3.3: Homogeneous Equations 000

3.4: Geometric Applications

Outline

Week 4: Solving Linear Systems

Course Notes: 3.2, 3.3, 3.4

Goals: Learn the method of Gaussian elimination to efficiently solve linear systems; describe infinite families of solutions as parametric equations; use properties of associated homogeneous systems.

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Row Operations

- Multiply one row by a non-zero scalar
- Add a multiple of one row to another
- Interchange rows

These operations will change the system of equations, but will not change the *solutions* of the system.

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Row Operations

- Multiply one row by a non-zero scalar
- Add a multiple of one row to another
- Interchange rows

These operations will change the system of equations, but will not change the *solutions* of the system.

Γ	1	2	4	34]
	1	1	0	13
	C	1	2	11

Goal: easily-solvable system

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Gaussian Elimination

Use row operations to change this system:

$$\begin{bmatrix} 2 & 2 & -6 & | & -16 \\ 3 & -2 & 1 & | & 11 \\ -1 & 3 & 1 & | & -2 \end{bmatrix}$$

to a system of the form

$$\begin{bmatrix} 1 & 0 & 0 & | & * \\ 0 & 1 & 0 & | & * \\ 0 & 0 & 1 & | & * \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Gaussian Elimination

Use row operations to change this system:

$$\begin{bmatrix} 2 & 2 & -6 & | & -16 \\ 3 & -2 & 1 & | & 11 \\ -1 & 3 & 1 & | & -2 \end{bmatrix}$$

to a system of the form

$$\begin{bmatrix} 1 & 0 & 0 & | & * \\ 0 & 1 & 0 & | & * \\ 0 & 0 & 1 & | & * \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Vocabulary

Row Echelon Form: the position of the first non-zero entry in a row strictly increases from one row to the row below it.

$$\begin{bmatrix} 2 & 3 & 5 & 2 & 5 & 9 & 13 \\ 0 & 5 & 4 & 3 & 4 & 0 & 11 \\ 0 & 0 & 0 & 3 & 2 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Vocabulary

Row Echelon Form: the position of the first non-zero entry in a row strictly increases from one row to the row below it.

$$\begin{bmatrix} 2 & 3 & 5 & 2 & 5 & 9 & | & 13 \\ 0 & 5 & 4 & 3 & 4 & 0 & | & 11 \\ 0 & 0 & 0 & 3 & 2 & 2 & | & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Reduced Row Echelon Form: the first non-zero entry in every row is a 1, and is the only non-zero entry in its column; the position of the first non-zero entry in a row strictly increases with every row.

$$\begin{bmatrix} 1 & 0 & 0 & 2 & 0 & 0 & & 13 \\ 0 & 1 & 4 & 5 & 0 & 0 & & 11 \\ 0 & 0 & 0 & 0 & 1 & 0 & & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & & 0 \end{bmatrix}$$

3.3: Homogeneous Equations

3.4: Geometric Applications

Gaussian Elimination

Use row operations to change this system to reduced row echelon form.

Γ1	1	1	1]
[1 2	0	2	8
5	3	6	8 10

(Try to do it using at most 6 row operations!)

3.3: Homogeneous Equations

3.4: Geometric Applications

Gaussian Elimination

Use row operations to change this system to reduced row echelon form.

Γ1	1	1	1]
[1 2	0	2	8
5	3	6	10

(Try to do it using at most 6 row operations!)

$$\begin{bmatrix} 1 & 0 & 0 & | & 5 \\ 0 & 1 & 0 & | & -3 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Gaussian Elimination

Use row operations to change this system to reduced row echelon form.

$$\begin{bmatrix} 1 & 2 & -1 & | & 15 \\ 4 & 4 & 0 & | & 36 \\ 3 & -1 & 6 & | & -31 \end{bmatrix}$$

(Try to do it using at most 8 row operations!)

3.3: Homogeneous Equations

3.4: Geometric Applications

Use row operations to solve this system

$$\begin{bmatrix} 1 & 2 & 1 & 1 & | & 6 \\ 5 & 10 & 3 & 3 & | & 28 \\ 2 & 4 & 1 & 2 & | & 15 \\ 3 & 6 & 2 & 3 & | & 21 \end{bmatrix}$$

3.3: Homogeneous Equations

3.4: Geometric Applications

Use row operations to solve this system

$$\begin{bmatrix} 1 & 2 & 1 & 1 & | & 6 \\ 5 & 10 & 3 & 3 & | & 28 \\ 2 & 4 & 1 & 2 & | & 15 \\ 3 & 6 & 2 & 3 & | & 21 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 0 & | & 5 \\ 0 & 0 & 1 & 0 & | & -3 \\ 0 & 0 & 0 & 1 & | & 4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 + 2x_2 = 5 \\ x_3 = -3 \\ x_4 = 4 \end{array}$$

3.3: Homogeneous Equations

3.4: Geometric Applications

Use row operations to solve this system

$$\begin{bmatrix} 1 & 2 & 1 & 1 & | & 6 \\ 5 & 10 & 3 & 3 & | & 28 \\ 2 & 4 & 1 & 2 & | & 15 \\ 3 & 6 & 2 & 3 & | & 21 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 0 & 0 & 5 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 + 2x_2 = 5 \\ x_3 = -3 \\ x_4 = 4 \end{array}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5-2s \\ s \\ -3 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ -3 \\ 4 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Give a parametric equation for the solutions of this augmented matrix.

$$\begin{bmatrix} 1 & 2 & 0 & 0 & | & 17 \\ 0 & 0 & 0 & 1 & | & -4 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Give a parametric equation for the solutions of this system.

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Give a parametric equation for the solutions of this system.

Equations: $x_1 + 5x_2 + 7x_3 + 2x_5 = 17$, $x_4 + 3x_5 = -4$, $x_6 = -4$.

Give a parametric equation for the solutions of this system.

Equations: $x_1 + 5x_2 + 7x_3 + 2x_5 = 17$, $x_4 + 3x_5 = -4$, $x_6 = -4$. Parameters: $x_2 = r$, $x_3 = s$, and $x_5 = t$:

$$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{bmatrix} = \begin{bmatrix} 17-5r-7s-2t\\ r\\ s\\ -4-3t\\ t\\ -4 \end{bmatrix} = \begin{bmatrix} 17\\ 0\\ 0\\ -4\\ 0\\ -4 \end{bmatrix} + r\begin{bmatrix} -5\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} + s\begin{bmatrix} -7\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} + t\begin{bmatrix} -2\\ 0\\ 0\\ 0\\ -3\\ 1\\ 0 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Give a parametric equation for the solutions of this system.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & 5 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Give a parametric equation for the solutions of this system.

$$\begin{bmatrix} 1 & 0 & 0 & 0 & | & 5 \\ 0 & 1 & 2 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

no solution

3.3: Homogeneous Equations

3.4: Geometric Applications

Give a parametric equation for the solutions of this augmented matrix.

$$\begin{bmatrix} 1 & 0 & 4 & 5 & | & 5 \\ 0 & 1 & 2 & 3 & | & 0 \end{bmatrix}$$

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
	[* * * [* * *		
No Solutions			
One Solution			
Infinitely Many			

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
			* * * * * * * * * *
No Solutions	[0 0 0 1]		
One Solution			
Infinitely Many			

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables [* * * *] * * * *]	square [* * *] [* * *]	more equations * * * * * * * * * *
No Solutions	[0 0 0 1]	[0 1]	
One Solution			
Infinitely Many			

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
	$\begin{bmatrix} * & * & * & \\ * & * & * & \\ * & * & * &$	$\begin{bmatrix} * & * & & * \\ & * & & * \end{bmatrix}$	* * * * * * * *
No Solutions	[0 0 0 1]	[0 1]	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$
One Solution			
Infinitely Many			

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
	$\begin{bmatrix} * & * & * & \\ * & * & * & \\ * & * & * &$	$\begin{bmatrix} * & * & & * \\ * & * & & * \end{bmatrix}$	* * * * * * * * *
No Solutions	[0 0 0 1]	[0 1]	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$
One Solution	Х		
Infinitely Many			

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
	$\begin{bmatrix} * & * & * & \\ * & * & * & \\ * & * & * &$	$\begin{bmatrix} * & * & & * \\ * & * & & * \end{bmatrix}$	* * * * * * * *
No Solutions	[0 0 0 1]	$\begin{bmatrix} 0 & & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$
One Solution	Х	$\begin{bmatrix} 1 & 0 & & 3 \\ 0 & 1 & & 2 \end{bmatrix}$	
Infinitely Many			

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
	* * * * * * * *		* * *
No Solutions	$\begin{bmatrix} 0 & 0 & 0 & & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & & 1 \end{bmatrix}$	0 1 3
		[1 0 3]	[1 0 3]
One Solution	Х	$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$	0 1 2
Infinitely Many			

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
			* * *
			* * *
			_* * *
			$\begin{bmatrix} 1 & 0 \end{bmatrix}$
No Solutions	$\left \begin{bmatrix} 0 & 0 & 0 & & 1 \end{bmatrix} \right $	$\left \begin{array}{c c} 0 & 1 \end{array} \right $	0 1 3
		[1 0 2]	1 0 3
One Solution	Х	$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$	0 1 2
Infinitely Many	$\begin{bmatrix} 1 & 0 & 0 & & 1 \end{bmatrix}$		

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
			* * *
			* * *
			* * *
			$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
No Solutions	$\left \begin{bmatrix} 0 & 0 & 0 & & 1 \end{bmatrix} \right $	$\begin{bmatrix} 0 & 1 \end{bmatrix}$	0 1 3
		[1 0 3]	1 0 3
One Solution	Х	$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$	0 1 2
Infinitely Many	[1 0 0 1]	$\begin{bmatrix} 1 & 1 & & 2 \\ 0 & 0 & & 0 \end{bmatrix}$	

3.3: Homogeneous Equations

3.4: Geometric Applications

	more variables	square	more equations
	 []		* * *
			* * *
			* * *
No Solutions	[0 0 0 1]	$\begin{bmatrix} 0 & & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \end{bmatrix}$
			0 1 3
One Solution		$\begin{bmatrix} 1 & 0 & & 3 \\ 0 & 1 & & 2 \end{bmatrix}$	1 0 3
	Х		0 1 2
Infinitely Many	$\begin{bmatrix}1 & 0 & 0 & & 1\end{bmatrix}$	$\begin{bmatrix} 1 & 1 & & 2 \\ 0 & 0 & & 0 \end{bmatrix}$	
			0 0 0

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Solutions

How many solutions?

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Solutions

How many solutions?

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Solutions

How many solutions?

$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 1	0 0	*
[0	0	1	*
$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0 1	0 1	*
[1	0	0	*]
1 0 0	1 0	1 0	*
Lo	U	U	*]

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Solutions

How many solutions?

The *rank* of a matrix (without its augmented part) is the number of non-zero rows in the matrix obtained after reducing it.

3.3: Homogeneous Equations

3.4: Geometric Applications

Rank and Solutions

How many solutions?

[1	0	0	*
0	1	0	*
0	0	1	*
$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0	0	*]
	1	1	*]
[1	0	0	*
0	1	1	
0	0	0	

The *rank* of a matrix (without its augmented part) is the number of non-zero rows in the matrix obtained after reducing it. If a matrix has rank r and n columns, then the solution will require parameters (provided a solution exists at all).

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Solutions

How many solutions?

The *rank* of a matrix (without its augmented part) is the number of non-zero rows in the matrix obtained after reducing it. If a matrix has rank *r* and *n* columns, then the solution will require $\boxed{n-r}$ parameters (provided a solution exists at all).

3.3: Homogeneous Equations ●○○ 3.4: Geometric Applications

Homogeneous Systems

System of equations:

3	4	5	6
1	2	3	4
7	8	9	0

Associated homogeneous system of equations:

$$\begin{bmatrix} 3 & 4 & 5 & | & 0 \\ 1 & 2 & 3 & | & 0 \\ 7 & 8 & 9 & | & 0 \end{bmatrix}$$

3.3: Homogeneous Equations ○●○ 3.4: Geometric Applications

$$\begin{bmatrix} 3 & 4 & 5 & | & 0 \\ 1 & 2 & 3 & | & 0 \\ 7 & 8 & 9 & | & 0 \end{bmatrix}$$

Give a solution to this equation.

3.3: Homogeneous Equations ○●○ 3.4: Geometric Applications

$$\begin{bmatrix} 3 & 4 & 5 & | & 0 \\ 1 & 2 & 3 & | & 0 \\ 7 & 8 & 9 & | & 0 \end{bmatrix}$$

Give a solution to this equation.

Suppose \mathbf{a} and \mathbf{b} are solutions to a homogeneous system of equations.

3.3: Homogeneous Equations ○●○ 3.4: Geometric Applications

$$\begin{bmatrix} 3 & 4 & 5 & | & 0 \\ 1 & 2 & 3 & | & 0 \\ 7 & 8 & 9 & | & 0 \end{bmatrix}$$

Give a solution to this equation.

Suppose \mathbf{a} and \mathbf{b} are solutions to a homogeneous system of equations.

Then $\mathbf{a} + \mathbf{b}$ is also a solution.

3.3: Homogeneous Equations ○●○ 3.4: Geometric Applications

$$\begin{bmatrix} 3 & 4 & 5 & | & 0 \\ 1 & 2 & 3 & | & 0 \\ 7 & 8 & 9 & | & 0 \end{bmatrix}$$

Give a solution to this equation.

Suppose \mathbf{a} and \mathbf{b} are solutions to a homogeneous system of equations.

```
Then \mathbf{a} + \mathbf{b} is also a solution.
```

Also, ca is a solution for any scalar c.

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_0 is its associated homogeneous system.

If **a** and **b** are solutions to A, then

is a solution to
$$A_0$$
.

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & 13\\ 11 & 3 & -1 & 13 & 42\\ -7 & -2 & 1 & -8 & -26\\ 4 & 1 & 0 & 5 & 16 \end{bmatrix}$$

$$A_0 = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 0 \\ 11 & 3 & -1 & 13 & | & 0 \\ -7 & -2 & 1 & -8 & | & 0 \\ 4 & 1 & 0 & 5 & | & 0 \end{bmatrix}$$

3.3: Homogeneous Equations ○○● 3.4: Geometric Applications

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_0 is its associated homogeneous system.

If **a** and **b** are solutions to A, then $|\mathbf{a} - \mathbf{b}|$ is a solution to A_0 .

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & & 13 \\ 11 & 3 & -1 & 13 & & 42 \\ -7 & -2 & 1 & -8 & & -26 \\ 4 & 1 & 0 & 5 & & 16 \end{bmatrix}$$

$$A_0 = \begin{bmatrix} 4 & 1 & -1 & 4 & 0\\ 11 & 3 & -1 & 13 & 0\\ -7 & -2 & 1 & -8 & 0\\ 4 & 1 & 0 & 5 & 0 \end{bmatrix}$$

3.3: Homogeneous Equations 00●

3.4: Geometric Applications

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_0 is its associated homogeneous system.

If **a** and **b** are solutions to A, then $|\mathbf{a} - \mathbf{b}|$ is a solution to A_0 .

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 13 \\ 11 & 3 & -1 & 13 & | & 42 \\ -7 & -2 & 1 & -8 & | & -26 \\ 4 & 1 & 0 & 5 & | & 16 \end{bmatrix}$$

One solution: [1, 2, 1, 2].

$$A_0 = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 0 \\ 11 & 3 & -1 & 13 & | & 0 \\ -7 & -2 & 1 & -8 & | & 0 \\ 4 & 1 & 0 & 5 & | & 0 \end{bmatrix}$$

One solution: [1,1,1,-1].

3.3: Homogeneous Equations 00●

3.4: Geometric Applications

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_0 is its associated homogeneous system.

If **a** and **b** are solutions to A, then $|\mathbf{a} - \mathbf{b}|$ is a solution to A_0 .

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & & 13 \\ 11 & 3 & -1 & 13 & & 42 \\ -7 & -2 & 1 & -8 & & -26 \\ 4 & 1 & 0 & 5 & & 16 \end{bmatrix}$$

One solution: [1, 2, 1, 2]. Another solution: [2, 3, 2, 1]

$$A_0 = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 0\\ 11 & 3 & -1 & 13 & | & 0\\ -7 & -2 & 1 & -8 & | & 0\\ 4 & 1 & 0 & 5 & | & 0 \end{bmatrix}$$

One solution: [1,1,1,-1].

3.3: Homogeneous Equations 00●

3.4: Geometric Applications

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_0 is its associated homogeneous system.

If **a** and **b** are solutions to *A*, then $[\mathbf{a} - \mathbf{b}]$ is a solution to A_0 . Given one solution **q** to *A*, every solution to *A* can be written in the form $\mathbf{q} + \mathbf{a}$ for some solution **a** of A_0 .

3.3: Homogeneous Equations ○○● 3.4: Geometric Applications

Connection to Non-homogeneous Systems

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & 13\\ 11 & 3 & -1 & 13 & 42\\ -7 & -2 & 1 & -8 & -26\\ 4 & 1 & 0 & 5 & 16 \end{bmatrix}$$

One solution: [1, 2, 1, 2].

$$A_{0} = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 0 \\ 11 & 3 & -1 & 13 & | & 0 \\ -7 & -2 & 1 & -8 & | & 0 \\ 4 & 1 & 0 & 5 & | & 0 \end{bmatrix}$$

Solutions: s[1, 1, 1, -1].

3.3: Homogeneous Equations 00●

3.4: Geometric Applications

Connection to Non-homogeneous Systems

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 13 \\ 11 & 3 & -1 & 13 & | & 42 \\ -7 & -2 & 1 & -8 & | & -26 \\ 4 & 1 & 0 & 5 & | & 16 \end{bmatrix}$$

One solution: [1, 2, 1, 2]. All solutions: [1, 2, 1, 2] + s[1, 1, 1, -1]

$$A_0 = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 0\\ 11 & 3 & -1 & 13 & | & 0\\ -7 & -2 & 1 & -8 & | & 0\\ 4 & 1 & 0 & 5 & | & 0 \end{bmatrix}$$

Solutions: s[1, 1, 1, -1].

3.3: Homogeneous Equations 00●

3.4: Geometric Applications

Connection to Non-homogeneous Systems

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 13 \\ 11 & 3 & -1 & 13 & | & 42 \\ -7 & -2 & 1 & -8 & | & -26 \\ 4 & 1 & 0 & 5 & | & 16 \end{bmatrix}$$

One solution: [1, 2, 1, 2]. All solutions: [1, 2, 1, 2] + s[1, 1, 1, -1]

$$A_0 = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 0 \\ 11 & 3 & -1 & 13 & | & 0 \\ -7 & -2 & 1 & -8 & | & 0 \\ 4 & 1 & 0 & 5 & | & 0 \end{bmatrix}$$

Solutions: s[1, 1, 1, -1]. What is the rank of the top matrix?

3.3: Homogeneous Equations 00●

3.4: Geometric Applications

Connection to Non-homogeneous Systems

$$A = \begin{bmatrix} 4 & 1 & -1 & 4 & | & 13 \\ 11 & 3 & -1 & 13 & | & 42 \\ -7 & -2 & 1 & -8 & | & -26 \\ 4 & 1 & 0 & 5 & | & 16 \end{bmatrix}$$

One solution: [1, 2, 1, 2]. All solutions: [1, 2, 1, 2] + s[1, 1, 1, -1]

$$egin{array}{cccccc} {\mathcal A}_0 = egin{bmatrix} 4 & 1 & -1 & 4 & | & 0 \ 11 & 3 & -1 & 13 & | & 0 \ -7 & -2 & 1 & -8 & | & 0 \ 4 & 1 & 0 & 5 & | & 0 \end{bmatrix}$$

Solutions: s[1, 1, 1, -1]. What is the rank of the top matrix? Are the rows of the top matrix linearly independent?

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Linear Independence

$$\begin{bmatrix} 1 & 2 & 3 & | & 0 \\ 4 & 5 & 6 & | & 0 \\ 7 & 8 & 9 & | & 0 \\ 1 & -1 & -3 & | & 0 \end{bmatrix} R_4 \rightarrow R_4 - R_3 + R_2 + 2R_1 \begin{bmatrix} 1 & 2 & 3 & | & 0 \\ 4 & 5 & 6 & | & 0 \\ 7 & 8 & 9 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

3.3: Homogeneous Equations

3.4: Geometric Applications

Rank and Linear Independence

$$\begin{bmatrix} 1 & 2 & 3 & | & 0 \\ 4 & 5 & 6 & | & 0 \\ 7 & 8 & 9 & | & 0 \\ 1 & -1 & -3 & | & 0 \end{bmatrix} R_4 \rightarrow R_4 - R_3 + R_2 + 2R_1 \begin{bmatrix} 1 & 2 & 3 & | & 0 \\ 4 & 5 & 6 & | & 0 \\ 7 & 8 & 9 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

 $R_4 = R_3 - R_2 - 2R_2$

3.3: Homogeneous Equations

3.4: Geometric Applications •000000000

Rank and Linear Independence

$$\begin{bmatrix} 1 & 2 & 3 & | & 0 \\ 4 & 5 & 6 & | & 0 \\ 7 & 8 & 9 & | & 0 \\ 1 & -1 & -3 & | & 0 \end{bmatrix} R_4 \rightarrow R_4 - R_3 + R_2 + 2R_1 \begin{bmatrix} 1 & 2 & 3 & | & 0 \\ 4 & 5 & 6 & | & 0 \\ 7 & 8 & 9 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

 $R_4 = R_3 - R_2 - 2R_2$

If row reduction results in a row of all 0s, then the row vectors of the original matrix were not linearly independent.

3.3: Homogeneous Equations

3.4: Geometric Applications

Rank and Linear Independence

Suppose this matrix has rows that are linearly independent:

[*	*	*	*
*	*	*	* * *
*	*	*	*
*	*	*	*

What is its reduced form going to be?

3.3: Homogeneous Equations

3.4: Geometric Applications

Rank and Linear Independence

Suppose this matrix has rows that are linearly independent:

[*	*	*	*]
*	*	*	* * *
*	*	*	*
*	*	*	*

What is its reduced form going to be?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Linear Independence

Suppose this augmented matrix has rows that are linearly independent:

*	*	*	*	*	0]
* *	*	*	*	*	0 0 0 0
*	*	*	*	*	0
*	*	*	*	*	0

What will its solutions set be? (Point, line, plane, etc.)

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Linear Independence

Suppose this augmented matrix has rows that are linearly independent:

*	*	*	*	*	0]
* * *	*	*	* *	*	0 0 0 0
*	*	*	*	*	0
*	*	*	*	*	0

What will its solutions set be? (Point, line, plane, etc.)

A line: sa.

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Rank and Linear Independence

Suppose this augmented matrix has rows that are linearly independent:

ſ	*	*	*	*	*	0]
	* * *	*	*	*	*	0 0 0 0
I	*	*	*	*	*	0
	*	*	*	*	*	0

What will its solutions set be? (Point, line, plane, etc.)

A line: sa.

Why not a line like this: $\mathbf{q} + s\mathbf{a}$

3.3: Homogeneous Equations

3.4: Geometric Applications

Geometry in Unimaginable Dimensions

What does the equation $0x_1 + 0x_2 + 0x_3 + x_4 = 0$ describe in \mathbb{R}^4 ?

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Geometry in Unimaginable Dimensions

What does the equation $0x_1 + 0x_2 + 0x_3 + x_4 = 0$ describe in \mathbb{R}^4 ? In general, an equation of the form $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = a_5$ describes a three-dimensional space in \mathbb{R}^4 .

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Geometry in Unimaginable Dimensions

What does the equation $0x_1 + 0x_2 + 0x_3 + x_4 = 0$ describe in \mathbb{R}^4 ? In general, an equation of the form $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = a_5$ describes a three-dimensional space in \mathbb{R}^4 . What will be the intersection of four linearly-independent 3-dimensional spaces of this type?

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Geometry in Unimaginable Dimensions

What does the equation $0x_1 + 0x_2 + 0x_3 + x_4 = 0$ describe in \mathbb{R}^4 ? In general, an equation of the form $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = a_5$ describes a three-dimensional space in \mathbb{R}^4 . What will be the intersection of four linearly-independent 3-dimensional spaces of this type? What will be the intersection of *n* linearly-independent (n-1)-dimensional spaces of this type in \mathbb{R}^n ?

3.4: Geometric Applications

Check this collection of vectors for linear independence: $\mathbf{a} = [a_1, a_2, a_3]$, $\mathbf{b} = [b_1, b_2, b_3]$, and $\mathbf{c} = [c_1, c_2, c_3]$.

Recall

Vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ are linearly independent if the equation

$$s_1\mathbf{a}_1 + s_2\mathbf{a}_2 + \cdots + s_n\mathbf{a}_n = \mathbf{0}$$

Recall

Vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ are linearly independent if the equation

$$s_1\mathbf{a}_1+s_2\mathbf{a}_2+\cdots+s_n\mathbf{a}_n=\mathbf{0}$$

$$x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = \mathbf{0}$$

Recall

Vectors $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ are linearly independent if the equation

$$s_1\mathbf{a}_1+s_2\mathbf{a}_2+\cdots+s_n\mathbf{a}_n=\mathbf{0}$$

$$x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = \mathbf{0}$$
$$\begin{bmatrix} xa_1\\ xa_2\\ xa_3 \end{bmatrix} + \begin{bmatrix} yb_1\\ yb_2\\ yb_3 \end{bmatrix} + \begin{bmatrix} zc_1\\ zc_2\\ zc_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

3.4: Geometric Applications

Check this collection of vectors for linear independence: $\mathbf{a} = [a_1, a_2, a_3]$, $\mathbf{b} = [b_1, b_2, b_3]$, and $\mathbf{c} = [c_1, c_2, c_3]$.

Recall

Vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent if the equation

$$s_1\mathbf{a}_1 + s_2\mathbf{a}_2 + \cdots + s_n\mathbf{a}_n = \mathbf{0}$$

$$x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = \mathbf{0}$$

$$\begin{bmatrix} xa_1\\ xa_2\\ xa_3 \end{bmatrix} + \begin{bmatrix} yb_1\\ yb_2\\ yb_3 \end{bmatrix} + \begin{bmatrix} zc_1\\ zc_2\\ zc_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

$$\begin{pmatrix} a_1x + b_1y + c_1z = 0\\ a_2x + b_2y + c_2z = 0\\ a_3x + b_3y + c_3z = 0 \end{bmatrix}$$

3.4: Geometric Applications

Check this collection of vectors for linear independence: $\mathbf{a} = [a_1, a_2, a_3]$, $\mathbf{b} = [b_1, b_2, b_3]$, and $\mathbf{c} = [c_1, c_2, c_3]$.

Recall

Vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent if the equation

$$s_1\mathbf{a}_1 + s_2\mathbf{a}_2 + \cdots + s_n\mathbf{a}_n = \mathbf{0}$$

$$x\mathbf{a} + y\mathbf{b} + z\mathbf{c} = \mathbf{0}$$

$$\begin{bmatrix} xa_{1} \\ xa_{2} \\ xa_{3} \end{bmatrix} + \begin{bmatrix} yb_{1} \\ yb_{2} \\ yb_{3} \end{bmatrix} + \begin{bmatrix} zc_{1} \\ zc_{2} \\ zc_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{pmatrix} a_{1}x + b_{1}y + c_{1}z = 0 \\ a_{2}x + b_{2}y + c_{2}z = 0 \\ a_{3}x + b_{3}y + c_{3}z = 0 \end{pmatrix} = \begin{bmatrix} a_{1} & b_{1} & c_{1} & 0 \\ a_{2} & b_{2} & c_{2} & 0 \\ a_{3} & b_{3} & c_{3} & 0 \end{bmatrix}$$

Recall

Vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent if the equation

$$s_1\mathbf{a}_1 + s_2\mathbf{a}_2 + \cdots + s_n\mathbf{a}_n = \mathbf{0}$$

has only one solution, $s_1 = s_2 = \cdots = s_n = 0$.

If we make the vectors into columns of a matrix, the vectors are linearly independent if and only if that matrix has full rank. That is, when we row-reduce it, we don't come up with a row of all 0s.

3.3: Homogeneous Equations

3.4: Geometric Applications

$$a = [1, 1, 1, 1],$$

$$\mathbf{b} = [2, 1, 1, 1]$$

Are **a** and **b** linearly independent?

3.3: Homogeneous Equations 000

3.4: Geometric Applications

]

$$\mathbf{a} = [1, 1, 1, 1], \qquad \qquad \mathbf{b} = [2, 1, 1, 1]$$

Are \mathbf{a} and \mathbf{b} linearly independent?

$$x_{1}\mathbf{a} + x_{2}\mathbf{b} = \mathbf{0}:$$

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

$$\mathbf{a} = [1, 1, 1, 1], \qquad \qquad \mathbf{b} = [2, 1, 1, 1]$$

Are **a** and **b** linearly independent?

$$x_1 \mathbf{a} + x_2 \mathbf{b} = \mathbf{0} :$$

$$\begin{bmatrix} 1 & 2 & | & 0 \\ 1 & 1 & | & 0 \\ 1 & 1 & | & 0 \\ 1 & 1 & | & 0 \end{bmatrix}$$

Can we row-reduce this matrix to get a row of all 0s?

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{bmatrix}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

Checking Vectors for Linear Independence

Are a_1, a_2, \ldots, a_n are linearly independent? (Two ways.)

$$\begin{bmatrix} | & | & | & 0 \\ a_1 & a_2 & \cdots & a_n & \vdots \\ | & | & | & 0 \end{bmatrix}$$

- If there is only one solution, the vectors are linearly independent.
- If there is more than one solution, the vectors are linearly dependent.

$$\begin{bmatrix} -- & a_1 & -- \\ -- & a_2 & -- \\ & \vdots & \\ -- & a_n & -- \end{bmatrix}$$

- If the reduced matrix has no rows of all zeroes, the vectors are linearly independent.
- If the reduced matrix has some row of all zeroes, the vectors are linearly dependent.

3.3: Homogeneous Equations 000

3.4: Geometric Applications

$$\left\{ \begin{bmatrix} 2\\1\\5 \end{bmatrix}, \begin{bmatrix} 0\\9\\8 \end{bmatrix}, \begin{bmatrix} 4\\4\\3 \end{bmatrix} \right\}$$

3.3: Homogeneous Equations 000

3.4: Geometric Applications

$$\left\{ \begin{bmatrix} 2\\1\\5\end{bmatrix}, \begin{bmatrix} 0\\9\\8\end{bmatrix}, \begin{bmatrix} 4\\4\\3\end{bmatrix} \right\}$$

$$\begin{bmatrix} 2 & 0 & 4 & | & 16 \\ 1 & 9 & 4 & | & 5 \\ 5 & 8 & 3 & | & 11 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$
$$2 \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 \\ 9 \\ 8 \end{bmatrix} + 3 \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 16 \\ 5 \\ 11 \end{bmatrix}$$

3.3: Homogeneous Equations

3.4: Geometric Applications 000000000000

Write $\begin{bmatrix} 16\\5\\11 \end{bmatrix}$ as a linear combination of vectors from the set

$$\left(\begin{bmatrix} 2\\1\\5 \end{bmatrix}, \begin{bmatrix} 0\\9\\8 \end{bmatrix}, \begin{bmatrix} 4\\4\\3 \end{bmatrix} \right\}$$

Is the set linearly independent? Is it a basis of \mathbb{R}^3 ?

$$\begin{bmatrix} 2 & 0 & 4 & | & 16 \\ 1 & 9 & 4 & 5 \\ 5 & 8 & 3 & | & 11 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$
$$2 \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 \\ 9 \\ 8 \end{bmatrix} + 3 \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 16 \\ 5 \\ 11 \end{bmatrix}$$

Is the set linearly independent? Is it a basis?

$$\left\{ \begin{bmatrix} 3\\1\\5\\8 \end{bmatrix}, \begin{bmatrix} 7\\2\\7\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-3\\-13 \end{bmatrix} \right\}$$

Is the set linearly independent? Is it a basis?

$$\left\{ \begin{bmatrix} 3\\1\\5\\8 \end{bmatrix}, \begin{bmatrix} 7\\2\\7\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-3\\-13 \end{bmatrix} \right\}$$

Is the set linearly independent? Is it a basis?

$$\left\{ \begin{bmatrix} 3\\1\\5\\5\\8 \end{bmatrix}, \begin{bmatrix} 7\\2\\7\\7\\3 \end{bmatrix}, \begin{bmatrix} 6\\3\\1\\1\\7 \end{bmatrix}, \begin{bmatrix} 5\\4\\5\\5\\1 \end{bmatrix}, \begin{bmatrix} 6\\6\\9\\0 \end{bmatrix} \right\}$$

Two points determine a line. How many points are needed to determine an *n*-th degree polynomial?

3.4: Geometric Applications

Remove one vector to make this set linearly independent.

$$\left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 3\\6\\8 \end{bmatrix}, \begin{bmatrix} 2\\3\\7 \end{bmatrix}, \begin{bmatrix} 4\\9\\9 \end{bmatrix} \right\}$$

Remove one vector to make this set linearly independent.

$$\left\{ \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \begin{bmatrix} 3\\6\\8 \end{bmatrix}, \begin{bmatrix} 2\\3\\7 \end{bmatrix}, \begin{bmatrix} 4\\9\\9 \end{bmatrix} \right\}$$

Suppose a vector \mathbf{a} can be written as a linear combination of vectors in the set. Can you still write \mathbf{a} as a linear combination of vectors in the set WITHOUT using the first vector?