Course Notes: 3.2, Gaussian Elimination 00000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications 0000000000
Outline		
Week 4: Solving Linear	Systems	
Course Notes: 3.2, 3.3,	3.4	
Goals: Learn the metho	od of Gaussian elimination t	o efficiently solve

linear systems; describe infinite families of solutions as parametric equations; use properties of associated homogeneous systems.

- Multiply one row by a non-zero scalar
- Add a multiple of one row to another
- Interchange rows

Course Notes: 3.2, Gaussian Elimination

These operations will change the system of equations, but will not change the *solutions* of the system.

Γ ₁	2	4	34
1	1	0	13
[0	1	2	11

Quick Notation Row Echelon Form: the position of the first non-zero entry in a

row strictly increases from one row to the row below it.

3.3: Homogeneous Equation

Γ2	3	5	2	5	9 0 2 0	13
0	5	4	3	4	0	11
0	0	0	3	2	2	5
0	0	0	0	0	0	13 11 5 0

Reduced Row Echelon Form: the first non-zero entry in every row is a 1, and is the only non-zero entry in its column; the position of the first non-zero entry in a row strictly increases with every row.

$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	0 4	2 5	0 0	0 0	13 11 5 0
0	0	0	0	1	0	5
0	0	0	0	0	0	0

Notes

Notes

Course Notes: 3.2, Gaussian Elimination

3.3: Homogeneous Equations 3.4: Geon

Gaussian Elimination

Notor: 3.2 Gaurgian Elimination

Use row operations to change this system to reduced row echelon form.

$$\begin{bmatrix} 2 & 2 & -6 & | & -16 \\ 3 & -2 & 1 & | & 11 \\ -1 & 3 & 1 & | & -2 \end{bmatrix}$$

Notes

00000000000	000	00000000000
Gaussian Elimination		

3.4. Coometric Apr

3.4: Geo

3.3. Hom

Use row operations to change this system to reduced row echelon form.

Γ1	1	1	1]
2	0	2	8
5	3	6	8 10

(Try to do it using at most 6 row operations!)

Course Notes: 3.2, Gaussian Elimination 00000000000

Gaussian Elimination

Use row operations to change this system to reduced row echelon form.

3.3: Homogeneous Equations

$$\begin{bmatrix} 1 & 2 & -1 & | & 15 \\ 4 & 4 & 0 & | & 36 \\ 3 & -1 & 6 & | & -31 \end{bmatrix}$$

(Try to do it using at most 8 row operations!)

Notes

Course Notes: 3.2, Gaussian Elimination	3.3: Homogeneous Equations	3.4: Geometric Applications
00000000000	000	0000000000
Use row operations to a	solve this system	

[1	2	1	1	6]
5	10	3	3	28
2	4	1	2	15
3	6	2	3	21

Notes

Course Notes: 3.2, Gaussian Elimination 00000000000

3.3: Homogeneous Equations 3.4: Geometric Applications 000000000000

Notes

Give a parametric equation for the solutions of this augmented matrix. $\begin{bmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 \end{bmatrix}$

11	2	U	0	111	
			1	-4	
0	0	0	0	0	

Course Notes: 3.2, Gaussian Elimination 0000000000000

3.3: Homogeneous Equations 3.4: Geometric Applications 00000000000

Give a parametric equation for the solutions of this system.

Γ1	5	7	0	2	0	17
0	5 0 0	0	1	3	0	-4
0	0	0	0	0	1	-4
0	0	0	0	0	0	0
0	0 0	0	0	0	0	0
0	0	0	0	0	0	0
0	0 0	0	0	0		0
L0	0	0	0	0	0	0

Course Notes: 3.2, Gaussian Elimination

3.3: Homogeneous Equations 3.4: Geometric Applications 00000000000

Give a parametric equation for the solutions of this system.

Γ1	0	0	0	5]
[1 0	1	2	0	5 0
0	0	0	0	1 0
0	0	0	0	0

Notes

Course Notes: 3.2, Gaussian Elimination

3.3: Homogeneous Equations 000

Notes

3.4: Geometric Applications

Give a parametric equation for the solutions of this augmented matrix. $\begin{bmatrix} 1 & 0 & 4 & 5 \\ 0 & 4 & 5 \end{bmatrix}$

1	0	4	5	5
0	1	2	3	0

Course Notes: 3.2, Gaussian Elimination 00000000000	3.3: Homogen 000	neous Equations	3.4: Geometric Applications 0000000000
Fill in the Table			
mor	e variables	square	more equations

	[* * * *	*	[* *	*	*	*	* * *	* * *
No Solutions						-		
One Solution								
Infinitely Many								

Course Notes: 3.2, Gaussian Elimination 0000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications
Rank and Solutions		
How many solutions?		
	$\begin{bmatrix} 1 & 0 & 0 & & * \\ 0 & 1 & 0 & & * \\ 0 & 0 & 1 & & * \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & 0 & & * \\ 0 & 1 & 1 & & * \end{bmatrix}$	

 $\begin{bmatrix} 1 & 0 & 0 & | & * \\ 0 & 1 & 1 & | & * \\ 0 & 0 & 0 & | & * \end{bmatrix}$

The *rank* of a matrix (without its augmented part) is the number of non-zero rows in the matrix obtained after reducing it. If a matrix has rank r and n columns, then the solution will require parameters (provided a solution exists at all).

Course Notes: 3.2, Gaussian Elimination 00000000000	3.3: Homogeneous Equations OO	3.4: Geometric Applications 0000000000
Homogeneous System	S	
System of equations:	$\begin{bmatrix} 3 & 4 & 5 & & 6 \\ 1 & 2 & 3 & & 4 \\ 7 & 8 & 9 & & 0 \end{bmatrix}$	

Associated homogeneous system of equations:

3	4	5	0
1	2	3	0
7	8	9	0

Course Notes: 3.2, Gaussian Elimination 00000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications 0000000000
	$\begin{bmatrix} 3 & 4 & 5 & 0 \\ 1 & 2 & 3 & 0 \\ 7 & 8 & 9 & 0 \end{bmatrix}$	

Give a solution to this equation.

Suppose ${\bf a}$ and ${\bf b}$ are solutions to a homogeneous system of equations.

Then $\mathbf{a} + \mathbf{b}$ is also a solution.

Also, $c\mathbf{a}$ is a solution for any scalar c.

Notes

Notes

Course Notes: 3.2, Gaussian Elimination	3.3: Homogeneous Equations 00●	3.4: Geometric Applications 00000000000
Connection to Non-h	iomogeneous Systems	

Suppose A is an augmented matrix, and A_0 is its associated homogeneous system.

If **a** and **b** are solutions to A, then _____ is a solution to A_0 .

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 13 \\ 11 & 3 & -1 & 13 & | & 42 \\ -7 & -2 & 1 & -8 & | & -26 \\ 4 & 1 & 0 & 5 & | & 16 \end{bmatrix}$$
$$A_0 = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 0 \\ 11 & 3 & -1 & 13 & | & 0 \\ -7 & -2 & 1 & -8 & | & 0 \\ 4 & 1 & 0 & 5 & | & 0 \end{bmatrix}$$

Given one solution **q** to A, every solution to A can be written in the form **q** + **a** for some solution **a** of A_0 .

Course Notes: 3.2, Gaussian Elimination 00000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications 0000000000
Rank and Linear Independ	dence	
$\begin{bmatrix} 1 & 2 & 3 & & 0 \\ 4 & 5 & 6 & & 0 \\ 7 & 8 & 9 & & 0 \\ 1 & -1 & -3 & & 0 \end{bmatrix} \ R_4 \rightarrow$	$R_4 - R_3 + R_2 + 2R_1 \begin{bmatrix} 1 \\ 4 \\ 7 \\ 0 \end{bmatrix}$	2 3 0 5 6 0 8 9 0 0 0 0

 $R_4 = R_3 - R_2 - 2R_2$

If row reduction results in a row of all 0s, then the row vectors of the original matrix were not linearly independent.

 Course Notes: 3.2, Gaussian Elimination
 3.3: Homogeneous Equations
 3.4: Geometric Applications

 Coord
 Coord
 Coord
 Coord

 Rank and Linear Independence
 Suppose this matrix has rows that are linearly independent:
 [* * * *]

1	*	*	*
*	*	*	*
* *	*	*	*
-	*	*	*

What is its reduced form going to be?

Γ1	0	0	0]
[1 0	1	0	0 0 0
0	0	1	0
L0	0	0	1

Notes

Course Notes: 3.2, Gaussian Elimination 3.3: Homogeneous Equations 3.4: Geometric Applications

Rank and Linear Independence

Suppose this augmented matrix has rows that are linearly independent: -

What will its solutions set be? (Point, line, plane, etc.)

Notes

Notes

000000000000	000	00000000
Geometry in U	nimaginable Dimensions	
In general, an	equation $0x_1 + 0x_2 + 0x_3 + x_3$ equation of the form $a_1x_1 + a_2$	•

Course Notes: 3.2, Gaussian Elimination 3.3: Homogeneous Equations 3.4: Geometric Applications

describes a three-dimensional space in \mathbb{R}^4 . What will be the intersection of four linearly-independent

3-dimensional spaces of this type?

What will be the intersection of n linearly-independent

(n-1)-dimensional spaces of this type in \mathbb{R}^n ?

Course Notes: 3.2, Gaussian Elimination

3.3: Homogeneous Equations 3.4: Geometric Applications

Check this collection of vectors for linear independence: $\mathbf{a} = [a_1, a_2, a_3]$, $\mathbf{b} = [b_1, b_2, b_3]$, and $\mathbf{c} = [c_1, c_2, c_3]$.

Recall

Vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent if the equation

$$s_1\mathbf{a}_1+s_2\mathbf{a}_2+\cdots+s_n\mathbf{a}_n=\mathbf{0}$$

has only one solution, $s_1 = s_2 = \cdots = s_n = 0$.

$$\begin{aligned} s_1\mathbf{a} + s_2\mathbf{b} + s_3\mathbf{c} &= \mathbf{0} \\ \begin{bmatrix} s_1a_1 \\ s_1a_2 \\ s_1a_3 \end{bmatrix} + \begin{bmatrix} s_2b_1 \\ s_2b_2 \\ s_2b_3 \end{bmatrix} + \begin{bmatrix} s_3c_1 \\ s_3c_2 \\ s_3c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} a_1s_1 + b_1s_2 + c_1s_3 &= 0 \\ a_2s_1 + b_2s_2 + c_2s_3 &= 0 \\ a_3s_1 + b_3s_2 + c_3s_3 &= 0 \end{bmatrix} \rightarrow \begin{bmatrix} a_1 & b_1 & c_1 & | & 0 \\ a_2 & b_2 & c_2 & | & 0 \\ a_3 & b_3 & c_3 & | & 0 \end{bmatrix} \end{aligned}$$

3.3: Homogeneous Equation 3.4: Geometric Applications

Notes

 $\mathbf{a} = [1, 1, 1, 1],$ $\mathbf{b} = [2, 1, 1, 1]$ Are \mathbf{a} and \mathbf{b} linearly independent?

$$x_{1}\mathbf{a} + x_{2}\mathbf{b} = \mathbf{0}:$$

$$\begin{bmatrix} 1 & 2 & | & 0 \\ 1 & 1 & | & 0 \\ 1 & 1 & | & 0 \\ 1 & 1 & | & 0 \end{bmatrix}$$

Can we row-reduce this matrix to get a row of all 0s?

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{bmatrix}$$

Course Notes: 3.2, Gaussian Elimination 00000000000	3.3: Homogeneous Equations 000	3.4: Geometric Applications 00000000000
Checking Vectors for	Linear Independence	
Are a ₁ , a ₂ ,, a _n are	linearly independent? (Two	o ways.)
$\begin{bmatrix} & & \\ a_1 & a_2 & \cdots & a_n \\ & & & \end{bmatrix}$ • If there is only one so	 If the redu 	iced matrix has
the vectors are linearly	vectors are li	nearly

independent. • If there is more than one

solution, the vectors are linearly dependent.

independent.

• If the reduced matrix has some row of all zeroes, the vectors are linearly dependent.

Notes

e Notes: 3.2, Gaussian Elimination 3.3: Homogeneous Equations 00000000 000

3.4: Geometric Applications

Is the set linearly independent? Is it a basis?

ſ	[3]		[7]		[1])
J	1		2		0	
Ì	5	,	7	,	-3	
l	8		3		_13	J

Is the set linearly independent? Is it a basis?

$\begin{cases} \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$	7		5 4 5	$\begin{bmatrix} 6\\ 6\\ 0 \end{bmatrix}$
	7 3	$\begin{bmatrix} 1 \\ 7 \end{bmatrix}$	5 1	9 0)

Course Notes: 3.2, Gaussian Elimination

3.3: Homogeneous Equations

3.4: Geometric Applications 0000000000

Two points determine a line. How many points are needed to determine an n-th degree polynomial?

ourse Notes: 3.2, Gaussian Elimination

3.3: Homogeneous Equations 3.4: Geometric Applications 0000000000

Remove one vector to make this set linearly independent.

Suppose a vector ${\bf a}$ can be written as a linear combination of vectors in the set. Can you still write ${\bf a}$ as a linear combination of vectors in the set WITHOUT using the first vector?

Notes

Notes