Course Notes: 3.5

Goals: Use linear algebra to determine voltage drops and branch currents.

Course Notes: 3.5, Resistor Networks

Components in Resistor Networks

Course Notes: 3.5, Resistor Networks

$$V = IR$$

Notes			

Notes

V = IR

(voltage drop of 10 Volts across resistor)

Setup: Given: Resistance of resistors; voltage across voltage sources; current through current sources.

Find: currents through each resistor and each voltage source; voltage drops across each current source

Course Notes: 3.5, Resistor Networks

Kirchhoff's Laws

- $1. \ \,$ The sum of voltage drops around any closed loops in the network must be zero.
- 2. For any node, current in equals current out

Course Notes: 3.5, Resistor Networks

N	o	t	e	9

lotes	
-------	--

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- \bullet $\,$ We're counting up voltage drops around a loop. A voltage DROP is high to low.

• Branch current is the NET effect of the loop currents.

Course Notes: 3.5, Resistor Networks

 $i_1 \approx 0.2449, \quad i_2 \approx 0.1114, \quad i_3 \approx 0.1166$

Equations from previous slide:

$$i_1$$
 loop: $-10 + i_1 + 25(i_1 - i_2) + 50(i_1 - i_3) = 0$

$$i_2$$
 loop: $25(i_2 - i_1) + 30i_2 + (i_2 - i_3) = 0$

$$i_3$$
 loop: $50(i_3 - i_1) + (i_3 - i_2) + 55i_3 = 0$

$$76i_1 - 25i_2 - 50i_3 = 10$$

$$-25i_1 + 56i_2 - i_3 = 0$$

$$-50i_1 - i_2 + 106i_3 = 0$$

Ν¢	ote
----	-----

•		

Notes

-		

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- \bullet $\,$ We're counting up voltage drops around a loop. A voltage DROP is high to low.

• Branch current is the NET effect of the loop currents.

Course Notes: 3.5, Resistor Networks

Course Notes: 3.5 Resistor Networks

Equations from Previous Slide:

$$i_1$$
 loop: $-10 + 2(i_1 - i_4) + (i_1 - i_2) = 0$

$$i_2$$
 loop: $2i_2 + (i_2 - i_1) + 4(i_2 - i_3) = 0$

$$i_3$$
 loop: $-10 + 4(i_3 - i_2) + 3(i_3 - i_4) = 0$

$$i_4$$
 loop: $5i_4 + 3(i_4 - i_3) + 2(i_4 - i_1) = 0$

Notes

Notes

Ν	ot	es
N	ot	es

Course Notes: 3.5, Resistor Networks

N	ot	es

Let ${\it E}$ be the voltage drop across the current source.

	N	ot	es
--	---	----	----

Equations from previous slide:

Current Source: $5 = i_3 - i_2$

 i_1 Loop: $-10 + 3(i_1 - i_3) + 2(i_1 - i_2) = 0$

 i_2 Loop: $2(i_2-i_1)+E=0$

 i_3 Loop: $-E + 3(i_3 - i_1) + i_3 = 0$

Notes

Course Notes: 3.5, Resistor Networks

 $i_1 \approx -8.8571, \qquad i_2 \approx 4.1429, \qquad i_3 \approx -3.8571, \\ E_1 \approx 52.5714, \qquad E_2 \approx 42.5714$

Notes

Equations from previous slide:

5A Current Source: $i_3 - i_1 = 5$ **8A Current Source:** $i_2 - i_3 = 8$ i_1 **Loop:** $3i_1 + 2(i_i - i_2) + E_1 = 0$ i_2 **Loop:** $2(i_2 - i_1) + 4i_2 - E_2 = 0$ i_3 **Loop:** $-E_1 + E_2 + 10 = 0$

Ν	otes
N	otes

-		

Equations from previous slide:

10A Current Source: $i_2 - i_1 = 10$ **5A Current Source:** $i_3 - i_2 = 5$

 i_1 Loop: $20 + E_1 = 0$

 i_2 Loop: $4i_2 + E_2 + 4i_2 - E_1 = 0$

 i_3 Loop: $2i_3 - E_2 = 0$

Notes

Course Notes: 3.5, Resistor Networks

Course Notes: 3.5, Resistor Networks

Notes		

Course Notes: 3.5, Resistor Networks

Find all branch currents.

Notes

Course Notes: 3.5, Resistor Networks

What resistance should the top resistor have, if you want each wire touching the centre to have current 5A?

Notes			

Course Notes: 3.5, Resistor Networks

What voltage should the voltage source have, in order for there to be no current across it?

Course Notes: 3.5, Resistor Networks

What voltage should the voltage source have, in order for there to be no current across it?

Notes			

Notes			

Notes			