Outline

Week 7: Rotations, projections and reflections in 2D; matrix representation and composition of linear transformations; random walks; transpose.

Course Notes: 4.2, 4.3, 4.4

Goals: Understand that a linear transformation of a vector can always be achieved by matrix multiplication; use specific examples of linear transformations.

$\begin{array}{lll}\text { Course Notes 4.2: Linear Transformations and Matrices } & \text { 4.3: Application: Random Walks } \\ \text { 00000000000000000000 } & \text { 4.3: The Transpose } \\ 0.00000\end{array}$
 Projections

For a fixed vector \mathbf{a} in \mathbb{R}^{2}, let $T(\mathbf{x})=\operatorname{proj}_{\mathbf{a}} \mathbf{x}$

Computing Projections
Let $\mathbf{a}=\left[a_{1}, a_{2}\right]$ and $\mathbf{x}=\left[x_{1}, x_{2}\right]$.

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{x}=\frac{1}{a_{1}^{2}+a_{2}^{2}}\left[\begin{array}{cc}
a_{1}^{2} & a_{1} a_{2} \\
a_{1} a_{2} & a_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Since $T(\mathbf{x})=\operatorname{proj}_{\mathbf{a}} \mathbf{x}=A \mathbf{x}$ for a matrix A, then T is a linear transformation.

Let $\mathbf{a}=[1,1]$ and $\mathbf{x}=[2,3]$. Calculate $\operatorname{proj}_{\mathbf{a}} \mathbf{x}$ two ways.

$$
T(\mathbf{x})=\operatorname{proj}_{\mathbf{b}}\left(\operatorname{proj}_{\mathbf{a}}^{\mathbf{x}} \mathbf{x}\right)
$$

Is the projection of a projection a projection?
(Is there a vector \mathbf{c} so that $T(\mathbf{x})=$ proj $_{\mathbf{c}} \mathbf{x}$?)
Example: $\mathbf{a}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{b}=\left[\begin{array}{l}1 \\ 5\end{array}\right]$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reflections

For a fixed vector \mathbf{a}, let $\operatorname{Ref}(\mathbf{x})$ be the reflection of \mathbf{x} across the line through the origin in the direction of a

Notes

\qquad
Projections:

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{x}=\frac{1}{a_{1}^{2}+a_{2}^{2}}\left[\begin{array}{cc}
a_{1}^{2} & a_{1} a_{2} \\
a_{1} a_{2} & a_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Identity:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } \\
\operatorname{Ref}(\mathbf{x}) & =2 p r o j_{\mathbf{a}} \mathbf{x}-\mathbf{x} \\
& =\left[\begin{array}{cc}
\frac{2 a_{1}^{2}}{a_{1}^{2}+a_{2}^{2}}-1 & \frac{2 a_{1} a_{2}}{a_{1}^{2}+a_{2}^{2}} \\
\frac{2 a a_{2}}{a_{1}^{2}+a_{2}^{2}} & \frac{22_{2}^{2}}{a_{1}^{2}+a_{2}^{2}}-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{Ref}(\mathbf{x})=\left[\begin{array}{cc}
\frac{2 a_{1}^{2}}{a_{1}^{2}+a_{2}^{2}}-1 & \frac{2 a_{1} a_{2}}{a_{1}^{2}+a_{2}^{2}} \\
\frac{2 a_{1} a_{2}}{a_{1}^{2}+a_{2}^{2}} & \frac{22 a_{2}^{2}}{a_{1}^{2}+a_{2}^{2}}-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

If \mathbf{a} is a unit vector, then $a_{1}^{2}+a_{2}^{2}=1$. Then:

$$
\operatorname{Ref}(x)=
$$

And if a makes angle θ with the x-axis, then $a_{1}=\cos \theta$ and $a_{2}=\sin \theta$, so:

$$
\operatorname{Ref}_{\theta}(\mathbf{x})=
$$

$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$

$$
\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reflections and Rotations

Compare:

$$
\begin{aligned}
\operatorname{Ref}_{\theta}(\mathbf{x}) & =\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\operatorname{Rot}_{\phi}(\mathbf{x}) & =\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

$\begin{array}{lll}\text { Course Notes 4.2: Linear Transformations and Matrices } & \begin{array}{l}\text { 4.3: Application: Random Walks } \\ \text { 000000 } \\ \text { 0000000000000 }\end{array} & \begin{array}{l}\text { 4.3: The Transpose } \\ \text { 00000 }\end{array}\end{array}$
Reflections

To reflect \mathbf{x} across the line through the origin that makes angle θ with the x-axis:

$$
\operatorname{Ref}_{\theta}(\mathbf{x})=\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Example: find the reflection of the vector [2, 4] across the line through the origin that makes an angle of 15 degrees $(\pi / 12$ radians) with the x-axis.
What happens when we do two reflections?

Course Notes 4.2. Linear Transformations and Matrices

Two Reflections gives a Rotation
Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Reflections

To reflect \mathbf{x} across the line through the origin that makes angle θ with the x-axis:

$$
\operatorname{Ref}_{\theta}(\mathbf{x})=\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

What happens when we do two reflections?

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]\left[\begin{array}{cc}
\cos (2 \phi) & \sin (2 \phi) \\
\sin (2 \phi) & -\cos (2 \phi)
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\cos (2 \theta) \cos (2 \phi)+\sin (2 \theta) \sin (2 \phi) & \cos (2 \theta) \sin (2 \phi)-\sin (2 \theta) \cos (2 \phi) \\
\sin (2 \theta) \cos (2 \phi)-\cos (2 \theta) \sin (2 \phi) & \sin (2 \theta) \sin (2 \phi)+\cos (2 \theta) \cos (2 \phi)
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
\cos (2(\theta-\phi)) & -\sin (2(\theta-\phi)) \\
\sin (2(\theta-\phi)) & \cos (2(\theta-\phi))
\end{array}\right]=\operatorname{Rot}_{2(\theta-\phi)} }
\end{aligned}
$$

Are reflections commutative?
Are reflections commutative with rotations?

 Reflections and Rotations

Are reflections commutative with rotations?

Try the following with a cell phone or book:

1. Rotate 90 degrees clockwise
2. Flip 180 degrees vertically

Alternately:

1. Flip 180 degrees vertically
2. Rotate 90 degrees clockwise

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
Which transformations are equivalent to matrix multiplication?

Course Notes 4.2: Linear Transformations and Matrices 4.3: Application: Random Walks 0000000000

Which transformations are equivalent to matrix multiplication?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

Suppose a linear transformation T from \mathbb{R}^{3} to \mathbb{R}^{2} satisfies the following:
$T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 5\end{array}\right] \quad T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad T\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}3 \\ -2\end{array}\right]$

Then $T(\mathbf{x})=A \mathbf{x}$ for the matrix $A=$

```
Course Notes 4.2: Linear Transformations and Matrices 4.3: Application: Random Walks 4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Theorem
Every linear transformation \(T\) that takes a vector as an input, and gives a vector as an output, is equivalent to a matrix multiplication.

Extended Theorem
Suppose \(T\) is a linear transformation that transforms vectors of \(\mathbb{R}^{n}\) into vectors of \(\mathbb{R}^{m}\). If \(e_{1}, \ldots, e_{n}\) is the standard basis of \(\mathbb{R}^{n}\), then:
\[
T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots & T\left(e_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
\]
\(\qquad\)
\(\qquad\)

That is: \(e_{1}=[1,0, \ldots, 0], e_{2}=[0,1,0, \ldots, 0]\), etc.

\section*{Course Notes 4.2: Linear Transformations and Matrices 4.3: Application: Random Walks 4.3: The Transpose ०00000000000000 00000 0000000000}

Geometric interpretation of an \(n\)-by- \(m\) matrix
linear transformation from \(\mathbb{R}^{m}\) to \(\mathbb{R}^{n}\).
Every matrix can be viewed as a linear transformation, and every linear transformation between \(\mathbb{R}^{n}\) and \(\mathbb{R}^{m}\) can be viewed as a matrix.

Notes

A matrix can be viewed as a particular kind of function.
\begin{tabular}{|c|c|c|}
\hline Course Notes 4.2: Linear Transformations and Matrices 0000000000000000000 & 4.3: Application: Random Walks 0000000000 & 4.3: The Transpose 00000 \\
\hline General Linear Transform & & \\
\hline
\end{tabular}

Notes
\(T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \quad\) linear

Standard basis of \(\mathbb{R}^{n}\) :
\[
\begin{gathered}
\left\{e_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right], e_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right], \ldots, e_{n}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right]\right\} \\
T\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{ccc}
\mid & \mid & \mid\left(e_{n}\right) \\
T\left(e_{1}\right) & T\left(e_{2}\right) & \cdots \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
\end{gathered}
\]

Examples
Suppose a linear transformation \(T\) from \(\mathbb{R}^{2}\) to \(\mathbb{R}^{2}\) has the following properties:
\(T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]\)
\(T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}7 \\ 7\end{array}\right]\)
Give a matrix \(A\) so that \(T(x)=A x\) for every vector \(x\) in \(\mathbb{R}^{2}\).
Suppose a linear transformation \(T\) from \(\mathbb{R}^{2}\) to \(\mathbb{R}^{2}\) has the following properties:
\(T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]\)
\(T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}7 \\ 7\end{array}\right]\)
Give a matrix \(A\) so that \(T(x)=A x\) for every vector \(x\) in \(\mathbb{R}^{2}\).
\begin{tabular}{lll} 
Course Notes 4.2: Linear Transformations and Matrices & 4.3: Application: Random Walks & 4.3: The Transpose \\
00000000000 & & \\
0000000000000000000000 & &
\end{tabular}

Suppose a linear transformation \(T\) from \(\mathbb{R}^{2}\) to \(\mathbb{R}^{3}\) has the following properties:
\(T\left(\left[\begin{array}{l}5 \\ 7\end{array}\right]\right)=\left[\begin{array}{c}7 \\ 5 \\ 12\end{array}\right]\)
\(T\left(\left[\begin{array}{l}4 \\ 6\end{array}\right]\right)=\left[\begin{array}{c}6 \\ 4 \\ 10\end{array}\right]\)
Give a matrix \(A\) so that \(T(x)=A x\) for every vector \(x\) in \(\mathbb{R}^{2}\).
\begin{tabular}{|c|c|c|}
\hline Course Notes 4.2: Linear Transformations and Matrices 0000000000000000000 & 4.3: Application: Random Walks 0000000000 & 4.3: The Transpose
000000 \\
\hline Examples & & \\
\hline
\end{tabular}

Suppose \(T\) is a transformation from \(\mathbb{R}^{2}\) to \(\mathbb{R}^{3}\), where \(T(x)=A x\) for the matrix
\[
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]
\]

Which vector \(x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\) has \(T(x)=\left[\begin{array}{c}4 \\ 10 \\ 16\end{array}\right]\) ?
Which vector \(y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]\) has \(T(y)=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\) ?
Characterize vectors that can come out of \(T\).

Notes
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Notes
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Notes
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Random Walks: Another Use of Matrix Multiplication
- \(n\) states
\(\bullet\) Fixed probability \(p_{i, j}\) of moving to state \(i\) if you are in state \(j\).

Examples:
https://en.wikipedia.org/wiki/Random_walk
model Brownian Motion (Wiener process)
genetic drift
stock markets
use sampling to estimate properties of a large system
\begin{tabular}{|c|c|c|}
\hline Course Notes 4.2: Linear Transformations and Matrices 0000000000000000000 & 4.3: Application: Random Walks 0.00000000 & 4.3: The \(\operatorname{Tr}\) \\
\hline Random Walks: Another & & \\
\hline
\end{tabular}

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.
\begin{tabular}{l|ccc}
\begin{tabular}{c} 
from \\
to
\end{tabular} & sleeping & fishing & playing \\
\hline sleeping & .5 & .7 & .4 \\
fishing & .25 & 0 & .3 \\
playing & .25 & .3 & .3
\end{tabular}


Sleeping: https://pixabay.com/en/penguin-linux-sleeping-animal-159784/
Fishing: By Mimooh (Own work), via Wikimedia Commons
Playing: By Silvermoonlight 217
http://silvermoonlight217. deviantart.com/art/Penguin-Sledding-262107547


Given \(x_{n}\) :
\(x_{n+1}=P x_{n}=P^{n+1} x_{0}\)
\(P\) : "transition matrix"
n
\(\bullet p_{i, j}\) probability of moving to state \(i\) if you are in state \(j ; P=\left[p_{i, j}\right]\)

Notes
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Notes}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)


\section*{Notes}

You are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are \(1 \%\), and your changes of falling to the left are \(5 \%\), because of an old math-related injury that causes you to lean left when you're scared. When you fall, you stay on the ground where you landed.

Where are you after 100 steps?

\section*{ \\ Random Walk Example: Error Messages}

Suppose you are using a buggy program. You start up without a problem.
- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01 .
- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05 .
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.
- After the third error message, your next click is to uninstall the program, and never use it again.

Possible states: no errors; one error; two errors; three errors; uninstalled
\begin{tabular}{lll} 
Course Notes 4.2: Linear Transformations and Matrices & \begin{tabular}{l} 
4.3: Application: Random Walks \\
00000000000000000000000
\end{tabular} & \begin{tabular}{l} 
4.3: The Transpose \\
0.0000
\end{tabular} \\
Random Walk Example & &
\end{tabular}

\section*{Notes}
- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.
- If you have already encountered exactly one error message, your odds of countering a second on your next click are 0.05
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1
- After the third error message, you uninstall the program

Possible states: no errors; one error; two errors; three errors; uninstalled.
\begin{tabular}{l|ccccc}
\begin{tabular}{l} 
from \\
to
\end{tabular} & 0 & 1 & 2 & 3 & \(u\) \\
\hline 0 & .99 & 0 & 0 & 0 & 0 \\
Again, notice: \\
1 & .01 & .95 & 0 & 0 & 0 \\
columns sum to 1 , \\
2 & 0 & .05 & .9 & 0 & 0 \\
rows don't have to \\
3 & 0 & 0 & .1 & 0 & 0 \\
\\
\(u\) & 0 & 0 & 0 & 1 & 1
\end{tabular}

Notes
\(\qquad\)
\begin{tabular}{lll} 
Course Notes 4.2: Linear Transformations and Matrices & 4.3: Application: Random Walks & 4.3: The Transpose \\
000000000000000000000 & 00000000 & 0000
\end{tabular}

With the ordering \(\left[\begin{array}{c}0 \text { errors } \\ 1 \\ 2 \text { error } \\ 3 \text { errors } \\ \text { uninrors } \\ \text { uninstalled }\end{array}\right], \quad \mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]\). Using Octave:
- \(\mathbf{x}_{10}=P^{10} \mathbf{x}_{0} \approx\left[\begin{array}{l}0.904 \\ 0.076 \\ 0.15 \\ 0.015 \\ 0.003\end{array}\right]\)
- \(\mathbf{x}_{20}=P^{20} \mathbf{x}_{0} \approx\left[\begin{array}{c}0.818 \\ 0.115 \\ 0.0037 \\ 0.004 \\ 0.026\end{array}\right]\)
- \(\mathbf{x}_{100}=P^{100} \mathbf{x}_{0} \approx\left[\begin{array}{c}0.366 \\ 0.090 \\ 0.049 \\ 0.005 \\ 0.490\end{array}\right]\)
- \(\mathbf{x}_{200}=P^{200} \mathbf{x}_{0} \approx\left[\begin{array}{c}0.134 \\ 0.033 \\ 0.002 \\ 0.812 \\ 0.812\end{array}\right]\)
- \(\lim _{n \rightarrow \infty} \mathbf{x}_{n}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\) (we'll do these computations more generally once we learn about eigenvalues!)

\section*{ \\ Harder Questions involving Random Walks}
- For which value of \(n\) does \(x_{n}\) have a certain characteristic?
- What is \(\lim _{n \rightarrow \infty} x_{n}\) ?

Note: \(\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} P^{n} x_{0}\).
- Does \(\lim _{n \rightarrow \infty} x_{n}\) depend on \(x_{0}\) ?

Stay tuned for more Random Walks excitement

Transpose
Transpose: rows \(\leftrightarrow\) columns
\[
\begin{aligned}
A & =\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] & A^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \\
B & =\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right] & B^{T}=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right] \\
A B & =\left[\begin{array}{ccc}
6 & 12 & 18 \\
15 & 30 & 45
\end{array}\right] & B A=D N E \\
B^{T} A^{T} & =\left[\begin{array}{cc}
6 & 15 \\
12 & 30 \\
18 & 45
\end{array}\right] & A B=\left(B^{T} A^{T}\right)^{T}
\end{aligned}
\]

\[
\begin{gathered}
A B=P \\
B^{T} A^{T}=Q
\end{gathered}
\]
\begin{tabular}{lll} 
Course Notes 4.2: Linear Transformations and Matrices & 4.3: Application: Random Walks & \begin{tabular}{l} 
4.3: The Transpose \\
0000000000
\end{tabular} \\
\hline 0000000000000000000 & &
\end{tabular}

Previous example of noncommutativity of matrix multiplication:
\[
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
7 & 5 \\
3 & 0
\end{array}\right]=\left[\begin{array}{cc}
13 & 5 \\
0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
7 & 5 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
7 & 14 \\
3 & 6
\end{array}\right]}
\end{aligned}
\]

Notes
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Notes
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Transpose and Dot Product
\[
\mathbf{y} \cdot(A \mathbf{x})=\left(A^{T} \mathbf{y}\right) \cdot \mathbf{x}
\]
where \(A\) is an \(m\)-by- \(n\) matrix, \(\mathbf{x} \in \mathbb{R}^{n}\) and \(\mathbf{y} \in \mathbb{R}^{m}\).
\[
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left(\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
8 \\
9
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
9 \\
1
\end{array}\right]=8+18+3=29} \\
& \left(\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right) \cdot\left[\begin{array}{l}
8 \\
9
\end{array}\right]=\left[\begin{array}{c}
-2 \\
5
\end{array}\right] \cdot\left[\begin{array}{l}
8 \\
9
\end{array}\right]=-16+45=29
\end{aligned}
\]

\section*{Notes}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Notes}
\(\qquad\)
\(\qquad\)
- Transpose swaps rows and columns
- \(A B=\left(B^{T} A^{T}\right)^{T}\)
- \(\mathbf{y} \cdot(A \mathbf{x})=\left(A^{T} \mathbf{y}\right) \cdot \mathbf{x}\)

\section*{Notes}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)```

