

Computing Projections

Let $\mathbf{a} = [a_1, a_2]$ and $\mathbf{x} = [x_1, x_2]$.

$$proj_{\mathbf{a}}\mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1a_2 \\ a_1a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Since $T(\mathbf{x}) = \text{proj}_{\mathbf{a}}\mathbf{x} = A\mathbf{x}$ for a matrix A, then T is a linear transformation.

Let $\mathbf{a} = [1,1]$ and $\mathbf{x} = [2,3].$ Calculate $\textit{proj}_a\mathbf{x}$ two ways.

 $T(\mathbf{x}) = proj_{\mathbf{b}}(proj_{\mathbf{a}}\mathbf{x})$

Is the projection of a projection a projection? (Is there a vector **c** so that $T(\mathbf{x}) = proj_c \mathbf{x}$?) Example: $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ Notes

Notes

4.3: The Tra

Notes

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks 000000000	4.3: The Transpose 00000		
Reflections				
$Ref(\mathbf{x}) = 2 proj_{\mathbf{a}} \mathbf{x} - \mathbf{x}$				

Projections:

Identity:

Course Notes 4.2: Linear Transformations and Matrices

 $\begin{aligned} \text{proj}_{\mathbf{a}}\mathbf{x} &= \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{aligned}$

$$Ref(\mathbf{x}) = 2proj_{\mathbf{a}}\mathbf{x} - \mathbf{x}$$
$$= \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Notes

Notes

Cleanup $Ref(\mathbf{x}) = \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ If **a** is a unit vector, then $a_1^2 + a_2^2 = 1$. Then:

4.3: Application: Random Walks

 $Ref(\mathbf{x}) =$

And if a makes angle θ with the x-axis, then $a_1=\cos\theta$ and $a_2=\sin\theta,$ so:

 $\textit{Ref}_{\theta}(\mathbf{x}) =$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
 $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$

 $\sin 2\theta = 2\sin\theta\cos\theta$

4.3: The Transp 00000

Compare:

Course	Notes	4.2:	Linear	Transformations	and	Matr
00000	00000	000	00000	000		

Reflections

To reflect ${\bf x}$ across the line through the origin that makes angle θ with the x-axis:

rices

4.3: Application: Random Walks

4.3: The Trans

 $\textit{Ref}_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Example: find the reflection of the vector [2,4] across the line through the origin that makes an angle of 15 degrees ($\pi/12$ radians) with the x-axis. What happens when we do two reflections?

Notes

Notes

Course Notes 4.2: Linear Transformations and Matrices

Reflections

4.3: Application: Random Walks 4.3: The Transp 0000000000 0000

Notes

Notes

Notes

To reflect ${\bf x}$ across the line through the origin that makes angle θ with the x-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix} \\ = \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix} \\ = \begin{bmatrix} \cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\ \sin(2(\theta - \phi)) & \cos(2(\theta - \phi)) \end{bmatrix} = Rot_{2(\theta - \phi)}$$

Are reflections commutative?

Are reflections commutative with rotations?

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks 000000000	4.3: The Transpose 00000
Reflections and Rotations		
Are reflections commutative wit	th rotations?	
Try the following with a cell ph 1. Rotate 90 degrees clockwise 2. Flip 180 degrees vertically		
Alternately:		

1. Flip 180 degrees vertically

2. Rotate 90 degrees clockwise

Course Notes 4.2: Linear Transformations and Matrices

Summary: Examples of Linear Transformations

To compute the rotation of the vector ${\bf x}$ by ${\boldsymbol \theta},$ multiply ${\bf x}$ by the matrix

4.3: Application: Random Walks

4.3: The Transp

$$Rot_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

To compute the projection of the vector ${\bf x}$ onto the vector $[a_1,a_2],$ multiply ${\bf x}$ by the matrix

$$proj_{[a_1,a_2]} = \begin{bmatrix} \frac{a_1^2}{a_1^2 + a_2^2} & \frac{a_1a_2}{a_1^2 + a_2^2} \\ \frac{a_1a_2}{a_1^2 + a_2^2} & \frac{a_2^2}{a_1^2 + a_2^2} \end{bmatrix}$$

To compute the reflection of the vector ${\bf x}$ across the line through the origin that makes an angle of ϕ with the x-axis, multiply ${\bf x}$ by the matrix

$$\textit{Ref}_{ heta} = egin{bmatrix} \cos 2\phi & \sin 2\phi \ \sin 2\phi & -\cos 2\phi \end{bmatrix}$$

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks 0000000000	4.3: The Transpose 00000
Which transformations are eq	quivalent to matrix multiplic	ation?

 Course Notes 4.2: Linear Transformations and Matrices
 4.3: Application: Random Walks
 4.3: The Transpose

 Which transformations are equivalent to matrix multiplication?

Course Notes 4.2: Linear Transformations and Matrices

4.3: Application: Random Walks 4.3: The Transpose 000000000 0000

Suppose a linear transformation ${\mathcal T}$ from ${\mathbb R}^3$ to ${\mathbb R}^2$ satisfies the following:

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}2\\5\end{bmatrix}$$
 $T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$ $T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}3\\-2\end{bmatrix}$

Then $T(\mathbf{x}) = A\mathbf{x}$ for the matrix A =

Notes

Notes

lication: Random Walks 4.3: The Tran

Notes

Which transformations are equivalent to matrix multiplication?

Theorem

Every linear transformation T that takes a vector as an input, and gives a vector as an output, is equivalent to a matrix multiplication.

Extended Theorem

Suppose T is a linear transformation that transforms vectors of \mathbb{R}^n into vectors of \mathbb{R}^m . If e_1, \ldots, e_n is the standard basis of \mathbb{R}^n , then:

$$T\left(\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}\right) = \begin{bmatrix}1&1&1\\T(e_1)&T(e_2)&\cdots&T(e_n\\1&1&1\end{bmatrix}\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}$$

That is: $e_1 = [1, 0, \dots, 0]$, $e_2 = [0, 1, 0, \dots, 0]$, etc.

Course Notes 4.2: Linear Transformations and Matrices

4.3: Application: Random Walks

Notes

4.3: The Tran

Geometric interpretation of an *n*-by-*m* matrix: **linear transformation from** \mathbb{R}^m **to** \mathbb{R}^n . Every matrix can be viewed as a linear transformation

Every matrix can be viewed as a linear transformation, and every linear transformation between \mathbb{R}^n and \mathbb{R}^m can be viewed as a matrix.

A matrix can be viewed as a particular kind of function.

$T: \mathbb{R}^n \to \mathbb{R}^m$ linear

Standard basis of \mathbb{R}^n :

Course Notes 4.2: Linear Transformations and Matrices 000000000000000000 Examples

 4.3: Application: Random Walks
 4.3: The Transpos

 0000000000
 00000

Notes

Notes

Notes

Suppose a linear transformation ${\mathcal T}$ from ${\mathbb R}^2$ to ${\mathbb R}^2$ has the following properties:

$$T \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$T \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 7 \\ 7 \end{bmatrix}$$
Give a matrix *A* so that $T(x) = Ax$ for every vector *x* in \mathbb{R}^2 .

Suppose a linear transformation $\,{\mathcal T}$ from ${\mathbb R}^2$ to ${\mathbb R}^2$ has the following

properties: $T\begin{pmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$ $T\begin{pmatrix} \begin{bmatrix} 0\\1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 7\\7 \end{bmatrix}$ Give a matrix A so that T(x) = Ax for every vector x in \mathbb{R}^2 .

 Course Notes 4.2: Linear Transformations and Matrices
 4.3: Application: Random Walks
 4.3: The Transpose cococo

 Examples
 Suppose a linear transformation T from \mathbb{R}^2 to \mathbb{R}^3 has the following properties:
 $T\left(\begin{bmatrix} 5\\7 \end{bmatrix} \right) = \begin{bmatrix} 7\\5\\12 \end{bmatrix}$
 $T\left(\begin{bmatrix} 4\\6 \end{bmatrix} \right) = \begin{bmatrix} 6\\4\\10 \end{bmatrix}$ $T\left(\begin{bmatrix} 4\\10 \end{bmatrix} \right)$

Give a matrix \overline{A} so that T(x) = Ax for every vector x in \mathbb{R}^2 .

Course Notes 4.2: Linear Transformations and Matrices

Examples

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^3 , where T(x) = Ax for the matrix

4.3: Application: Random Walks

4.3: The Tran

 $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

Which vector $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ has $T(x) = \begin{bmatrix} 4 \\ 10 \\ 16 \end{bmatrix}$? Which vector $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ has $T(y) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$?

Characterize vectors that can come out of T.

000000000000000000000000000000000000000	nacions and macrices	●000000000	00000	manspos
Random Walks:	Another Use	e of Matrix N	Aultiplication	

•n states

•Fixed probability $p_{i,j}$ of moving to state *i* if you are in state *j*.

Examples: https://en.wikipedia.org/wiki/Random_walk model Brownian Motion (Wiener process) genetic drift stock markets use sampling to estimate properties of a large system

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks	4.3: The Transpose
000000000000000000	000000000	00000
Random Walks: Another Use	of Matrix Multiplica	ation

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

Notes

Notes

P: "transition matrix"

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks 000000000	4.3: The Transpose 00000
Random Walk Example: Falli	ng Down	

You are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you're scared. When you fall, you stay on the ground where you landed.

Where are you after 100 steps?

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks 000000000	4.3: The Transpose 00000
Random Walk Example: Error	r Messages	

Suppose you are using a buggy program. You start up without a problem.

- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.
- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05.
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.
- After the third error message, your next click is to uninstall the program, and never use it again.

Possible states: no errors; one error; two errors; three errors; uninstalled.

Course Notes 4.2: Linear Transformations and Matrices

4.3: Application: Random Walks 4.3: The T

Random Walk Example

- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.
- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05.
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.
- After the third error message, you uninstall the program.

Possible states: no errors; one error; two errors; three errors; uninstalled.

from to	0	1	2	3	и	
0	.99	0	0	0	0	Again, notice:
1	.01	.95	0	0	0	
2	0	.05	.9	0	0	rows don't have to
3	0	0	.1	0	0	
и	0	0	0	1	1	

Notes

Notes

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks 00000000000	4.3: The Transpose 00000
Harder Questions involving F	Random Walks	

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n \to \infty} x_n$? Note: $\lim_{n \to \infty} x_n = \lim_{n \to \infty} P^n x_0$. Does $\lim_{n \to \infty} x_n$ depend on x_0 ?

Stay tuned for more Random Walks excitement

Notes 4.2: Linear Transformations and Matrices

4.3: Application: Random Walks 000000000

4.3: The Transp

Notes

Notes

Notes

Application: Google!

$A = \begin{bmatrix} 1 & 1 & 0 \\ 4 & 5 & 6 \end{bmatrix}$	$A' = \begin{bmatrix} 2 & 5 \\ 3 & 6 \end{bmatrix}$
$B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$	$B^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$
$AB = \begin{bmatrix} 6 & 12 & 18 \\ 15 & 30 & 45 \end{bmatrix}$	BA = DNE
$B^{T}A^{T} = \begin{bmatrix} 6 & 15\\ 12 & 30\\ 18 & 45 \end{bmatrix}$	$AB = (B^T A^T)^T$

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks 0000000000	4.3: The Transpose 0●000
Transpose and Matrix Multip	olication	
AE	B = P	
B ^T A	$A^T = Q$	

Course Notes 4.2: Linear Transformations and Matrices	4.3: Application: Random Walks 000000000	4.3: The Transpose 00000			
Transpose					
Previous example of noncommutativity of matrix multiplication:					

$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\begin{array}{c}2\\0\end{array}\begin{bmatrix}7\\3\end{array}$	$\begin{bmatrix} 5\\0 \end{bmatrix} =$	[13 0	5 0]
[7 [3	$\begin{bmatrix} 5\\0 \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 0 \end{bmatrix} =$	[7 3	14 6

Notes

Notes

$\mathbf{y} \cdot (A\mathbf{x}) = (A^{\mathsf{T}}\mathbf{y}) \cdot \mathbf{x}$

where A is an *m*-by-*n* matrix, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$.

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \left(\begin{bmatrix} 1&0\\0&1\\-1&1 \end{bmatrix} \begin{bmatrix} 8\\9 \end{bmatrix} \right) = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 8\\9\\1 \end{bmatrix} = 8 + 18 + 3 = 29$$
$$\left(\begin{bmatrix} 1&0&-1\\0&1&1 \end{bmatrix} \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right) \cdot \begin{bmatrix} 8\\9 \end{bmatrix} = \begin{bmatrix} -2\\5 \end{bmatrix} \cdot \begin{bmatrix} 8\\9 \end{bmatrix} = -16 + 45 = 29$$

Notes