmatrix}\right)$$

4.6: Determinants

Determinant Expansion across Alternate Lines

"Line" means "row or column" 02

$$\begin{bmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{bmatrix}$$

$$\det\left(\begin{bmatrix}9 & 8 & 5 & 6 & 10\\1 & 0 & 0 & 0 & 1\\7 & 0 & 1 & 1 & 1\\8 & 0 & 1 & 1 & 1\\4 & 3 & 5 & 6 & 7\end{bmatrix}\right)$$
$$\det\left(\begin{bmatrix}8 & 9 & 5 & 6\\0 & 1 & 1 & 0\\0 & 7 & 1 & 1\\0 & 8 & 1 & 1\end{bmatrix}\right)$$

More practice

4.6: Determinants 00000000000000

$$\det\left(\begin{bmatrix}2 & 5 & 3 & 4\\0 & 1 & 2 & 0\\4 & 4 & 6 & 9\\10 & 5 & 7 & 4\end{bmatrix}\right)$$