Outline

Week 5: Circuits

Course Notes: 3.5

Goals: Use linear algebra to determine voltage drops and branch currents.

Components in Resistor Networks

Components in Resistor Networks

Components in Resistor Networks

\longrightarrow current source (inductor at an instant)

Components in Resistor Networks

$V=I R$

$V=I R$

$V=I R$

$V=I R$

(voltage drop of 10 Volts across resistor)

$V=I R$

(voltage drop of 10 Volts across resistor)

$V=I R$

(voltage drop of 10 Volts across resistor)

$V=I R$

Setup: Given: Resistance of resistors; voltage across voltage sources; current through current sources.
Find: currents through each resistor and each voltage source; voltage drops across each current source

Kirchhoff's Laws

1. The sum of voltage drops around any closed loops in the network must be zero.
2. For any node, current in equals current out

$$
\begin{array}{r}
1 i_{1}-40+2 i_{1}+5\left(i_{1}-i_{2}\right)=0 \\
10 i_{2}+5\left(i_{2}-i_{1}\right)=0
\end{array}
$$

$$
i_{1}=\frac{120}{19}, i_{2}=\frac{40}{19}
$$

$$
\begin{array}{r}
1 i_{1}-40+2 i_{1}+5\left(i_{1}-i_{2}\right)=0 \\
10 i_{2}+5\left(i_{2}-i_{1}\right)=0
\end{array}
$$

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction. - If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Drop: 40V

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction. - If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Drop: -40V

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

$i_{1} \approx 0.2449, \quad i_{2} \approx 0.1114, \quad i_{3} \approx 0.1166$

Equations from previous slide:
i_{1} loop: $-10+i_{1}+25\left(i_{1}-i_{2}\right)+50\left(i_{1}-i_{3}\right)=0$
i_{2} loop: $25\left(i_{2}-i_{1}\right)+30 i_{2}+\left(i_{2}-i_{3}\right)=0$
i_{3} loop: $50\left(i_{3}-i_{1}\right)+\left(i_{3}-i_{2}\right)+55 i_{3}=0$

$$
\begin{aligned}
76 i_{1}-25 i_{2}-50 i_{3} & =10 \\
-25 i_{1}+56 i_{2}-i_{3} & =0 \\
-50 i_{1}-i_{2}+106 i_{3} & =0
\end{aligned}
$$

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction. - If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Drop: 40V

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction. - If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Drop: -40V

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

$i_{1} \approx 6.2321 \quad i_{2} \approx 3.4821 \quad i_{3} \approx 4.5357 \quad i_{4} \approx 2.6071$

Equations from Previous Slide:
i_{1} loop: $-10+2\left(i_{1}-i_{4}\right)+\left(i_{1}-i_{2}\right)=0$
i_{2} loop: $2 i_{2}+\left(i_{2}-i_{1}\right)+4\left(i_{2}-i_{3}\right)=0$
i_{3} loop: $-10+4\left(i_{3}-i_{2}\right)+3\left(i_{3}-i_{4}\right)=0$
i_{4} loop: $5 i_{4}+3\left(i_{4}-i_{3}\right)+2\left(i_{4}-i_{1}\right)=0$

$$
\begin{aligned}
3 i_{1}-i_{2}+0 i_{3}-2 i_{4} & =10 \\
-i_{1} & +7 i_{2}-4 i_{3}+0 i_{4}
\end{aligned}=0
$$

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction. - If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Drop: 40V

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction. - If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.

Drop: -40V

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you'll simply get a negative number for your current
- We're counting up voltage drops around a loop. A voltage DROP is high to low.
- Branch current is the NET effect of the loop currents.

$$
V=I R=\underset{2}{5}=5=10
$$

$$
V=I R=\underset{2}{5} \times 5=10
$$

We can imagine replacing the current source with a 70 V voltage source, which overpowers the 40 V source.

$$
i_{1}=5, \quad i_{2}=0, \quad i_{3}=\frac{25}{4}
$$

Let E be the voltage drop across the current source.

Let E be the voltage drop across the current source.

$$
i_{1}=10, \quad i_{2}=5, \quad i_{3}=10, \quad E=10
$$

Equations from previous slide:
Current Source: $5=i_{3}-i_{2}$
i_{1} Loop: $-10+3\left(i_{1}-i_{3}\right)+2\left(i_{1}-i_{2}\right)=0$
i_{2} Loop: $2\left(i_{2}-i_{1}\right)+E=0$
i_{3} Loop: $-E+3\left(i_{3}-i_{1}\right)+i_{3}=0$

$$
\begin{aligned}
0 i_{1}-i_{2}+i_{3}+0 E & =5 \\
5 i_{1} & -2 i_{2}-3 i_{3}+0 E \\
-2 i_{1}+2 i_{2}+0 i_{3}+E & =0 \\
-3 i_{1}+0 i_{2}+4 i_{3}-E & =0
\end{aligned}
$$

$i_{1} \approx-8.8571$,
$i_{2} \approx 4.1429$,
$i_{3} \approx-3.8571$,

$$
E_{1} \approx 52.5714, \quad E_{2} \approx 42.5714
$$

Equations from previous slide:
5A Current Source: $i_{3}-i_{1}=5$
8A Current Source: $i_{2}-i_{3}=8$
i_{1} Loop: $3 i_{1}+2\left(i_{i}-i_{2}\right)+E_{1}=0$
i_{2} Loop: $2\left(i_{2}-i_{1}\right)+4 i_{2}-E_{2}=0$
i_{3} Loop: $-E_{1}+E_{2}+10=0$

$$
\begin{array}{cccccc}
-i_{1} & +0 i_{2}+i_{3}+0 E_{1}+0 E_{2}=5 \\
0 i_{1} & +i_{2}-i_{3}+0 E_{1}+0 E_{2}=8 \\
5 i_{1} & -2 i_{2}+0 i_{3}+E_{1}+0 E_{2}= & 0 \\
-2 i_{1}+6 i_{2}+0 i_{3}+0 E_{1}-E_{2}= & 0 \\
0 i_{1} & +0 i_{2}+0 i_{3}-E_{1}+E_{2}= & -10
\end{array}
$$

$i_{1}=-13 A, \quad i_{2}=-3 A, \quad i_{3}=2 A, \quad E_{1}=-20 \mathrm{~V}, \quad E_{2}=4 \mathrm{~V}$
Current across voltage source: 13A, top to bottom

Equations from previous slide:
10A Current Source: $i_{2}-i_{1}=10$
5A Current Source: $i_{3}-i_{2}=5$
i_{1} Loop: $20+E_{1}=0$
i_{2} Loop: $4 i_{2}+E_{2}+4 i_{2}-E_{1}=0$
i_{3} Loop: $2 i_{3}-E_{2}=0$

$$
\begin{aligned}
-i_{1}+i_{2}+0 i_{3}+0 E_{1}+0 E_{2}= & 10 \\
0 i_{1}-i_{2}+i_{3}+0 E_{1}+0 E_{2}= & 5 \\
0 i_{1}+0 i_{2}+0 i_{3}+E_{1}+0 E_{2}= & -20 \\
0 i_{1}+8 i_{2}+0 i_{3}-E_{1}+E_{2}= & 0 \\
0 i_{1}+0 i_{2}+2 i_{3}+0 E_{1}-E_{2}= & 0
\end{aligned}
$$

clockwise: $i_{1}=-7.5, \quad i_{2}=-1 / 12, \quad i_{3}=0, \quad i_{4}=1 / 12, \quad i_{5}=7.5$

Find all branch currents.

Find all branch currents.

What resistance should the top resistor have, if you want each wire touching the centre to have current 5A?

What voltage should the voltage source have, in order for there to be no current across it?

What voltage should the voltage source have, in order for there to be no current across it?

