Course Notes: 3.2, Gaussian Elimination	3.3: Homogeneous Equations	3.4: Geometric Applications
000000000000	000	
Outline		

Notes

Week 4: Solving Linear Systems \qquad
\qquad

Course Notes: 3.2, 3.3, 3.4

Goals: Learn the method of Gaussian elimination to efficiently solve linear systems; describe infinite families of solutions as parametric equations; use properties of associated homogeneous systems.

- Multiply one row by a non-zero scalar
- Add a multiple of one row to another
- Interchange rows

These operations will change the system of equations, but will not change the solutions of the system
$\left[\begin{array}{lll|l}1 & 2 & 4 & 34 \\ 1 & 1 & 0 & 13 \\ 0 & 1 & 2 & 11\end{array}\right]$

Course Notes: 3.2, Gaussian Elimination 000000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications 00000000000
Quick Notation		

Row Echelon Form: the position of the first non-zero entry in a row strictly increases from one row to the row below it.

$$
\left[\begin{array}{cccccc|c}
2 & 3 & 5 & 2 & 5 & 9 & 13 \\
0 & 5 & 4 & 3 & 4 & 0 & 11 \\
0 & 0 & 0 & 3 & 2 & 2 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Reduced Row Echelon Form: the first non-zero entry in every row is a 1 , and is the only non-zero entry in its column; the position of the first non-zero entry in a row strictly increases with every row.

$$
\left[\begin{array}{cccccc|c}
1 & 0 & 0 & 2 & 0 & 0 & 13 \\
0 & 1 & 4 & 5 & 0 & 0 & 11 \\
0 & 0 & 0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Notes

\qquad
Notes
\qquad

Gaussian Elimination

Use row operations to change this system to reduced row echelon form.

$$
\left[\begin{array}{ccc|c}
2 & 2 & -6 & -16 \\
3 & -2 & 1 & 11 \\
-1 & 3 & 1 & -2
\end{array}\right]
$$

Course Notes: 3.2, Gaussian Elimination
OOO
Gaussian Elimination

Use row operations to change this system to reduced row echelon form.
$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 8 \\ 5 & 3 & 6 & 10\end{array}\right]$
(Try to do it using at most 6 row operations!)

Course Notes: 3.2, Gaussian Elimination 000000000000	3.3: Homogeneous Equations 000	3.4: Geometric Application 00000000000
Gaussian Elimination		

Notes

Use row operations to change this system to reduced row echelon form.

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 15 \\
4 & 4 & 0 & 36 \\
3 & -1 & 6 & -31
\end{array}\right]
$$

(Try to do it using at most 8 row operations!)
Notes
\qquad

Use row operations to solve this system

$$
\left[\begin{array}{cccc|c}
1 & 2 & 1 & 1 & 6 \\
5 & 10 & 3 & 3 & 28 \\
2 & 4 & 1 & 2 & 15 \\
3 & 6 & 2 & 3 & 21
\end{array}\right]
$$

Course Notes: 3.2., Gaussian Elimination
 3.4: Geometric Applications

Give a parametric equation for the solutions of this augmented matrix.

$$
\left[\begin{array}{cccc|c}
1 & 2 & 0 & 0 & 17 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Notes

Give a parametric equation for the solutions of this system.
$\left[\begin{array}{llllll|c}1 & 5 & 7 & 0 & 2 & 0 & 17 \\ 0 & 0 & 0 & 1 & 3 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

Notes
\qquad

Give a parametric equation for the solutions of this system.

$$
\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Course Notes: 3.2. Gaussian Elimination

 3.3: Homogeneous Equations000

```
3.4: Geometric Applications
```

Give a parametric equation for the solutions of this augmented matrix.

$$
\left[\begin{array}{llll|l}
1 & 0 & 4 & 5 & 5 \\
0 & 1 & 2 & 3 & 0
\end{array}\right]
$$

Fill in the Table

| | more variables | | square |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\left[\begin{array}{lll}* & * & * \\ * & * & *\end{array}\right.$ | $*$ | |
| $*$ | | | |\(]\left[\begin{array}{cc|c}* \& * \& *

* \& * \& *\end{array}\right]\left[\begin{array}{cc|c}* \& * \& *

* \& * \& *

* \& * \& *

*\end{array}\right]\)

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How many solutions?
$\left[\begin{array}{lll|l}1 & 0 & 0 & * \\ 0 & 1 & 0 & * \\ 0 & 0 & 1 & *\end{array}\right]$
$\left[\begin{array}{lll|l}1 & 0 & 0 & * \\ 0 & 1 & 1 & *\end{array}\right]$
$\left[\begin{array}{lll|l}1 & 0 & 0 & * \\ 0 & 1 & 1 & * \\ 0 & 0 & 0 & *\end{array}\right]$
The rank of a matrix (without its augmented part) is the number of non-zero rows in the matrix obtained after reducing it. If a matrix has rank r and n columns, then the solution will require parameters (provided a solution exists at all).

$\begin{array}{lll}\text { Course Notes: 3.2. Gaussian Elimination } & \text { 3.3: Homogeneous Equations } \\ \text { Ooocoocoocoos. } & \text { 3.4: Geometric Applications }\end{array}$
 Homogeneous Systems
 System of equations:
 $\left[\begin{array}{lll|l}3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 \\ 7 & 8 & 9 & 0\end{array}\right]$

Associated homogeneous system of equations:
$\left[\begin{array}{lll|l}3 & 4 & 5 & 0 \\ 1 & 2 & 3 & 0 \\ 7 & 8 & 9 & 0\end{array}\right]$

Course Notes: 3.2, Gaussian Elimination 000000000000 0000000000
 3.3:

Notes

$\left[\begin{array}{lll|l}3 & 4 & 5 & 0 \\ 1 & 2 & 3 & 0 \\ 7 & 8 & 9 & 0\end{array}\right]$

Give a solution to this equation.

Suppose \mathbf{a} and \mathbf{b} are solutions to a homogeneous system of equations.

Then $\mathbf{a}+\mathbf{b}$ is also a solution.

Also, ca is a solution for any scalar c.

Notes
\qquad

Course Notes: 3.2 , Gaussian Elimination	3.3: Homogeneous Equations 000	3.4: Geometric Applications 000000000000
Connection to Non-homogeneous Systems		

Connection to Non-homogeneous Systems
Notes

Suppose A is an augmented matrix, and A_{0} is its associated homogeneous system.
If \mathbf{a} and \mathbf{b} are solutions to A, then \square is a solution to A_{0}.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right] \\
& A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
\end{aligned}
$$

Given one solution \mathbf{q} to A, every solution to A can be written in the form $\mathbf{q}+\mathbf{a}$ for some solution \mathbf{a} of A_{0}.

	33. Homogeneous Equations 000	3.4. Geametric Applications
Rank and Linear Ind	ence	

$\left[\begin{array}{ccc|c}1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \\ 1 & -1 & -3 & 0\end{array}\right] \quad R_{4} \rightarrow R_{4}-R_{3}+R_{2}+2 R_{1}\left[\begin{array}{lll|l}1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$R_{4}=R_{3}-R_{2}-2 R_{2}$

If row reduction results in a row of all 0s, then the row vectors of the original matrix were not linearly independent.

Course Notes: 3.2, Gaussian Elimination 00000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications 0.00000000
Rank and Linear Independence		

Suppose this matrix has rows that are linearly independent:

$$
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

What is its reduced form going to be?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Course Notes: 3.2 , Gaussian Elimination 000000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications 00000000000
Rank and Linear Independence		

Notes

Suppose this augmented matrix has rows that are linearly independent:
$\left[\begin{array}{lllll|l}* & * & * & * & * & 0 \\ * & * & * & * & * & 0 \\ * & * & * & * & * & 0 \\ * & * & * & * & * & 0\end{array}\right]$

What will its solutions set be? (Point, line, plane, etc.)

		3.4: Geometric Applications 0000000000
Geometry in Unima	e Dimensions	

Notes

What does the equation $0 x_{1}+0 x_{2}+0 x_{3}+x_{4}=0$ describe in \mathbb{R}^{4} ?
In general, an equation of the form $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=a_{5}$
describes a three-dimensional space in \mathbb{R}^{4}.
What will be the intersection of four linearly-independent
3-dimensional spaces of this type?
What will be the intersection of n linearly-independent
($n-1$)-dimensional spaces of this type in \mathbb{R}^{n} ?

Course Notes. 3.2, Gaussian enination 3.4. Geometric Application 000000000000 000 3.000•000000

Check this collection of vectors for linear independence:
$\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right], \mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\mathbf{c}=\left[c_{1}, c_{2}, c_{3}\right]$.
Recall
Vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent if the equation

$$
s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+\cdots+s_{n} \mathbf{a}_{n}=\mathbf{0}
$$

has only one solution, $s_{1}=s_{2}=\cdots=s_{n}=0$.

$$
s_{1} \mathbf{a}+s_{2} \mathbf{b}+s_{3} \mathbf{c}=\mathbf{0}
$$

$\left[\begin{array}{l}s_{1} a_{1} \\ s_{1} a_{2} \\ s_{1} a_{3}\end{array}\right]+\left[\begin{array}{l}s_{2} b_{1} \\ s_{2} b_{2} \\ s_{2} b_{3}\end{array}\right]+\left[\begin{array}{l}s_{3} c_{1} \\ s_{3} c_{2} \\ s_{3} c_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$\left\{\begin{array}{l}a_{1} s_{1}+b_{1} s_{2}+c_{1} s_{3}=0 \\ a_{2} s_{1}+b_{2} s_{2}+c_{2} s_{3}=0 \\ a_{3} s_{1}+b_{3} s_{2}+c_{3} s_{3}=0\end{array} \rightarrow\left[\begin{array}{lll|l}a_{1} & b_{1} & c_{1} & 0 \\ a_{2} & b_{2} & c_{2} & 0 \\ a_{3} & b_{3} & c_{3} & 0\end{array}\right]\right.$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\mathbf{a}=[1,1,1,1], \quad \mathbf{b}=[2,1,1,1]
$$

Are \mathbf{a} and \mathbf{b} linearly independent?

$$
\begin{aligned}
& x_{1} \mathbf{a}+x_{2} \mathbf{b}=\mathbf{0}: \\
& {\left[\begin{array}{ll|l}
1 & 2 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

Can we row-reduce this matrix to get a row of all 0 s?

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1
\end{array}\right]
$$

Course Notes: 3.2, Gaussian Elimination 000000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications 0000000000 0000000000
Checking Vectors for	ear Independen	

Are $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, a_{\mathrm{n}}$ are linearly independent? (Two ways.)

$$
\left[\begin{array}{cccc|c}
\mid & \mid & & \mid & 0 \\
a_{1} & a_{2} & \cdots & a_{n} & \vdots \\
\mid & \mid & & \mid & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
-- & a_{1} & -- \\
-- & a_{2} & -- \\
& \vdots & \\
-- & a_{n} & --
\end{array}\right]
$$

- If there is only one solution, the vectors are linearly independent.
- If there is more than one
solution, the vectors are
linearly dependent.
- If the reduced matrix has
no rows of all zeroes, the vectors are linearly
independent.
- If the reduced matrix has
some row of all zeroes, the
vectors are linearly dependent.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\begin{array}{lll}\text { Course Notes: 3.2, Gaussian Elimination } & \text { 3.3: Homogeneous Equations } & \text { 3.4: Geometric Applications } \\ \text { 000000000000 } & 000 & 00000000000\end{array}$ 3.4.000000000

Write $\left[\begin{array}{c}16 \\ 5 \\ 11\end{array}\right]$ as a linear combination of vectors from the set

$$
\left\{\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right],\left[\begin{array}{l}
0 \\
9 \\
8
\end{array}\right],\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right]\right\}
$$

Is the set linearly independent? Is it a basis of \mathbb{R}^{3} ?

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\begin{array}{lll}\text { Course Notes: 3.2, Gaussian Elimination } & \text { 3.3: Homogeneous Equations } & \text { 3.4: Geometric Applications } \\ 000000000000 & 000 & 0000000000\end{array}$
\qquad 00000000 •
Is the set linearly independent? Is it a basis?

$$
\left\{\left[\begin{array}{l}
3 \\
1 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
7 \\
2 \\
7 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-3 \\
-13
\end{array}\right]\right\}
$$

Is the set linearly independent? Is it a basis?

$$
\left\{\left[\begin{array}{l}
3 \\
1 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
7 \\
2 \\
7 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
3 \\
1 \\
7
\end{array}\right],\left[\begin{array}{l}
5 \\
4 \\
5 \\
1
\end{array}\right],\left[\begin{array}{l}
6 \\
6 \\
9 \\
0
\end{array}\right]\right\}
$$

Course Notes: 3.2, Gaussian Elimination 000000000000
 000000000000 3.3: 0.0

Two points determine a line. How many points are needed to determine an n-th degree polynomial?

Course Notes: 3.2, Gaussian Elimination	3.3: Homogeneous Equations	3.4: Geometric Applications
000000000000	000	0000000000

Remove one vector to make this set linearly independent.

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
7
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
9
\end{array}\right]\right\}
$$

Suppose a vector a can be written as a linear combination of vectors in the set. Can you still write a as a linear combination of vectors in the set WITHOUT using the first vector?

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

