
Course Notes 4.2: Linear Transformations and Matrices 4.3: Application: Random Walks 4.3: The Transpose

Outline

Week 7: Rotations, projections and reflections in 2D; matrix
representation and composition of linear transformations; random
walks; transpose.

Course Notes: 4.2, 4.3, 4.4

Goals: Understand that a linear transformation of a vector can
always be achieved by matrix multiplication; use specific examples
of linear transformations.
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Projections

For a fixed vector a in R2, let T (x) = projax

a

x
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Computing Projections

Let a = [a1, a2] and x = [x1, x2].

projax =
1

a21 + a22

[
a21 a1a2

a1a2 a22

] [
x1
x2

]

Since T (x) = projax = Ax for a matrix A, then T is a linear
transformation.

Let a = [1, 1] and x = [2, 3]. Calculate projax two ways.

T (x) = projb (projax)

Is the projection of a projection a projection?
(Is there a vector c so that T (x) = projcx?)

Example: a =

[
1
2

]
, b =

[
1
5

]

Notes

Notes

Notes
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Reflections

For a fixed vector a , let Ref (x) be the reflection of x across the
line through the origin in the direction of a .

x

a

Ref (x)

Course Notes 4.2: Linear Transformations and Matrices 4.3: Application: Random Walks 4.3: The Transpose

Reflections
Ref (x) = 2projax− x

Projections:

projax =
1

a21 + a22

[
a21 a1a2

a1a2 a22

] [
x1
x2

]
Identity: [

1 0
0 1

] [
x1
x2

]
=

[
x1
x2

]

Ref (x) = 2projax− x

=

 2a21
a21+a22

− 1 2a1a2
a21+a22

2a1a2
a21+a22

2a22
a21+a22

− 1

[x1
x2

]

Course Notes 4.2: Linear Transformations and Matrices 4.3: Application: Random Walks 4.3: The Transpose

Cleanup

Ref (x) =

 2a21
a21+a22

− 1 2a1a2
a21+a22

2a1a2
a21+a22

2a22
a21+a22

− 1

[x1
x2

]

If a is a unit vector, then a21 + a22 = 1. Then:

Ref (x) =

And if a makes angle θ with the x-axis, then a1 = cos θ and
a2 = sin θ, so:

Refθ(x) =

cos2 θ =
1 + cos 2θ

2
sin2 θ =

1− cos 2θ

2
sin 2θ = 2 sin θ cos θ

Notes

Notes

Notes
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Reflections and Rotations

Compare:

Refθ(x) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
x1
x2

]
Rotφ(x) =

[
cosφ − sinφ
sinφ cosφ

] [
x1
x2

]

θ
x x
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Reflections

To reflect x across the line through the origin that makes angle θ
with the x-axis:

Refθ(x) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
x1
x2

]

Example: find the reflection of the vector [2, 4] across the line
through the origin that makes an angle of 15 degrees (π/12
radians) with the x-axis.
What happens when we do two reflections?
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Two Reflections gives a Rotation

Consider:

• Reflect across a line making an angle of 15◦ with the x-axis,
then
• reflect across a line making an angle of 135◦ with the x-axis.

Notes

Notes

Notes
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Reflections

To reflect x across the line through the origin that makes angle θ
with the x-axis:

Refθ(x) =

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
x1
x2

]
What happens when we do two reflections?

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

] [
cos(2φ) sin(2φ)
sin(2φ) − cos(2φ)

]
=

[
cos(2θ) cos(2φ) + sin(2θ) sin(2φ) cos(2θ) sin(2φ)− sin(2θ) cos(2φ)
sin(2θ) cos(2φ)− cos(2θ) sin(2φ) sin(2θ) sin(2φ) + cos(2θ) cos(2φ)

]
=

[
cos(2(θ − φ)) − sin(2(θ − φ))
sin(2(θ − φ)) cos(2(θ − φ))

]
= Rot2(θ−φ)

Are reflections commutative?
Are reflections commutative with rotations?
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Reflections and Rotations

Are reflections commutative with rotations?

Try the following with a cell phone or book:
1. Rotate 90 degrees clockwise
2. Flip 180 degrees vertically

Alternately:
1. Flip 180 degrees vertically
2. Rotate 90 degrees clockwise
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Summary: Examples of Linear Transformations

To compute the rotation of the vector x by θ, multiply x by the matrix

Rotθ =

[
cos θ − sin θ
sin θ cos θ

]

To compute the projection of the vector x onto the vector [a1, a2],
multiply x by the matrix

proj[a1,a2] =

 a21
a21+a22

a1a2
a21+a22

a1a2
a21+a22

a22
a21+a22


To compute the reflection of the vector x across the line through the
origin that makes an angle of φ with the x-axis, multiply x by the matrix

Refθ =

[
cos 2φ sin 2φ
sin 2φ − cos 2φ

]

Notes

Notes

Notes
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Which transformations are equivalent to matrix multiplication?
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Which transformations are equivalent to matrix multiplication?
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Suppose a linear transformation T from R3 to R2 satisfies the
following:

T

1
0
0

 =

[
2
5

]
T

0
1
0

 =

[
0
1

]
T

0
0
1

 =

[
3
−2

]

Then T (x) = Ax for the matrix A =

Notes

Notes

Notes
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Which transformations are equivalent to matrix multiplication?

Theorem

Every linear transformation T that takes a vector as an input, and
gives a vector as an output, is equivalent to a matrix multiplication.

Extended Theorem

Suppose T is a linear transformation that transforms vectors of Rn

into vectors of Rm. If e1, . . . , en is the standard basis of Rn, then:

T




x1
x2
...

xn


 =

 | | |
T (e1) T (e2) · · · T (en)
| | |




x1
x2
...

xn


That is: e1 = [1, 0, . . . , 0], e2 = [0, 1, 0, . . . , 0], etc.
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Geometric interpretation of an n-by-m matrix:
linear transformation from Rm to Rn.
Every matrix can be viewed as a linear transformation, and every
linear transformation between Rn and Rm can be viewed as a
matrix.

A matrix can be viewed as a particular kind of function.
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General Linear Transformations

T : Rn → Rm linear

Standard basis of Rn:e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1




T




x1
x2
...

xn


 =

 | | |
T (e1) T (e2) · · · T (en)
| | |




x1
x2
...

xn



Notes

Notes

Notes
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Examples

Suppose a linear transformation T from R2 to R2 has the following
properties:

T

([
1
0

])
=

[
1
2

]
T

([
0
1

])
=

[
7
7

]
Give a matrix A so that T (x) = Ax for every vector x in R2.

Suppose a linear transformation T from R2 to R2 has the following
properties:

T

([
1
1

])
=

[
1
2

]
T

([
0
1

])
=

[
7
7

]
Give a matrix A so that T (x) = Ax for every vector x in R2.
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Examples

Suppose a linear transformation T from R2 to R3 has the following
properties:

T

([
5
7

])
=

 7
5

12


T

([
4
6

])
=

 6
4

10


Give a matrix A so that T (x) = Ax for every vector x in R2.
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Examples

Suppose T is a transformation from R2 to R3, where T (x) = Ax
for the matrix

A =

1 2
3 4
5 6



Which vector x =

[
x1
x2

]
has T (x) =

 4
10
16

?

Which vector y =

[
y1
y2

]
has T (y) =

1
2
1

?

Characterize vectors that can come out of T .

Notes

Notes

Notes
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Random Walks: Another Use of Matrix Multiplication

•n states
•Fixed probability pi ,j of moving to state i if you are in state j .

Examples:
https://en.wikipedia.org/wiki/Random_walk

model Brownian Motion (Wiener process)
genetic drift
stock markets
use sampling to estimate properties of a large system
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Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It
is observed once per hour.

from
to

sleeping fishing playing

sleeping .5 .7 .4
fishing .25 0 .3
playing .25 .3 .3

Sleeping: https://pixabay.com/en/penguin-linux-sleeping-animal-159784/
Fishing: By Mimooh (Own work), via Wikimedia Commons
Playing: By Silvermoonlight217
http://silvermoonlight217.deviantart.com/art/Penguin-Sledding-262107547
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Random Walks

In general:
•n states
•pi ,j probability of moving to state i if you are in state j ; P = [pi ,j ]

Given xn:
xn+1 = Pxn = Pn+1x0

P: ”transition matrix”

Notes

Notes

Notes

 https://en.wikipedia.org/wiki/Random_walk
https://pixabay.com/en/penguin-linux-sleeping-animal-159784/
http://silvermoonlight217.deviantart.com/art/Penguin-Sledding-262107547
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Random Walk Example: Falling Down

You are learning to walk on a tight rope, but you are not very good
yet. With every step you take, your chances of falling to the right
are 1%, and your changes of falling to the left are 5%, because of
an old math-related injury that causes you to lean left when you’re
scared. When you fall, you stay on the ground where you landed.

Where are you after 100 steps?
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Random Walk Example: Error Messages

Suppose you are using a buggy program. You start up without a
problem.

• If you have never encountered an error message, your odds of
encountering an error message with your next click are 0.01.

• If you have already encountered exactly one error message,
your odds of encountering a second on your next click are
0.05.

• If you have encountered two error messages, the odds of
encountering a third on your next click are 0.1.

• After the third error message, your next click is to uninstall
the program, and never use it again.

Possible states: no errors; one error; two errors; three errors;
uninstalled.
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Random Walk Example

• If you have never encountered an error message, your odds of
encountering an error message with your next click are 0.01.

• If you have already encountered exactly one error message, your odds of
encountering a second on your next click are 0.05.

• If you have encountered two error messages, the odds of encountering a
third on your next click are 0.1.

• After the third error message, you uninstall the program.

Possible states: no errors; one error; two errors; three errors; uninstalled.

from
to

0 1 2 3 u

0 .99 0 0 0 0
1 .01 .95 0 0 0
2 0 .05 .9 0 0
3 0 0 .1 0 0
u 0 0 0 1 1

Again, notice:
columns sum to 1,
rows don’t have to

Notes

Notes

Notes
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With the ordering

[
0 errors
1 error
2 errors
3 errors

uninstalled

]
, x0 =

[
1
0
0
0
0

]
. Using Octave:

• x10 = P10x0 ≈

[
0.904
0.076
0.015
0.001
0.003

]

• x20 = P20x0 ≈

[
0.818
0.115
0.0037
0.004
0.026

]

• x100 = P100x0 ≈

[
0.366
0.090
0.049
0.005
0.490

]

• x200 = P200x0 ≈

[
0.134
0.033
0.019
0.002
0.812

]

• lim
n→∞

xn =

[
0
0
0
0
1

]
(we’ll do these computations more generally

once we learn about eigenvalues!)
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Harder Questions involving Random Walks

• For which value of n does xn have a certain characteristic?

• What is lim
n→∞

xn?

Note: lim
n→∞

xn = lim
n→∞

Pnx0.

• Does lim
n→∞

xn depend on x0?

Stay tuned for more Random Walks excitement

Course Notes 4.2: Linear Transformations and Matrices 4.3: Application: Random Walks 4.3: The Transpose

Application: Google!

Notes

Notes

Notes

https://www.youtube.com/watch?v=wvwbKfS44Fo
http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf
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Transpose

Transpose: rows ↔ columns.

A =

[
1 2 3
4 5 6

]
AT =

1 4
2 5
3 6


B =

1 2 3
1 2 3
1 2 3

 BT =

1 1 1
2 2 2
3 3 3


AB =

[
6 12 18

15 30 45

]
BA = DNE

BTAT =

 6 15
12 30
18 45

 AB = (BTAT )T
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Transpose and Matrix Multiplication

AB = P

BTAT = Q
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Transpose

Previous example of noncommutativity of matrix multiplication:[
1 2
0 0

] [
7 5
3 0

]
=

[
13 5
0 0

]
[

7 5
3 0

] [
1 2
0 0

]
=

[
7 14
3 6

]

Notes

Notes

Notes
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Transpose and Dot Product

y · (Ax) = (ATy) · x

where A is an m-by-n matrix, x ∈ Rn and y ∈ Rm.1
2
3

 ·
 1 0

0 1
−1 1

[8
9

] =

1
2
3

 ·
8

9
1

 = 8 + 18 + 3 = 29

[1 0 −1
0 1 1

]1
2
3

 · [8
9

]
=

[
−2
5

]
·
[

8
9

]
= −16 + 45 = 29
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True or False?

Summary

• Transpose swaps rows and columns

• AB = (BTAT )T

• y · (Ax) = (ATy) · x

Notes

Notes

Notes


