4.3: Application: Random Walks 000000000

4.3: The Transpose

Outline

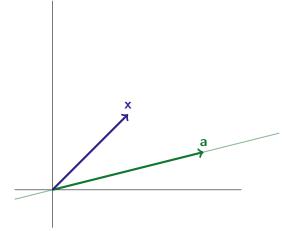
Week 7: Rotations, projections and reflections in 2D; matrix representation and composition of linear transformations; random walks; transpose.

Course Notes: 4.2, 4.3, 4.4

Goals: Understand that a linear transformation of a vector can always be achieved by matrix multiplication; use specific examples of linear transformations.

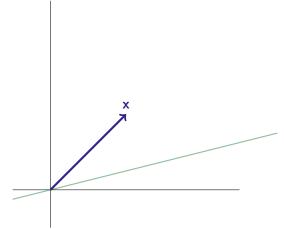
4.3: Application: Random Walks

4.3: The Transpose



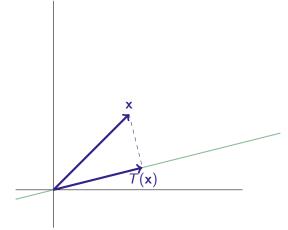
4.3: Application: Random Walks

4.3: The Transpose



4.3: Application: Random Walks

4.3: The Transpose

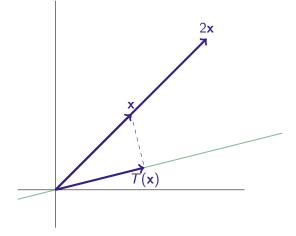


4.3: Application: Random Walks

4.3: The Transpose

Projections

For a fixed vector **a** in \mathbb{R}^2 , let $T(\mathbf{x}) = proj_a \mathbf{x}$

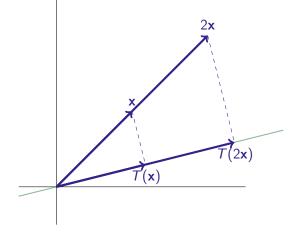


4.3: Application: Random Walks

4.3: The Transpose

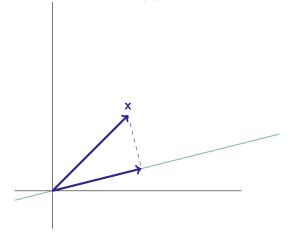
Projections

For a fixed vector **a** in \mathbb{R}^2 , let $T(\mathbf{x}) = proj_a \mathbf{x}$



4.3: Application: Random Walks

4.3: The Transpose

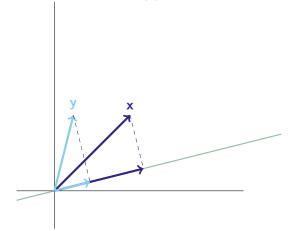


4.3: Application: Random Walks

4.3: The Transpose

Projections

For a fixed vector **a** in \mathbb{R}^2 , let $T(\mathbf{x}) = proj_a \mathbf{x}$

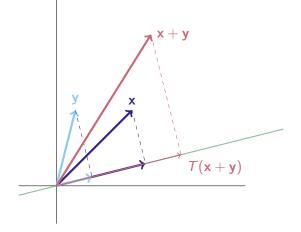


4.3: Application: Random Walks

4.3: The Transpose

Projections

For a fixed vector **a** in \mathbb{R}^2 , let $T(\mathbf{x}) = proj_a \mathbf{x}$



4.3: Application: Random Walks

4.3: The Transpose

Computing Projections

Let
$$\mathbf{a} = [a_1, a_2]$$
 and $\mathbf{x} = [x_1, x_2]$.

$$proj_{\mathbf{a}}\mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1a_2 \\ a_1a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Computing Projections

Let

$$\mathbf{a} = [a_1, a_2] \text{ and } \mathbf{x} = [x_1, x_2].$$

 $proj_{\mathbf{a}}\mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$

Since $T(\mathbf{x}) = \text{proj}_{\mathbf{a}}\mathbf{x} = A\mathbf{x}$ for a matrix A, then T is a linear transformation.

4.3: Application: Random Walks

4.3: The Transpose

Computing Projections

Let
$$\mathbf{a} = [a_1, a_2]$$
 and $\mathbf{x} = [x_1, x_2]$.

$$proj_{\mathbf{a}}\mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Since $T(\mathbf{x}) = \text{proj}_{\mathbf{a}}\mathbf{x} = A\mathbf{x}$ for a matrix A, then T is a linear transformation.

Let $\mathbf{a} = [1, 1]$ and $\mathbf{x} = [2, 3]$. Calculate *proj*_ax two ways.

4.3: Application: Random Walks

4.3: The Transpose

Computing Projections

Let
$$\mathbf{a} = [a_1, a_2]$$
 and $\mathbf{x} = [x_1, x_2]$.

$$proj_{\mathbf{a}}\mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Since $T(\mathbf{x}) = \text{proj}_{\mathbf{a}}\mathbf{x} = A\mathbf{x}$ for a matrix A, then T is a linear transformation.

Let $\mathbf{a} = [1, 1]$ and $\mathbf{x} = [2, 3]$. Calculate *proj*_a \mathbf{x} two ways.

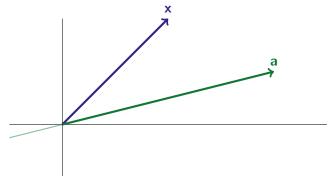
 $T(\mathbf{x}) = \textit{proj}_{\mathbf{b}}\left(\textit{proj}_{\mathbf{a}}\mathbf{x}\right)$

Is the projection of a projection a projection? (Is there a vector **c** so that $T(\mathbf{x}) = proj_{\mathbf{c}}\mathbf{x}$?) Example: $\mathbf{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$

4.3: Application: Random Walks

4.3: The Transpose

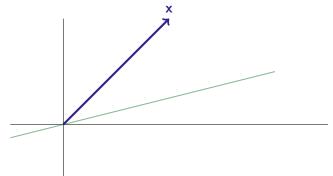
Reflections



4.3: Application: Random Walks

4.3: The Transpose

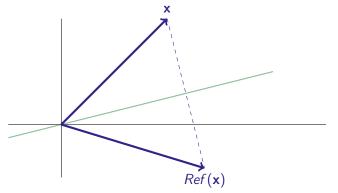
Reflections



4.3: Application: Random Walks

4.3: The Transpose

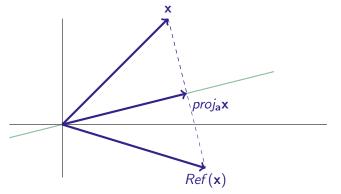
Reflections



4.3: Application: Random Walks

4.3: The Transpose

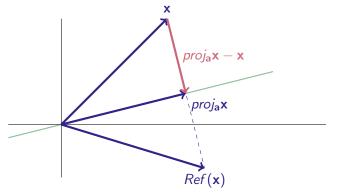
Reflections



4.3: Application: Random Walks

4.3: The Transpose

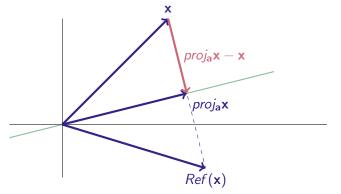
Reflections



4.3: Application: Random Walks

4.3: The Transpose

Reflections



$$Ref(\mathbf{x}) = \mathbf{x} + 2(proj_a\mathbf{x} - \mathbf{x}) = 2proj_a\mathbf{x} - \mathbf{x}$$

4.3: Application: Random Walks

4.3: The Transpose

Reflections

 $Ref(\mathbf{x}) = 2 proj_{\mathbf{a}} \mathbf{x} - \mathbf{x}$

4.3: Application: Random Walks

4.3: The Transpose

Reflections

$$Ref(\mathbf{x}) = 2 proj_{\mathbf{a}} \mathbf{x} - \mathbf{x}$$

Projections:

$$proj_{\mathbf{a}}\mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Identity:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Reflections

$$Ref(\mathbf{x}) = 2 proj_{\mathbf{a}} \mathbf{x} - \mathbf{x}$$

Projections:

$$proj_{\mathbf{a}}\mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Identity:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$Ref(\mathbf{x}) = 2proj_{\mathbf{a}}\mathbf{x} - \mathbf{x}$$
$$= \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

4.3: Application: Random Walks

-

4.3: The Transpose

Cleanup

$$Ref(\mathbf{x}) = \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Cleanup

$$Ref(\mathbf{x}) = \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

~

If **a** is a unit vector, then $a_1^2 + a_2^2 = 1$. Then:

$$Ref(\mathbf{x}) = \begin{bmatrix} 2a_1^2 - 1 & 2a_1a_2\\ 2a_1a_2 & 2a_2^2 - 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Cleanup

$$Ref(\mathbf{x}) = \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

If **a** is a unit vector, then $a_1^2 + a_2^2 = 1$. Then:

$$Ref(\mathbf{x}) = \begin{bmatrix} 2a_1^2 - 1 & 2a_1a_2\\ 2a_1a_2 & 2a_2^2 - 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

And if **a** makes angle θ with the *x*-axis, then $a_1 = \cos \theta$ and $a_2 = \sin \theta$, so:

$$Ref_{\theta}(\mathbf{x}) =$$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
 $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$

 $\sin 2\theta = 2\sin\theta\cos\theta$

4.3: Application: Random Walks

4.3: The Transpose

Cleanup

$$Ref(\mathbf{x}) = \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

If **a** is a unit vector, then $a_1^2 + a_2^2 = 1$. Then:

$$Ref(\mathbf{x}) = \begin{bmatrix} 2a_1^2 - 1 & 2a_1a_2\\ 2a_1a_2 & 2a_2^2 - 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

And if **a** makes angle θ with the x-axis, then $a_1 = \cos \theta$ and $a_2 = \sin \theta$, so:

$$\textit{Ref}_{ heta}(\mathbf{x}) = egin{bmatrix} \cos(2 heta) & \sin(2 heta) \ \sin(2 heta) & -\cos(2 heta) \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$
 $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$

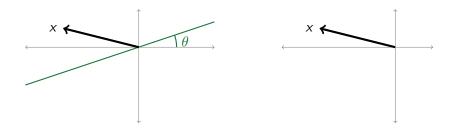
 $\sin 2\theta = 2\sin\theta\cos\theta$

4.3: Application: Random Walks

4.3: The Transpose

Reflections and Rotations

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$Rot_{\phi}(\mathbf{x}) = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

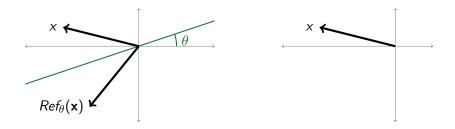


4.3: Application: Random Walks

4.3: The Transpose

Reflections and Rotations

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$Rot_{\phi}(\mathbf{x}) = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

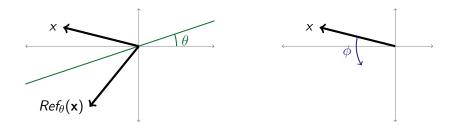


4.3: Application: Random Walks

4.3: The Transpose

Reflections and Rotations

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$Rot_{\phi}(\mathbf{x}) = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

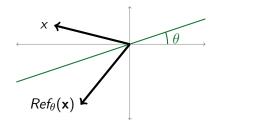


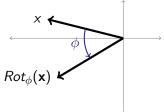
4.3: Application: Random Walks

4.3: The Transpose

Reflections and Rotations

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$Rot_{\phi}(\mathbf{x}) = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$





4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example: find the reflection of the vector [2, 4] across the line through the origin that makes an angle of 15 degrees ($\pi/12$ radians) with the x-axis.

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example: find the reflection of the vector [2, 4] across the line through the origin that makes an angle of 15 degrees ($\pi/12$ radians) with the x-axis.

$$\begin{bmatrix} \cos(2(\pi/12)) & \sin(2(\pi/12)) \\ \sin(2(\pi/12)) & -\cos(2(\pi/12)) \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} \cos(\pi/6) & \sin(\pi/6) \\ \sin(\pi/6) & -\cos(\pi/6)) \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} \sqrt{3} + 2 \\ 1 - 2\sqrt{3} \end{bmatrix} \approx \begin{bmatrix} 3.7 \\ -2.5 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\ \sin(2(\theta - \phi)) & \cos(2(\theta - \phi)) \end{bmatrix} =$$

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

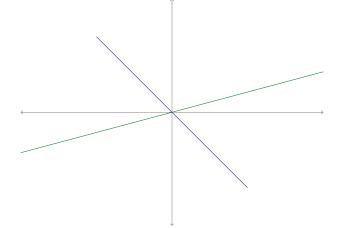
$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\ \sin(2(\theta - \phi)) & \cos(2(\theta - \phi)) \end{bmatrix} = Rot_{2(\theta - \phi)}$$

4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

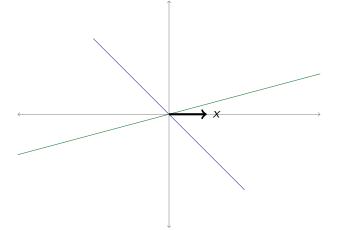


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

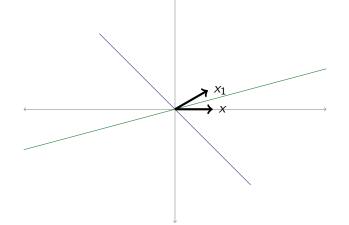


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

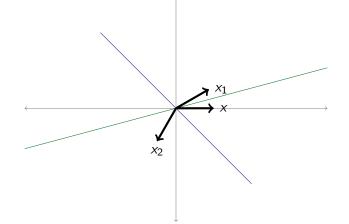


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

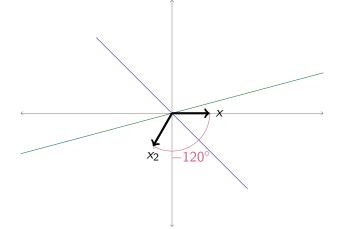


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

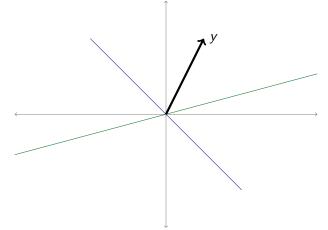


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

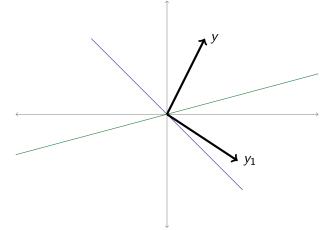


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

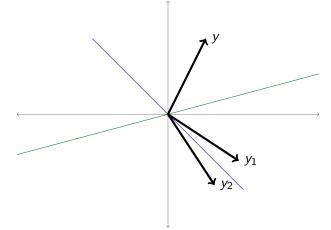


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

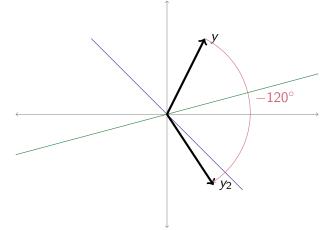


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

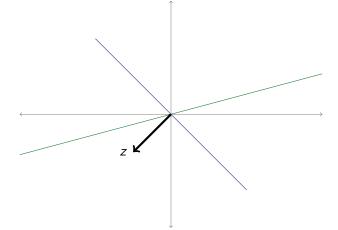


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

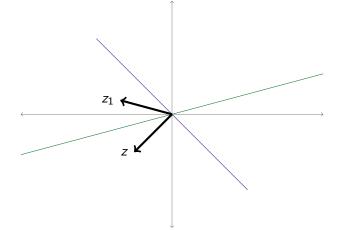


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

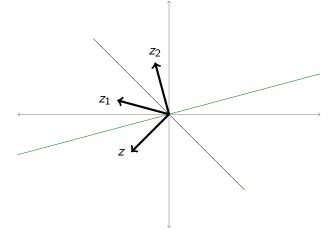


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.

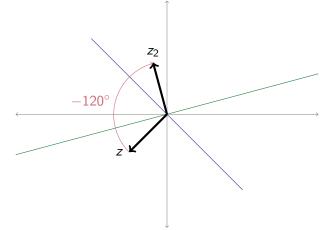


4.3: Application: Random Walks

4.3: The Transpose

Two Reflections gives a Rotation

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.



4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\ \sin(2(\theta - \phi)) & \cos(2(\theta - \phi)) \end{bmatrix} = Rot_{2(\theta - \phi)}$$

Are reflections commutative?

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\ \sin(2(\theta - \phi)) & \cos(2(\theta - \phi)) \end{bmatrix} = Rot_{2(\theta - \phi)}$$

Are reflections commutative? No (but almost)

4.3: Application: Random Walks

4.3: The Transpose

Reflections

To reflect **x** across the line through the origin that makes angle θ with the *x*-axis:

$$Ref_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix}$$
$$= \begin{bmatrix} \cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\ \sin(2(\theta - \phi)) & \cos(2(\theta - \phi)) \end{bmatrix} = Rot_{2(\theta - \phi)}$$

Are reflections commutative? No (but almost) Are reflections commutative with rotations?

4.3: Application: Random Walks

4.3: The Transpose

Reflections and Rotations

Are reflections commutative with rotations?

Try the following with a cell phone or book:

- 1. Rotate 90 degrees clockwise
- 2. Flip 180 degrees vertically

Alternately:

- 1. Flip 180 degrees vertically
- 2. Rotate 90 degrees clockwise

4.3: Application: Random Walks

4.3: The Transpose

Reflections and Rotations

Are reflections commutative with rotations?

Try the following with a cell phone or book:

- 1. Rotate 90 degrees clockwise
- 2. Flip 180 degrees vertically

Alternately:

- 1. Flip 180 degrees vertically
- 2. Rotate 90 degrees clockwise

Nope.

4.3: Application: Random Walks

4.3: The Transpose

Reflections and Rotations

Are reflections commutative with rotations?

Try the following with a cell phone or book:

- 1. Rotate 90 degrees clockwise
- 2. Flip 180 degrees vertically

Alternately:

- 1. Flip 180 degrees vertically
- 2. Rotate 90 degrees clockwise

Nope.

To prove an operation IS commutative, we have to prove it is commutative ALWAYS.

To prove an operation IS NOT commutative, it suffices to fine ONE EXAMPLE where it doesn't commute.

4.3: Application: Random Walks

4.3: The Transpose

Summary: Examples of Linear Transformations

To compute the rotation of the vector \mathbf{x} by θ , multiply \mathbf{x} by the matrix

$$\mathit{Rot}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Summary: Examples of Linear Transformations

To compute the rotation of the vector \mathbf{x} by θ , multiply \mathbf{x} by the matrix

$$\mathit{Rot}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

To compute the projection of the vector \mathbf{x} onto the vector $[a_1, a_2]$, multiply \mathbf{x} by the matrix

$$proj_{[a_1,a_2]} = \begin{bmatrix} \frac{a_1^2}{a_1^2 + a_2^2} & \frac{a_1a_2}{a_1^2 + a_2^2} \\ \frac{a_1a_2}{a_1^2 + a_2^2} & \frac{a_2}{a_1^2 + a_2^2} \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Summary: Examples of Linear Transformations

To compute the rotation of the vector \mathbf{x} by θ , multiply \mathbf{x} by the matrix

$$\mathit{Rot}_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

To compute the projection of the vector \mathbf{x} onto the vector $[a_1, a_2]$, multiply \mathbf{x} by the matrix

$$proj_{[a_1,a_2]} = \begin{bmatrix} \frac{a_1^2}{a_1^2 + a_2^2} & \frac{a_1a_2}{a_1^2 + a_2^2} \\ \frac{a_1a_2}{a_1^2 + a_2^2} & \frac{a_2^2}{a_1^2 + a_2^2} \end{bmatrix}$$

To compute the reflection of the vector \mathbf{x} across the line through the origin that makes an angle of ϕ with the x-axis, multiply \mathbf{x} by the matrix

$$Ref_{\theta} = \begin{bmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Summary: Examples of Linear Transformations

To compute the rotation of the vector \mathbf{x} by θ , multiply \mathbf{x} by the matrix

$$Rot_{ heta} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix}$$

To compute the projection of the vector \mathbf{x} onto the vector $[a_1, a_2]$, multiply \mathbf{x} by the matrix

$$proj_{[a_1,a_2]} = \begin{bmatrix} \frac{a_1^2}{a_1^2 + a_2^2} & \frac{a_1a_2}{a_1^2 + a_2^2} \\ \frac{a_1a_2}{a_1^2 + a_2^2} & \frac{a_2^2}{a_1^2 + a_2^2} \end{bmatrix}$$

To compute the reflection of the vector \mathbf{x} across the line through the origin that makes an angle of ϕ with the x-axis, multiply \mathbf{x} by the matrix

$$Ref_{\theta} = \begin{bmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{bmatrix}$$

Which transformations are equivalent to matrix multiplication?

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

- Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- Since $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors.

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

- Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- Since $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9\\14 \end{bmatrix} = 9 \begin{bmatrix} 1\\0 \end{bmatrix} + 14 \begin{bmatrix} 0\\1 \end{bmatrix}$

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

- Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- Since $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9\\14 \end{bmatrix} = 9 \begin{bmatrix} 1\\0 \end{bmatrix} + 14 \begin{bmatrix} 0\\1 \end{bmatrix}$
- Since T is linear, $T\left(\begin{bmatrix} 9\\14 \end{bmatrix} \right)$

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

- Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- Since $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9\\14 \end{bmatrix} = 9 \begin{bmatrix} 1\\0 \end{bmatrix} + 14 \begin{bmatrix} 0\\1 \end{bmatrix}$

• Since
$$T$$
 is linear,
 $T\left(\begin{bmatrix}9\\14\end{bmatrix}\right) = T\left(9\begin{bmatrix}1\\0\end{bmatrix} + 14\begin{bmatrix}0\\1\end{bmatrix}\right)$

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

- Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- Since $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9\\14 \end{bmatrix} = 9 \begin{bmatrix} 1\\0 \end{bmatrix} + 14 \begin{bmatrix} 0\\1 \end{bmatrix}$
- Since T is linear, $T\left(\begin{bmatrix}9\\14\end{bmatrix}\right) = T\left(9\begin{bmatrix}1\\0\end{bmatrix} + 14\begin{bmatrix}0\\1\end{bmatrix}\right) = 9T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + 14T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

- Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- Since $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9\\14 \end{bmatrix} = 9 \begin{bmatrix} 1\\0 \end{bmatrix} + 14 \begin{bmatrix} 0\\1 \end{bmatrix}$
- Since T is linear, $T\left(\begin{bmatrix}9\\14\end{bmatrix}\right) = T\left(9\begin{bmatrix}1\\0\end{bmatrix} + 14\begin{bmatrix}0\\1\end{bmatrix}\right) = 9T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + 14T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- In general,
 - $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right)$

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

- Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- Since $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9\\14 \end{bmatrix} = 9 \begin{bmatrix} 1\\0 \end{bmatrix} + 14 \begin{bmatrix} 0\\1 \end{bmatrix}$
- Since T is linear, $T\left(\begin{bmatrix}9\\14\end{bmatrix}\right) = T\left(9\begin{bmatrix}1\\0\end{bmatrix} + 14\begin{bmatrix}0\\1\end{bmatrix}\right) = 9T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + 14T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- In general, $T\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = T\left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

- Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- Since $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2 , every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9\\14 \end{bmatrix} = 9 \begin{bmatrix} 1\\0 \end{bmatrix} + 14 \begin{bmatrix} 0\\1 \end{bmatrix}$
- Since T is linear, $T\left(\begin{bmatrix}9\\14\end{bmatrix}\right) = T\left(9\begin{bmatrix}1\\0\end{bmatrix} + 14\begin{bmatrix}0\\1\end{bmatrix}\right) = 9T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + 14T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
- In general, $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = T\left(x\begin{bmatrix}1\\0\end{bmatrix} + y\begin{bmatrix}0\\1\end{bmatrix}\right) = xT\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + yT\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know $T\left(\begin{bmatrix} 1\\ 0 \end{bmatrix} \right) =$ and $T\left(\begin{bmatrix} 0\\ 1 \end{bmatrix} \right) =$

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\\4\end{bmatrix}$$
 and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\5\\5\\5\end{bmatrix}$

 $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) =$

4.3: Application: Random Walks

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\\4\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\5\\5\\5\end{bmatrix}$

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\\4\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\5\\5\\5\\c\end{bmatrix}$

 $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = T\left(x\begin{bmatrix}1\\0\end{bmatrix}+y\begin{bmatrix}0\\1\end{bmatrix}\right) = xT\left(\begin{bmatrix}1\\0\end{bmatrix}\right)+yT\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\\4\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\5\\5\\5\end{bmatrix}$ $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = T\left(x\begin{bmatrix}1\\0\end{bmatrix} + y\begin{bmatrix}0\\1\end{bmatrix}\right) = xT\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + yT\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$ $= x\begin{bmatrix}1\\2\\3\\4\end{bmatrix} + y\begin{bmatrix}5\\5\\5\\5\end{bmatrix}$

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\\4\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\5\\5\\5\end{bmatrix}$ • $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = T\left(x\begin{bmatrix}1\\0\end{bmatrix}+y\begin{bmatrix}0\\1\end{bmatrix}\right) = xT\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + yT\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$ $= x\begin{bmatrix}1\\2\\3\\4\end{bmatrix} + y\begin{bmatrix}5\\5\\5\\5\end{bmatrix} = \begin{bmatrix}1x+5y\\2x+5y\\3x+5y\\4x+5y\end{bmatrix}$

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\\4\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\5\\5\\5\end{bmatrix}$ • $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = T\left(x\begin{bmatrix}1\\0\end{bmatrix}+y\begin{bmatrix}0\\1\end{bmatrix}\right) = xT\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + yT\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$ $= x\begin{bmatrix}1\\2\\3\\4\end{bmatrix} + y\begin{bmatrix}5\\5\\5\\5\end{bmatrix} = \begin{bmatrix}1x+5y\\2x+5y\\3x+5y\\4x+5y\end{bmatrix} = \begin{bmatrix}1&5\\2&5\\3&5\\4&5\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}$

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^4 .

• Suppose we know
$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\\4\end{bmatrix}$$
 and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\5\\5\\5\end{bmatrix}$
• $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = T\left(x\begin{bmatrix}1\\0\end{bmatrix}+y\begin{bmatrix}0\\1\end{bmatrix}\right) = xT\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + yT\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$
 $= x\begin{bmatrix}1\\2\\3\\4\end{bmatrix} + y\begin{bmatrix}5\\5\\5\end{bmatrix} = \begin{bmatrix}1x+5y\\2x+5y\\3x+5y\\4x+5y\end{bmatrix} = \begin{bmatrix}1&5\\2&5\\3&5\\4&5\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}$

• So: T(x) can be computed as a matrix multiplication,

$$T(\mathbf{x}) = \begin{bmatrix} T\left(\begin{bmatrix} 1\\1\\0 \end{bmatrix} \right) & T\left(\begin{bmatrix} 0\\1\\1 \end{bmatrix} \right) \end{bmatrix} \mathbf{x}$$

4.3: The Transpose

Suppose a linear transformation ${\mathcal T}$ from ${\mathbb R}^3$ to ${\mathbb R}^2$ satisfies the following:

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}2\\5\end{bmatrix}$$
 $T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$ $T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}3\\-2\end{bmatrix}$

Then $T(\mathbf{x}) = A\mathbf{x}$ for the matrix A =

4.3: The Transpose

Suppose a linear transformation ${\mathcal T}$ from ${\mathbb R}^3$ to ${\mathbb R}^2$ satisfies the following:

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}2\\5\end{bmatrix}$$
 $T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\1\end{bmatrix}$ $T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}3\\-2\end{bmatrix}$

Then $T(\mathbf{x}) = A\mathbf{x}$ for the matrix $A = \begin{bmatrix} 2 & 0 & 3 \\ 5 & 1 & -2 \end{bmatrix}$

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Theorem

Every linear transformation T that takes a vector as an input, and gives a vector as an output, is equivalent to a matrix multiplication.

4.3: The Transpose

Which transformations are equivalent to matrix multiplication?

Theorem

Every linear transformation T that takes a vector as an input, and gives a vector as an output, is equivalent to a matrix multiplication.

Extended Theorem

Suppose T is a linear transformation that transforms vectors of \mathbb{R}^n into vectors of \mathbb{R}^m . If e_1, \ldots, e_n is the standard basis of \mathbb{R}^n , then:

$$T\left(\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}\right) = \begin{bmatrix}|&|&&|\\T(e_1) & T(e_2) & \cdots & T(e_n)\\|&|&&|\end{bmatrix}\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}$$

That is: $e_1 = [1, 0, \dots, 0]$, $e_2 = [0, 1, 0, \dots, 0]$, etc.

Geometric interpretation of an *n*-by-*m* matrix: linear transformation from \mathbb{R}^m to \mathbb{R}^n .

Every matrix can be viewed as a linear transformation, and every linear transformation between \mathbb{R}^n and \mathbb{R}^m can be viewed as a matrix.

A matrix can be viewed as a particular kind of function.

4.3: Application: Random Walks

4.3: The Transpose

General Linear Transformations

 $T: \mathbb{R}^n \to \mathbb{R}^m$ linear

4.3: Application: Random Walks

4.3: The Transpose

General Linear Transformations

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 linear

Standard basis of \mathbb{R}^n :

$$\left\{e_{1} = \begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}, e_{2} = \begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix}, \dots, e_{n} = \begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix}\right\}$$

4.3: Application: Random Walks

4.3: The Transpose

General Linear Transformations

$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 linear

Standard basis of \mathbb{R}^n :

$$\left\{e_{1} = \begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}, e_{2} = \begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix}, \dots, e_{n} = \begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix}\right\}$$

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \right) = \begin{bmatrix} | & | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Examples

Suppose a linear transformation ${\mathcal T}$ from ${\mathbb R}^2$ to ${\mathbb R}^2$ has the following properties:

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\\end{bmatrix}$$
$$T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}7\\7\end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Examples

Suppose a linear transformation ${\mathcal T}$ from ${\mathbb R}^2$ to ${\mathbb R}^2$ has the following properties:

 $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}$ $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}7\\7\end{bmatrix}$

Give a matrix A so that T(x) = Ax for every vector x in \mathbb{R}^2 .

Suppose a linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 has the following properties:

 $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\\\end{bmatrix}$ $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}7\\7\end{bmatrix}$

4.3: Application: Random Walks

4.3: The Transpose

Examples

Suppose a linear transformation ${\mathcal T}$ from ${\mathbb R}^2$ to ${\mathbb R}^3$ has the following properties:

$$T\left(\begin{bmatrix}5\\7\end{bmatrix}\right) = \begin{bmatrix}7\\5\\12\end{bmatrix}$$

$$T\left(\begin{bmatrix}4\\6\end{bmatrix}\right) = \begin{bmatrix}6\\4\\10\end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Examples

Suppose a linear transformation ${\mathcal T}$ from ${\mathbb R}^2$ to ${\mathbb R}^3$ has the following properties:

$$T\left(\begin{bmatrix}5\\7\end{bmatrix}\right) = \begin{bmatrix}7\\5\\12\end{bmatrix}$$
$$T\left(\begin{bmatrix}4\\6\end{bmatrix}\right) = \begin{bmatrix}6\\4\\10\end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Examples

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^3 , where T(x) = Ax for the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Which vector
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 has $T(x) = \begin{bmatrix} 4 \\ 10 \\ 16 \end{bmatrix}$?
Which vector $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ has $T(y) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$?

4.3: Application: Random Walks

4.3: The Transpose

Examples

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^3 , where T(x) = Ax for the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Which vector
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 has $T(x) = \begin{bmatrix} 4 \\ 10 \\ 16 \end{bmatrix}$?
Which vector $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ has $T(y) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$?

Characterize vectors that can come out of T.

4.3: Application: Random Walks •••••••• 4.3: The Transpose

Random Walks: Another Use of Matrix Multiplication

• n states

•Fixed probability $p_{i,j}$ of moving to state *i* if you are in state *j*.

4.3: Application: Random Walks •••••••• 4.3: The Transpose

Random Walks: Another Use of Matrix Multiplication

• n states

•Fixed probability $p_{i,j}$ of moving to state *i* if you are in state *j*.

Examples: https://en.wikipedia.org/wiki/Random_walk model Brownian Motion (Wiener process)

4.3: The Transpose

Random Walks: Another Use of Matrix Multiplication

• n states

•Fixed probability $p_{i,j}$ of moving to state *i* if you are in state *j*.

Examples: https://en.wikipedia.org/wiki/Random_walk model Brownian Motion (Wiener process) genetic drift

4.3: Application: Random Walks •••••••• 4.3: The Transpose 00000

Random Walks: Another Use of Matrix Multiplication

• n states

•Fixed probability $p_{i,j}$ of moving to state *i* if you are in state *j*.

Examples: https://en.wikipedia.org/wiki/Random_walk model Brownian Motion (Wiener process) genetic drift stock markets

4.3: Application: Random Walks •••••••• 4.3: The Transpose 00000

Random Walks: Another Use of Matrix Multiplication

• n states

•Fixed probability $p_{i,j}$ of moving to state *i* if you are in state *j*.

Examples: https://en.wikipedia.org/wiki/Random_walk model Brownian Motion (Wiener process) genetic drift stock markets use sampling to estimate properties of a large system

4.3: Application: Random Walks

4.3: The Transpose

Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

from	sleeping	fiching	playing
to	sieeping	nsning	piaying
sleeping	.5	.7	.4
fishing	.25	0	.3
playing	.25	.3	.3

Sleeping: https://pixabay.com/en/penguin-linux-sleeping-animal-159784/ Fishing: By Mimooh (Own work), via Wikimedia Commons Playing: By Silvermoonlight217 http://silvermoonlight217.deviantart.com/art/Penguin-Sledding-262107547

Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

from	sleeping	fiching	playing
to	sieeping	nsning	piaying
sleeping	.5	.7	.4
fishing	.25	0	.3
playing	.25	.3	.3

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

from	sleeping	fishing	nloving
to	sieeping	nsning	piaying
sleeping	.5	.7	.4
fishing	.25	0	.3
playing	.25	.3	.3

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after *n* hours.

 x_0 : initial state of penguin. For example: [1,0,0] if we know the penguin is sleeping.

Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

from	sleeping	fiching	nloving
to	sieeping	nsning	piaying
sleeping	.5	.7	.4
fishing	.25	0	.3
playing	.25	.3	.3

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after *n* hours. x_0 : initial state of penguin. For example: [1,0,0] if we know the

penguin is sleeping.

Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

from	sleeping	fiching	playing
to	sieeping	nsning	piaying
sleeping	.5	.7	.4
fishing	.25	0	.3
playing	.25	.3	.3

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

 x_0 : initial state of penguin. For example: [1,0,0] if we know the penguin is sleeping.

$$x_1$$
: $\begin{bmatrix} .5 \\ .25 \\ .25 \end{bmatrix}$

4.3: Application: Random Walks

4.3: The Transpose

Random Walks: Another Use of Matrix Multiplication

				rom to	sleeping	fishing	playing
			sle	eping	.5	.7	.4
			fis	hing	.25	0	.3
			pla	aying	.25	.3	.3
	[.5 [.25 [.25						
<i>x</i> ₂ :	[.5 .25 .25	.7 0 .3	.4 .3 .3]	[.5] .25 .25]	$= Px_1 =$		

4.3: Application: Random Walks

4.3: The Transpose

Random Walks: Another Use of Matrix Multiplication

		from	sleeping	fishing	playing
		to			
		sleeping	.5	.7	.4
		fishing	.25	0	.3
		playing	.25	.3	.3
		$x_1 = \begin{bmatrix} .5\\ .25\\ .25 \end{bmatrix}$		$\begin{bmatrix} 1\\0\\0\end{bmatrix} = H$	^D x ₀
<i>x</i> ₂ :	.5.7.250.25.3	.4 .3 .3 .25 .25	$= Px_1 =$		

4.3: Application: Random Walks

4.3: The Transpose

Random Walks: Another Use of Matrix Multiplication

			from		sleeping		fishing	playing
				to	,	0		, , , ,
			sle	eping	.5	5	.7	.4
			fisi	hing	.2	5	0	.3
			playing		.2	5	.3	.3
							$\begin{bmatrix} 1\\0\\0\end{bmatrix}=b$	₽ _{X0}
<i>x</i> ₂ :	[.5 .25 .25	.7 0 .3	.4 .3 .3]	[.5 .25 .25]	$= Px_1$	=P	(Px_0)	

4.3: Application: Random Walks

4.3: The Transpose

Random Walks: Another Use of Matrix Multiplication

			from to		sleeping		fishin	ng pla	aying
			sle	eeping	.5		.7		.4
				shing	.25		0		.3
			pl	playing		.25			.3
				= [.5 .25 .25					
<i>x</i> ₂ :	.5 25 .25.	.7 0 .3	.4 .3 .3]	[.5 [.25] = [.25]	= <i>Px</i> ₁	=P	(<i>Px</i> ₀)=	$= P^2 x_0$	0

4.3: Application: Random Walks

4.3: The Transpose

Random Walks

In general:

 $\bullet n$ states

• $p_{i,j}$ probability of moving to state *i* if you are in state *j*; $P = [p_{i,j}]$

4.3: Application: Random Walks

4.3: The Transpose

Random Walks

In general:

 $\bullet n$ states

• $p_{i,j}$ probability of moving to state *i* if you are in state *j*; $P = [p_{i,j}]$

Given x_n : $x_{n+1} = Px_n = P^{n+1}x_0$

4.3: Application: Random Walks

4.3: The Transpose

Random Walks

In general:

• n states

• $p_{i,j}$ probability of moving to state *i* if you are in state *j*; $P = [p_{i,j}]$

Given x_n : $x_{n+1} = Px_n = P^{n+1}x_0$

P: "transition matrix"

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

Rob, https://www.flickr.com/photos/rh1985/22218233156

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground			
Rope			
Right ground			

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground	1		
Rope			
Right ground			

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground	1		
Rope	0		
Right ground			

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground	1		
Rope	0		
Right ground	0		

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground	1	0.05	
Rope	0		
Right ground	0		

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground	1	0.05	
Rope	0	0.94	
Right ground	0		

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground	1	0.05	
Rope	0	0.94	
Right ground	0	0.01	

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground	1	0.05	0
Rope	0	0.94	
Right ground	0	0.01	

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

from to	Left ground	Rope	Right ground
Left ground	1	0.05	0
Rope	0	0.94	0
Right ground	0	0.01	

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

	from to	Left ground	Rope	Right ground
	Left ground	1	0.05	0
	Rope	0	0.94	0
	Right ground	0	0.01	1
Notice:	columns add t	o 1; rows don't	have to)

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example: Falling Down

You are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you're scared. When you fall, you stay on the ground where you landed.

from to	Left ground	Rope	Right ground
Left ground	1	0.05	0
Rope	0	0.94	0
Right ground	0	0.01	1

Where are you after 100 steps?

4.3: Application: Random Walks

4.3: The Transpose

You are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you're scared. When you fall, you stay on the ground where you landed.

After 100 steps:

*x*₁₀₀

(left rope right)

You are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you're scared. When you fall, you stay on the ground where you landed.

After 100 steps:

$$x_{100} = P^{100} x_0$$

You are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you're scared. When you fall, you stay on the ground where you landed.

After 100 steps:

$$x_{100} = P^{100}x_0 = \begin{bmatrix} 1 & 0.05 & 0 \\ 0 & 0.94 & 0 \\ 0 & 0.01 & 1 \end{bmatrix}^{100} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \qquad \begin{pmatrix} \text{left} \\ \text{rope} \\ \text{right} \end{pmatrix}$$

You are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you're scared. When you fall, you stay on the ground where you landed.

After 100 steps:

$$x_{100} = P^{100}x_0 = \begin{bmatrix} 1 & 0.05 & 0 \\ 0 & 0.94 & 0 \\ 0 & 0.01 & 1 \end{bmatrix}^{100} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \approx \begin{bmatrix} 0.8316209 \\ 0.0020549 \\ 0.1663242 \end{bmatrix} \quad \begin{pmatrix} \text{left} \\ \text{rope} \\ \text{right} \end{pmatrix}$$

Random Walk Example: Error Messages

Suppose you are using a buggy program. You start up without a problem.

- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.
- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05.
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.
- After the third error message, your next click is to uninstall the program, and never use it again.

Random Walk Example: Error Messages

Suppose you are using a buggy program. You start up without a problem.

- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.
- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05.
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.
- After the third error message, your next click is to uninstall the program, and never use it again.

Possible states: no errors; one error; two errors; three errors; uninstalled.

4.3: Application: Random Walks

4.3: The Transpose

Random Walk Example

- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.
- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05.
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.
- After the third error message, you uninstall the program.

Possible states: no errors; one error; two errors; three errors; uninstalled.

from to	0	1	2	3	и	
0	.99	0	0	0	0	Again, notice:
1	.01	.95	0	0	0	columns sum to 1,
2	0	.05	.9	0	0	rows don't have to
3	0	0	.1	0	0	
и	0	0	0	1	1	

4.3: Application: Random Walks

With the ordering		0 errors 1 error 2 errors 3 errors uninstalled		,
-------------------	--	--	--	---

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ 3 \text{ errors} \\ uninstalled \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Using Octave:

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ 3 \text{ errors} \\ uninstalled \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Using Octave:

•
$$\mathbf{x}_{10} = P^{10}\mathbf{x}_0$$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ \text{uninstalled} \end{bmatrix}, \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \text{ Using Octave:}$$
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_0 \approx \begin{bmatrix} 0.904 \\ 0.076 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 & \text{errors} \\ 1 & \text{error} \\ 2 & \text{errors} \\ 3 & \text{errors} \\ \text{uninstalled} \end{bmatrix}$$
, $\mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$. Using Octave:
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_0 \approx \begin{bmatrix} 0.904 \\ 0.076 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$

•
$$\mathbf{x}_{20} = P^{20} \mathbf{x}_0 \approx$$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ 3 \text{ errors} \\ \text{uninstalled} \end{bmatrix}, \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Using Octave:
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_0 \approx \begin{bmatrix} 0.904 \\ 0.076 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$
• $\mathbf{x}_{20} = P^{20}\mathbf{x}_0 \approx \begin{bmatrix} 0.818 \\ 0.115 \\ 0.0037 \\ 0.004 \\ 0.026 \end{bmatrix}$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ 3 \text{ errors} \\ \text{uninstalled} \end{bmatrix}, \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Using Octave:
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_0 \approx \begin{bmatrix} 0.904 \\ 0.076 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$
• $\mathbf{x}_{20} = P^{20}\mathbf{x}_0 \approx \begin{bmatrix} 0.818 \\ 0.115 \\ 0.0037 \\ 0.0024 \\ 0.026 \end{bmatrix}$

•
$$\mathbf{x}_{100} = P^{100} \mathbf{x}_0 \approx$$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ 3 \text{ errors} \\ \text{uninstalled} \end{bmatrix}, \quad \mathbf{x}_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Using Octave:
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_{0} \approx \begin{bmatrix} 0.904 \\ 0.076 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$
• $\mathbf{x}_{20} = P^{20}\mathbf{x}_{0} \approx \begin{bmatrix} 0.818 \\ 0.115 \\ 0.0037 \\ 0.004 \\ 0.026 \end{bmatrix}$
• $\mathbf{x}_{100} = P^{100}\mathbf{x}_{0} \approx \begin{bmatrix} 0.366 \\ 0.090 \\ 0.049 \\ 0.005 \\ 0.490 \end{bmatrix}$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ 3 \text{ errors} \\ \text{uninstalled} \end{bmatrix}, \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Using Octave:
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_0 \approx \begin{bmatrix} 0.904 \\ 0.076 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$
• $\mathbf{x}_{20} = P^{20}\mathbf{x}_0 \approx \begin{bmatrix} 0.818 \\ 0.115 \\ 0.0037 \\ 0.004 \\ 0.026 \end{bmatrix}$
• $\mathbf{x}_{100} = P^{100}\mathbf{x}_0 \approx \begin{bmatrix} 0.366 \\ 0.049 \\ 0.049 \\ 0.005 \\ 0.490 \end{bmatrix}$

•
$$\mathbf{x}_{200} = P^{200} \mathbf{x}_0 \approx$$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ 3 \text{ errors} \\ \text{uninstalled} \end{bmatrix}, \quad \mathbf{x}_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Using Octave:
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_{0} \approx \begin{bmatrix} 0.904 \\ 0.076 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$
• $\mathbf{x}_{20} = P^{20}\mathbf{x}_{0} \approx \begin{bmatrix} 0.818 \\ 0.115 \\ 0.0037 \\ 0.004 \\ 0.026 \end{bmatrix}$
• $\mathbf{x}_{100} = P^{100}\mathbf{x}_{0} \approx \begin{bmatrix} 0.366 \\ 0.990 \\ 0.049 \\ 0.005 \\ 0.490 \end{bmatrix}$
• $\mathbf{x}_{200} = P^{200}\mathbf{x}_{0} \approx \begin{bmatrix} 0.134 \\ 0.033 \\ 0.019 \\ 0.002 \\ 0.0812 \end{bmatrix}$

• $\lim_{n\to\infty} \mathbf{x}_n =$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 \text{ errors} \\ 1 \text{ error} \\ 2 \text{ errors} \\ 3 \text{ errors} \\ \text{uninstalled} \end{bmatrix}, \quad \mathbf{x}_{0} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Using Octave:
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_{0} \approx \begin{bmatrix} 0.904 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$
• $\mathbf{x}_{20} = P^{20}\mathbf{x}_{0} \approx \begin{bmatrix} 0.818 \\ 0.115 \\ 0.0037 \\ 0.004 \\ 0.026 \end{bmatrix}$
• $\mathbf{x}_{100} = P^{100}\mathbf{x}_{0} \approx \begin{bmatrix} 0.366 \\ 0.090 \\ 0.049 \\ 0.049 \\ 0.049 \\ 0.049 \\ 0.025 \\ 0.490 \end{bmatrix}$
• $\mathbf{x}_{200} = P^{200}\mathbf{x}_{0} \approx \begin{bmatrix} 0.134 \\ 0.033 \\ 0.019 \\ 0.002 \\ 0.812 \end{bmatrix}$

4.3: Application: Random Walks

With the ordering
$$\begin{bmatrix} 0 & \text{errors} \\ 1 & \text{error} \\ 2 & \text{errors} \\ \text{uninstalled} \end{bmatrix}, \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$
 Using Octave:
• $\mathbf{x}_{10} = P^{10}\mathbf{x}_0 \approx \begin{bmatrix} 0.904 \\ 0.076 \\ 0.015 \\ 0.001 \\ 0.003 \end{bmatrix}$
• $\mathbf{x}_{20} = P^{20}\mathbf{x}_0 \approx \begin{bmatrix} 0.818 \\ 0.115 \\ 0.0037 \\ 0.026 \end{bmatrix}$
• $\mathbf{x}_{100} = P^{100}\mathbf{x}_0 \approx \begin{bmatrix} 0.366 \\ 0.090 \\ 0.049 \\ 0.005 \\ 0.490 \end{bmatrix}$
• $\mathbf{x}_{200} = P^{200}\mathbf{x}_0 \approx \begin{bmatrix} 0.134 \\ 0.033 \\ 0.019 \\ 0.002 \\ 0.812 \end{bmatrix}$
• $\lim_{n \to \infty} \mathbf{x}_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ (we'll do these computations more generally once we learn about eigenvalues!)

4.3: Application: Random Walks

4.3: The Transpose

Harder Questions involving Random Walks

• For which value of n does x_n have a certain characteristic?

4.3: The Transpose

Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n\to\infty} x_n$?

4.3: Application: Random Walks

4.3: The Transpose

Harder Questions involving Random Walks

• For which value of n does x_n have a certain characteristic?

• What is
$$\lim_{n\to\infty} x_n$$
?
Note: $\lim_{n\to\infty} x_n = \lim_{n\to\infty} P^n x_0$.

4.3: Application: Random Walks

4.3: The Transpose

Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n\to\infty} x_n$? Note: $\lim_{n\to\infty} x_n = \lim_{n\to\infty} P^n x_0$.
- Does $\lim_{n\to\infty} x_n$ depend on x_0 ?

4.3: Application: Random Walks

4.3: The Transpose

Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n\to\infty} x_n$? Note: $\lim_{n\to\infty} x_n = \lim_{n\to\infty} P^n x_0$.
- Does $\lim_{n\to\infty} x_n$ depend on x_0 ?

Stay tuned for more Random Walks excitement

4.3: Application: Random Walks 000000000

4.3: The Transpose

Application: Google!

4.3: Application: Random Walks 000000000

Ξ.

. 7

4.3: The Transpose ●0000

Transpose

Transpose: rows \leftrightarrow columns.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Transpose

Transpose: rows \leftrightarrow columns.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose ●0000

Transpose

Transpose: rows \leftrightarrow columns.

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$ $AB = \begin{bmatrix} 6 & 12 & 18 \\ 15 & 30 & 45 \end{bmatrix} \qquad BA = DNE$

4.3: Application: Random Walks 000000000

4.3: The Transpose ●0000

Transpose

Transpose: rows \leftrightarrow columns.

 $A = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$ $B = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{vmatrix}$ $AB = \begin{bmatrix} 6 & 12 & 18 \\ 15 & 30 & 45 \end{bmatrix}$ $B^{\mathsf{T}}A^{\mathsf{T}} = \begin{bmatrix} 6 & 15\\ 12 & 30\\ 18 & 45 \end{bmatrix}$

 $A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $B^{\mathsf{T}} = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{vmatrix}$ BA = DNF $AB = (B^T A^T)^T$

4.3: Application: Random Walks

4.3: The Transpose •0000

4.3: Application: Random Walks

4.3: The Transpose ○●○○○

Transpose and Matrix Multiplication

AB = P

4.3: Application: Random Walks

4.3: The Transpose ○●○○○

Transpose and Matrix Multiplication

AB = P

(row a of A)·(column b of B) \rightarrow P_{ab} (row a, column b)

4.3: Application: Random Walks

4.3: The Transpose ○●○○○

Transpose and Matrix Multiplication

AB = P

(row a of A)·(column b of B) \rightarrow P_{ab} (row a, column b)

 $B^T A^T = Q$

4.3: Application: Random Walks 000000000

4.3: The Transpose ○●○○○

Transpose and Matrix Multiplication

AB = P

(row a of A)·(column b of B) \rightarrow P_{ab} (row a, column b)

 $B^T A^T = Q$

(row b of B^T)·(column a of A^T) $\rightarrow Q_{ba}$ (row b, column a)

4.3: Application: Random Walks

4.3: The Transpose ○●○○○

Transpose and Matrix Multiplication

AB = P

(row a of A)·(column b of B) \rightarrow P_{ab} (row a, column b)

 $B^T A^T = Q$

(row b of B^T)·(column a of A^T) $\rightarrow Q_{ba}$ (row b, column a) (column b of B)·(row a of A) $\rightarrow Q_{ba}$

4.3: Application: Random Walks 000000000

4.3: The Transpose ○●○○○

Transpose and Matrix Multiplication

AB = P

(row a of A)·(column b of B) \rightarrow P_{ab} (row a, column b)

 $B^T A^T = Q$

(row b of B^T)·(column a of A^T) $\rightarrow Q_{ba}$ (row b, column a) (column b of B)·(row a of A) $\rightarrow Q_{ba}$ (row a of A)·(column b of B) $\rightarrow Q_{ba}$

4.3: Application: Random Walks

4.3: The Transpose ○●○○○

Transpose and Matrix Multiplication

AB = P

(row a of A)·(column b of B) $\rightarrow P_{ab}$ (row a, column b)

 $B^T A^T = Q$

(row b of B^T)·(column a of A^T) $\rightarrow Q_{ba}$ (row b, column a) (column b of B)·(row a of A) $\rightarrow Q_{ba}$ (row a of A)·(column b of B) $\rightarrow Q_{ba}$

4.3: Application: Random Walks 000000000

4.3: The Transpose ○●○○○

Transpose and Matrix Multiplication

AB = P

(row a of A)·(column b of B) \rightarrow P_{ab} (row a, column b)

 $B^T A^T = Q$

(row *b* of B^T)·(column *a* of A^T) $\rightarrow Q_{ba}$ (row *b*, column *a*) (column *b* of *B*)·(row *a* of *A*) $\rightarrow Q_{ba}$ (row *a* of *A*)·(column *b* of *B*) $\rightarrow Q_{ba}$

 $P = Q^T$

4.3: Application: Random Walks

4.3: The Transpose

Transpose

Previous example of noncommutativity of matrix multiplication:

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 7 & 5 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 13 & 5 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 7 & 5 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ 3 & 6 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose

Transpose

Previous example of noncommutativity of matrix multiplication:

$$\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 7 & 5 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 13 & 5 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 7 & 5 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 7 & 14 \\ 3 & 6 \end{bmatrix}$$
$$\begin{bmatrix} 7 & 3 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 13 & 0 \\ 5 & 0 \end{bmatrix}$$

4.3: Application: Random Walks

4.3: The Transpose 000●0

Transpose and Dot Product

$$\mathbf{y} \cdot (A\mathbf{x}) = (A^T \mathbf{y}) \cdot \mathbf{x}$$

where A is an *m*-by-*n* matrix, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$.

4.3: Application: Random Walks

4.3: The Transpose 000●0

Transpose and Dot Product

$$\mathbf{y} \cdot (A\mathbf{x}) = (A^T \mathbf{y}) \cdot \mathbf{x}$$

where A is an *m*-by-*n* matrix, $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^m$.

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \left(\begin{bmatrix} 1 & 0\\0 & 1\\-1 & 1 \end{bmatrix} \begin{bmatrix} 8\\9 \end{bmatrix} \right) = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 8\\9\\1 \end{bmatrix} = 8 + 18 + 3 = 29$$

$$\left(\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right) \cdot \begin{bmatrix} 8 \\ 9 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 9 \end{bmatrix} = -16 + 45 = 29$$

4.3: Application: Random Walks

4.3: The Transpose 0000●

True or False?

Summary

- Transpose swaps rows and columns
- $AB = (B^T A^T)^T$

•
$$\mathbf{y} \cdot (A\mathbf{x}) = (A^T \mathbf{y}) \cdot \mathbf{x}$$

•
$$(A^T)^T = A$$

•
$$\left(\left(\left(\left(A^{T}\right)^{T}\right)^{T}\right)^{T}\right)^{T} = A$$

•
$$(AB)\mathbf{x} = (\mathbf{x}^T B^T)^T A$$

•
$$\mathbf{y} \cdot (A\mathbf{x}) = \mathbf{x} \cdot (A^T \mathbf{y})$$

4.3: Application: Random Walks

4.3: The Transpose 0000●

True or False?

Summary

- Transpose swaps rows and columns
- $AB = (B^T A^T)^T$

•
$$\mathbf{y} \cdot (A\mathbf{x}) = (A^T \mathbf{y}) \cdot \mathbf{x}$$

•
$$(A^T)^T = A$$
 true

•
$$\left(\left(\left(\left(A^{T}\right)^{T}\right)^{T}\right)^{T}\right)^{T} = A$$

•
$$(AB)\mathbf{x} = (\mathbf{x}^T B^T)^T A$$

•
$$\mathbf{y} \cdot (A\mathbf{x}) = \mathbf{x} \cdot (A^T \mathbf{y})$$

4.3: Application: Random Walks

4.3: The Transpose 0000●

True or False?

Summary

- Transpose swaps rows and columns
- $AB = (B^T A^T)^T$

•
$$\mathbf{y} \cdot (A\mathbf{x}) = (A^T \mathbf{y}) \cdot \mathbf{x}$$

•
$$(A^T)^T = A$$
 true

•
$$\left(\left(\left(\left(A^{T}\right)^{T}\right)^{T}\right)^{T}\right)^{T} = A$$

false

•
$$(AB)\mathbf{x} = (\mathbf{x}^T B^T)^T A$$

• $\mathbf{y} \cdot (A\mathbf{x}) = \mathbf{x} \cdot (A^T \mathbf{y})$

4.3: Application: Random Walks

4.3: The Transpose 0000●

True or False?

Summary

- Transpose swaps rows and columns
- $AB = (B^T A^T)^T$

•
$$\mathbf{y} \cdot (A\mathbf{x}) = (A^T \mathbf{y}) \cdot \mathbf{x}$$

•
$$(A^T)^T = A$$
 true

•
$$\left(\left(\left(\left(A^{T}\right)^{T}\right)^{T}\right)^{T}\right)^{T} = A$$

false

•
$$(AB)\mathbf{x} = (\mathbf{x}^T B^T)^T A$$

•
$$\mathbf{y} \cdot (A\mathbf{x}) = \mathbf{x} \cdot (A^T \mathbf{y})$$

4.3: Application: Random Walks

4.3: The Transpose 0000●

True or False?

Summary

- Transpose swaps rows and columns
- $AB = (B^T A^T)^T$

•
$$\mathbf{y} \cdot (A\mathbf{x}) = (A^T \mathbf{y}) \cdot \mathbf{x}$$

•
$$(A^T)^T = A$$
 true

•
$$\left(\left(\left(\left(A^{T}\right)^{T}\right)^{T}\right)^{T}\right)^{T} = A$$

• $(AB)\mathbf{x} = (\mathbf{x}^T B^T)^T A$ fals

• $\mathbf{y} \cdot (A\mathbf{x}) = \mathbf{x} \cdot (A^T \mathbf{y})$ true