Outline

Week 4: Solving Linear Systems

Course Notes: 3.2, 3.3, 3.4

Goals: Learn the method of Gaussian elimination to efficiently solve linear systems; describe infinite families of solutions as parametric equations; use properties of associated homogeneous systems.

Row Operations

- Multiply one row by a non-zero scalar
- Add a multiple of one row to another
- Interchange rows

These operations will change the system of equations, but will not change the solutions of the system.

Row Operations

- Multiply one row by a non-zero scalar
- Add a multiple of one row to another
- Interchange rows

These operations will change the system of equations, but will not change the solutions of the system.

$$
\left[\begin{array}{lll|l}
1 & 2 & 4 & 34 \\
1 & 1 & 0 & 13 \\
0 & 1 & 2 & 11
\end{array}\right]
$$

Goal: easily-solvable system

Gaussian Elimination

Use row operations to change this system:

$$
\left[\begin{array}{ccc|c}
2 & 2 & -6 & -16 \\
3 & -2 & 1 & 11 \\
-1 & 3 & 1 & -2
\end{array}\right]
$$

to a system of the form

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]
$$

Gaussian Elimination

Use row operations to change this system:

$$
\left[\begin{array}{ccc|c}
2 & 2 & -6 & -16 \\
3 & -2 & 1 & 11 \\
-1 & 3 & 1 & -2
\end{array}\right]
$$

to a system of the form

$$
\begin{aligned}
& {\left[\begin{array}{lll|c}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right]}
\end{aligned}
$$

Vocabulary

Row Echelon Form: the position of the first non-zero entry in a row strictly increases from one row to the row below it.

$$
\left[\begin{array}{cccccc|c}
2 & 3 & 5 & 2 & 5 & 9 & 13 \\
0 & 5 & 4 & 3 & 4 & 0 & 11 \\
0 & 0 & 0 & 3 & 2 & 2 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Vocabulary

Row Echelon Form: the position of the first non-zero entry in a row strictly increases from one row to the row below it.

$$
\left[\begin{array}{cccccc|c}
2 & 3 & 5 & 2 & 5 & 9 & 13 \\
0 & 5 & 4 & 3 & 4 & 0 & 11 \\
0 & 0 & 0 & 3 & 2 & 2 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Reduced Row Echelon Form: the first non-zero entry in every row is a 1 , and is the only non-zero entry in its column; the position of the first non-zero entry in a row strictly increases with every row.

$$
\left[\begin{array}{cccccc|c}
1 & 0 & 0 & 2 & 0 & 0 & 13 \\
0 & 1 & 4 & 5 & 0 & 0 & 11 \\
0 & 0 & 0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Gaussian Elimination

Use row operations to change this system to reduced row echelon form.
$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 8 \\ 5 & 3 & 6 & 10\end{array}\right]$
(Try to do it using at most 6 row operations!)

Gaussian Elimination

Use row operations to change this system to reduced row echelon form.
$\left[\begin{array}{ccc|c}1 & 1 & 1 & 1 \\ 2 & 0 & 2 & 8 \\ 5 & 3 & 6 & 10\end{array}\right]$
(Try to do it using at most 6 row operations!)

$$
\left[\begin{array}{lll|c}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

Gaussian Elimination

Use row operations to change this system to reduced row echelon form.

$$
\left[\begin{array}{ccc|c}
1 & 2 & -1 & 15 \\
4 & 4 & 0 & 36 \\
3 & -1 & 6 & -31
\end{array}\right]
$$

(Try to do it using at most 8 row operations!)

Use row operations to solve this system

$$
\left[\begin{array}{cccc|c}
1 & 2 & 1 & 1 & 6 \\
5 & 10 & 3 & 3 & 28 \\
2 & 4 & 1 & 2 & 15 \\
3 & 6 & 2 & 3 & 21
\end{array}\right]
$$

Use row operations to solve this system

$$
\left[\begin{array}{cccc|c}
1 & 2 & 1 & 1 & 6 \\
5 & 10 & 3 & 3 & 28 \\
2 & 4 & 1 & 2 & 15 \\
3 & 6 & 2 & 3 & 21
\end{array}\right]
$$

$$
\left[\begin{array}{cccc|c}
1 & 2 & 0 & 0 & 5 \\
0 & 0 & 1 & 0 & -3 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{gathered}
x_{1}+2 x_{2}=5 \\
x_{3}=-3 \\
x_{4}=4
\end{gathered}
$$

Use row operations to solve this system

$$
\left[\begin{array}{cccc|c}
1 & 2 & 1 & 1 & 6 \\
5 & 10 & 3 & 3 & 28 \\
2 & 4 & 1 & 2 & 15 \\
3 & 6 & 2 & 3 & 21
\end{array}\right]
$$

$$
\left[\begin{array}{cccc|c}
1 & 2 & 0 & 0 & 5 \\
0 & 0 & 1 & 0 & -3 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{gathered}
x_{1}+2 x_{2}=5 \\
x_{3}=-3 \\
x_{4}=4
\end{gathered}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
5-2 s \\
s \\
-3 \\
4
\end{array}\right]=\left[\begin{array}{c}
5 \\
0 \\
-3 \\
4
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]
$$

Give a parametric equation for the solutions of this augmented matrix.

$$
\left[\begin{array}{cccc|c}
1 & 2 & 0 & 0 & 17 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Give a parametric equation for the solutions of this system.

$$
\left[\begin{array}{cccccc|c}
1 & 5 & 7 & 0 & 2 & 0 & 17 \\
0 & 0 & 0 & 1 & 3 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Give a parametric equation for the solutions of this system.

$$
\left[\begin{array}{cccccc|c}
1 & 5 & 7 & 0 & 2 & 0 & 17 \\
0 & 0 & 0 & 1 & 3 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Equations: $x_{1}+5 x_{2}+7 x_{3}+2 x_{5}=17, x_{4}+3 x_{5}=-4, x_{6}=-4$.

Give a parametric equation for the solutions of this system.

$$
\left[\begin{array}{cccccc|c}
1 & 5 & 7 & 0 & 2 & 0 & 17 \\
0 & 0 & 0 & 1 & 3 & 0 & -4 \\
0 & 0 & 0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Equations: $x_{1}+5 x_{2}+7 x_{3}+2 x_{5}=17, x_{4}+3 x_{5}=-4, x_{6}=-4$. Parameters: $x_{2}=r, x_{3}=s$, and $x_{5}=t$:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
17-5 r-7 s-2 t \\
r \\
s \\
-4-3 t \\
t \\
-4
\end{array}\right]=\left[\begin{array}{c}
17 \\
0 \\
0 \\
-4 \\
0 \\
-4
\end{array}\right]+r\left[\begin{array}{c}
-5 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-7 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
0 \\
0 \\
-3 \\
1 \\
0
\end{array}\right]
$$

Give a parametric equation for the solutions of this system.

$$
\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Give a parametric equation for the solutions of this system.

$$
\left[\begin{array}{llll|l}
1 & 0 & 0 & 0 & 5 \\
0 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

no solution

Give a parametric equation for the solutions of this augmented matrix.

$$
\left[\begin{array}{llll|l}
1 & 0 & 4 & 5 & 5 \\
0 & 1 & 2 & 3 & 0
\end{array}\right]
$$

Fill in the Table

	more variables		more equations
	$\left[\begin{array}{lll\|l} * & * & * & * \\ * & * & * & * \end{array}\right]$	$\left[\begin{array}{ll\|l} * & * & * \\ * & * & * \end{array}\right]$	$\left[\begin{array}{cc\|c} * & * & * \\ * & * & * \\ * & * & * \end{array}\right]$
No Solutions			
One Solution			
Infinitely Many			

Fill in the Table

| | more variables | square | more equations | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\left[\begin{array}{llll}* & * & * & * \\ * & * & * & *\end{array}\right]$ | $\left[\begin{array}{lll}* & * & * \\ * & * & *\end{array}\right]$ | $\left[\begin{array}{lll}* & * & * \\ * & * & * \\ * & *\end{array}\right.$ | $*$ |$]$

Fill in the Table

| | more variables | square | more equations | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\left[\begin{array}{llll}* & * & * & * \\ * & * & * & *\end{array}\right]$ | $\left[\begin{array}{lll}* & * & * \\ * & * & *\end{array}\right]$ | $\left[\begin{array}{lll}* & * & * \\ * & * & * \\ * & *\end{array}\right.$ | $*$ |$]$

Fill in the Table

	more variables	square	ore equ	
	$\left[\begin{array}{lll\|l} * & * & * & * \\ * & * & * & * \end{array}\right]$	$\left[\begin{array}{ll\|l} * & * & * \\ * & * & * \end{array}\right]$	$\left[\begin{array}{ll} * & * \\ * & * \\ * & * \\ * \end{array}\right.$	$\left.\begin{array}{l}* \\ * \\ *\end{array}\right]$
No Solutions	$\left[\begin{array}{lll\|l}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{l\|l}0 & 1\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right.$	$\left.\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$
One Solution				
Infinitely Many				

Fill in the Table

	more variables	square	more eq	
	$\left[\begin{array}{lll\|l} * & * & * & * \\ * & * & * & * \end{array}\right]$	$\left[\begin{array}{ll\|l} * & * & * \\ * & * & * \end{array}\right]$	$\left[\begin{array}{ll} * & * \\ * & * \\ * & * \end{array}\right.$	$\left.\begin{array}{l}* \\ * \\ *\end{array}\right]$
No Solutions	$\left[\begin{array}{lll\|l}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{l\|l}0 & 1\end{array}\right]$	1-1 $\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}$	$\left.\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$
One Solution	x			
Infinitely Many				

Fill in the Table

	more variables	square	more equations
	$\left[\begin{array}{lll\|l} * & * & * & * \\ * & * & * & * \end{array}\right]$	$\left[\begin{array}{ll\|l} * & * & * \\ * & * & * \end{array}\right]$	$\left[\begin{array}{ll\|l} * & * & * \\ * & * & * \\ * & * & * \end{array}\right]$
No Solutions	$\left[\begin{array}{lll\|l}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{l\|l}0 & 1\end{array}\right]$	[100 $\left.\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$
One Solution	X	$\left[\begin{array}{ll\|l}1 & 0 & 3 \\ 0 & 1 & 2\end{array}\right]$	
Infinitely Many			

Fill in the Table

	more variables	square	more eq	on
	$\left[\begin{array}{lll\|l} * & * & * & * \\ * & * & * & * \end{array}\right]$	$\left[\begin{array}{ll\|l} * & * & * \\ * & * & * \end{array}\right]$	$\left[\begin{array}{ll} * & * \\ * & * \\ * & * \end{array}\right.$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$
No Solutions	$\left[\begin{array}{lll\|l}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{l\|l}0 & 1\end{array}\right]$	ll $\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}$	$\left.\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$
One Solution	X	$\left[\begin{array}{ll\|l}1 & 0 & 3 \\ 0 & 1 & 2\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$	$\left.\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$
Infinitely Many				

Fill in the Table

Fill in the Table

Fill in the Table

	more variables$\left[\begin{array}{lll\|l} * & * & * & * \\ * & * & * & * \end{array}\right]$	square	more equations	
		$\left[\begin{array}{ll\|l} * & * & * \\ * & * & * \end{array}\right]$	$\left[\begin{array}{ll} * & * \\ * & * \\ * & * \end{array}\right.$	$\begin{aligned} & * \\ & * \\ & * \end{aligned}$
No Solutions	$\left[\begin{array}{lll\|l}0 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{l\|l}0 & 1\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right.$	$\left.\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$
One Solution	X	$\left[\begin{array}{ll\|l}1 & 0 & 3 \\ 0 & 1 & 2\end{array}\right]$	[1 $\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}$	$\left.\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$
Infinitely Many	$\left[\begin{array}{lll\|l}1 & 0 & 0 & 1\end{array}\right]$	$\left[\begin{array}{ll\|l}1 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right.$	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Rank and Solutions

How many solutions?

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]
$$

Rank and Solutions

How many solutions?

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & *
\end{array}\right]}
\end{aligned}
$$

Rank and Solutions

How many solutions?

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & * \\
0 & 0 & 0 & *
\end{array}\right]}
\end{aligned}
$$

Rank and Solutions

How many solutions?

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & * \\
0 & 0 & 0 & *
\end{array}\right]}
\end{aligned}
$$

The rank of a matrix (without its augmented part) is the number of non-zero rows in the matrix obtained after reducing it.

Rank and Solutions

How many solutions?

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & * \\
0 & 0 & 0 & *
\end{array}\right]}
\end{aligned}
$$

The rank of a matrix (without its augmented part) is the number of non-zero rows in the matrix obtained after reducing it. If a matrix has rank r and n columns, then the solution will require \square parameters (provided a solution exists at all).

Rank and Solutions

How many solutions?

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 0 & * \\
0 & 0 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & *
\end{array}\right]} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & * \\
0 & 1 & 1 & * \\
0 & 0 & 0 & *
\end{array}\right]}
\end{aligned}
$$

The rank of a matrix (without its augmented part) is the number of non-zero rows in the matrix obtained after reducing it. If a matrix has rank r and n columns, then the solution will require $n-r$ parameters (provided a solution exists at all).

Homogeneous Systems

System of equations:

$$
\left[\begin{array}{lll|l}
3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 \\
7 & 8 & 9 & 0
\end{array}\right]
$$

Associated homogeneous system of equations:

$$
\left[\begin{array}{lll|l}
3 & 4 & 5 & 0 \\
1 & 2 & 3 & 0 \\
7 & 8 & 9 & 0
\end{array}\right]
$$

$$
\left[\begin{array}{lll|l}
3 & 4 & 5 & 0 \\
1 & 2 & 3 & 0 \\
7 & 8 & 9 & 0
\end{array}\right]
$$

Give a solution to this equation.

$$
\left[\begin{array}{lll|l}
3 & 4 & 5 & 0 \\
1 & 2 & 3 & 0 \\
7 & 8 & 9 & 0
\end{array}\right]
$$

Give a solution to this equation.

Suppose \mathbf{a} and \mathbf{b} are solutions to a homogeneous system of equations.

$$
\left[\begin{array}{lll|l}
3 & 4 & 5 & 0 \\
1 & 2 & 3 & 0 \\
7 & 8 & 9 & 0
\end{array}\right]
$$

Give a solution to this equation.

Suppose \mathbf{a} and \mathbf{b} are solutions to a homogeneous system of equations.

Then $\mathbf{a}+\mathbf{b}$ is also a solution.

$$
\left[\begin{array}{lll|l}
3 & 4 & 5 & 0 \\
1 & 2 & 3 & 0 \\
7 & 8 & 9 & 0
\end{array}\right]
$$

Give a solution to this equation.

Suppose \mathbf{a} and \mathbf{b} are solutions to a homogeneous system of equations.

Then $\mathbf{a}+\mathbf{b}$ is also a solution.

Also, ca is a solution for any scalar c.

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_{0} is its associated homogeneous system.
If \mathbf{a} and \mathbf{b} are solutions to A, then \square is a solution to A_{0}.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right] \\
& A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
\end{aligned}
$$

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_{0} is its associated homogeneous system.
If \mathbf{a} and \mathbf{b} are solutions to A, then $\mathbf{a - b}$ is a solution to A_{0}.

$$
\begin{aligned}
& A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right] \\
& A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
\end{aligned}
$$

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_{0} is its associated homogeneous system.
If \mathbf{a} and \mathbf{b} are solutions to A, then $\mathbf{a}-\mathbf{b}$ is a solution to A_{0}.

$$
A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right]
$$

One solution: $[1,2,1,2]$.

$$
A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
$$

One solution: $[1,1,1,-1]$.

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_{0} is its associated homogeneous system.
If \mathbf{a} and \mathbf{b} are solutions to A, then $\mathbf{a - b}$ is a solution to A_{0}.

$$
A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right]
$$

One solution: [1, 2, 1, 2]. Another solution: $[2,3,2,1]$

$$
A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
$$

One solution: $[1,1,1,-1]$.

Connection to Non-homogeneous Systems

Suppose A is an augmented matrix, and A_{0} is its associated homogeneous system.
If \mathbf{a} and \mathbf{b} are solutions to A, then $\mathbf{a}-\mathbf{b}$ is a solution to A_{0}. Given one solution \mathbf{q} to A, every solution to A can be written in the form $\mathbf{q}+\mathbf{a}$ for some solution \mathbf{a} of A_{0}.

Connection to Non-homogeneous Systems

$$
A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right]
$$

One solution: [1,2,1,2].

$$
A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
$$

Solutions: $s[1,1,1,-1]$.

Connection to Non-homogeneous Systems

$$
A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right]
$$

One solution: $[1,2,1,2]$. All solutions:[1, 2, 1, 2] $+s[1,1,1,-1]$

$$
A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
$$

Solutions: $s[1,1,1,-1]$.

Connection to Non-homogeneous Systems

$$
A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right]
$$

One solution: $[1,2,1,2]$. All solutions: $[1,2,1,2]+s[1,1,1,-1]$

$$
A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
$$

Solutions: $s[1,1,1,-1]$.
What is the rank of the top matrix?

Connection to Non-homogeneous Systems

$$
A=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 13 \\
11 & 3 & -1 & 13 & 42 \\
-7 & -2 & 1 & -8 & -26 \\
4 & 1 & 0 & 5 & 16
\end{array}\right]
$$

One solution: $[1,2,1,2]$. All solutions: $[1,2,1,2]+s[1,1,1,-1]$

$$
A_{0}=\left[\begin{array}{cccc|c}
4 & 1 & -1 & 4 & 0 \\
11 & 3 & -1 & 13 & 0 \\
-7 & -2 & 1 & -8 & 0 \\
4 & 1 & 0 & 5 & 0
\end{array}\right]
$$

Solutions: $s[1,1,1,-1]$.
What is the rank of the top matrix?
Are the rows of the top matrix linearly independent?

Rank and Linear Independence

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
1 & -1 & -3 & 0
\end{array}\right] R_{4} \rightarrow R_{4}-R_{3}+R_{2}+2 R_{1}\left[\begin{array}{lll|l}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Rank and Linear Independence

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
1 & -1 & -3 & 0
\end{array}\right] \quad R_{4} \rightarrow R_{4}-R_{3}+R_{2}+2 R_{1}\left[\begin{array}{lll|l}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
R_{4}=R_{3}-R_{2}-2 R_{2}
$$

Rank and Linear Independence

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
1 & -1 & -3 & 0
\end{array}\right] \quad R_{4} \rightarrow R_{4}-R_{3}+R_{2}+2 R_{1}\left[\begin{array}{lll|l}
1 & 2 & 3 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$R_{4}=R_{3}-R_{2}-2 R_{2}$

If row reduction results in a row of all 0 s, then the row vectors of the original matrix were not linearly independent.

Rank and Linear Independence

Suppose this matrix has rows that are linearly independent:

$$
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

What is its reduced form going to be?

Rank and Linear Independence

Suppose this matrix has rows that are linearly independent:

$$
\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]
$$

What is its reduced form going to be?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rank and Linear Independence

Suppose this augmented matrix has rows that are linearly independent:

$$
\left[\begin{array}{lllll|l}
* & * & * & * & * & 0 \\
* & * & * & * & * & 0 \\
* & * & * & * & * & 0 \\
* & * & * & * & * & 0
\end{array}\right]
$$

What will its solutions set be? (Point, line, plane, etc.)

Rank and Linear Independence

Suppose this augmented matrix has rows that are linearly independent:

$$
\left[\begin{array}{lllll|l}
* & * & * & * & * & 0 \\
* & * & * & * & * & 0 \\
* & * & * & * & * & 0 \\
* & * & * & * & * & 0
\end{array}\right]
$$

What will its solutions set be? (Point, line, plane, etc.)

A line: sa.

Rank and Linear Independence

Suppose this augmented matrix has rows that are linearly independent:

$$
\left[\begin{array}{lllll|l}
* & * & * & * & * & 0 \\
* & * & * & * & * & 0 \\
* & * & * & * & * & 0 \\
* & * & * & * & * & 0
\end{array}\right]
$$

What will its solutions set be? (Point, line, plane, etc.)

A line: sa.

Why not a line like this: $\mathbf{q}+$ sa

Geometry in Unimaginable Dimensions

What does the equation $0 x_{1}+0 x_{2}+0 x_{3}+x_{4}=0$ describe in \mathbb{R}^{4} ?

Geometry in Unimaginable Dimensions

What does the equation $0 x_{1}+0 x_{2}+0 x_{3}+x_{4}=0$ describe in \mathbb{R}^{4} ?
In general, an equation of the form $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=a_{5}$ describes a three-dimensional space in \mathbb{R}^{4}.

Geometry in Unimaginable Dimensions

What does the equation $0 x_{1}+0 x_{2}+0 x_{3}+x_{4}=0$ describe in \mathbb{R}^{4} ?
In general, an equation of the form $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=a_{5}$ describes a three-dimensional space in \mathbb{R}^{4}.
What will be the intersection of four linearly-independent 3-dimensional spaces of this type?

Geometry in Unimaginable Dimensions

What does the equation $0 x_{1}+0 x_{2}+0 x_{3}+x_{4}=0$ describe in \mathbb{R}^{4} ?
In general, an equation of the form $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=a_{5}$ describes a three-dimensional space in \mathbb{R}^{4}.
What will be the intersection of four linearly-independent 3-dimensional spaces of this type?
What will be the intersection of n linearly-independent $(n-1)$-dimensional spaces of this type in \mathbb{R}^{n} ?

Check this collection of vectors for linear independence:
$\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right], \mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\mathbf{c}=\left[c_{1}, c_{2}, c_{3}\right]$.

Check this collection of vectors for linear independence:
$\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right], \mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\mathbf{c}=\left[c_{1}, c_{2}, c_{3}\right]$.

Recall

Vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent if the equation

$$
s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+\cdots+s_{n} \mathbf{a}_{n}=\mathbf{0}
$$

has only one solution, $s_{1}=s_{2}=\cdots=s_{n}=0$.

Check this collection of vectors for linear independence:
$\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right], \mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\mathbf{c}=\left[c_{1}, c_{2}, c_{3}\right]$.

Recall

Vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent if the equation

$$
s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+\cdots+s_{n} \mathbf{a}_{n}=\mathbf{0}
$$

has only one solution, $s_{1}=s_{2}=\cdots=s_{n}=0$.

$$
x \mathbf{a}+y \mathbf{b}+z \mathbf{c}=\mathbf{0}
$$

Check this collection of vectors for linear independence:
$\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right], \mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\mathbf{c}=\left[c_{1}, c_{2}, c_{3}\right]$.

Recall

Vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent if the equation

$$
s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+\cdots+s_{n} \mathbf{a}_{n}=\mathbf{0}
$$

has only one solution, $s_{1}=s_{2}=\cdots=s_{n}=0$.

$$
\begin{aligned}
x \mathbf{a}+y \mathbf{b}+z \mathbf{c} & =\mathbf{0} \\
{\left[\begin{array}{l}
x a_{1} \\
x a_{2} \\
x a_{3}
\end{array}\right]+\left[\begin{array}{l}
y b_{1} \\
y b_{2} \\
y b_{3}
\end{array}\right]+\left[\begin{array}{l}
z c_{1} \\
z c_{2} \\
z c_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Check this collection of vectors for linear independence:
$\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right], \mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\mathbf{c}=\left[c_{1}, c_{2}, c_{3}\right]$.

Recall

Vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent if the equation

$$
s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+\cdots+s_{n} \mathbf{a}_{n}=\mathbf{0}
$$

has only one solution, $s_{1}=s_{2}=\cdots=s_{n}=0$.

$$
\begin{gathered}
x \mathbf{a}+y \mathbf{b}+z \mathbf{c}=\mathbf{0} \\
{\left[\begin{array}{l}
x a_{1} \\
x a_{2} \\
x a_{3}
\end{array}\right]+\left[\begin{array}{l}
y b_{1} \\
y b_{2} \\
y b_{3}
\end{array}\right]+\left[\begin{array}{l}
z c_{1} \\
z c_{2} \\
z c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\left\{\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=0 \\
a_{2} x+b_{2} y+c_{2} z=0 \\
a_{3} x+b_{3} y+c_{3} z=0
\end{array}\right.
\end{gathered}
$$

Check this collection of vectors for linear independence:
$\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right], \mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\mathbf{c}=\left[c_{1}, c_{2}, c_{3}\right]$.

Recall

Vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent if the equation

$$
s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+\cdots+s_{n} \mathbf{a}_{n}=\mathbf{0}
$$

has only one solution, $s_{1}=s_{2}=\cdots=s_{n}=0$.

$$
\begin{gathered}
x \mathbf{a}+y \mathbf{b}+z \mathbf{c}=\mathbf{0} \\
{\left[\begin{array}{l}
x a_{1} \\
x a_{2} \\
x a_{3}
\end{array}\right]+\left[\begin{array}{l}
y b_{1} \\
y b_{2} \\
y b_{3}
\end{array}\right]+\left[\begin{array}{l}
z c_{1} \\
z c_{2} \\
z c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
\left\{\begin{array}{ll}
a_{1} x+b_{1} y+c_{1} z=0 \\
a_{2} x+b_{2} y+c_{2} z & =0 \\
a_{3} x+b_{3} y+c_{3} z & =0
\end{array} \rightarrow\left[\begin{array}{lll|l}
a_{1} & b_{1} & c_{1} & 0 \\
a_{2} & b_{2} & c_{2} & 0 \\
a_{3} & b_{3} & c_{3} & 0
\end{array}\right]\right.
\end{gathered}
$$

Check this collection of vectors for linear independence:
$\mathbf{a}=\left[a_{1}, a_{2}, a_{3}\right], \mathbf{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\mathbf{c}=\left[c_{1}, c_{2}, c_{3}\right]$.

Recall

Vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ are linearly independent if the equation

$$
s_{1} \mathbf{a}_{1}+s_{2} \mathbf{a}_{2}+\cdots+s_{n} \mathbf{a}_{n}=\mathbf{0}
$$

has only one solution, $s_{1}=s_{2}=\cdots=s_{n}=0$.
If we make the vectors into columns of a matrix, the vectors are linearly independent if and only if that matrix has full rank. That is, when we row-reduce it, we don't come up with a row of all 0 s.

$$
\mathbf{a}=[1,1,1,1],
$$

$$
\mathbf{b}=[2,1,1,1]
$$

Are \mathbf{a} and \mathbf{b} linearly independent?

$$
\mathbf{a}=[1,1,1,1], \quad \mathbf{b}=[2,1,1,1]
$$

Are \mathbf{a} and \mathbf{b} linearly independent?

$$
\begin{aligned}
& x_{1} \mathbf{a}+x_{2} \mathbf{b}=\mathbf{0}: \\
& {\left[\begin{array}{ll|l}
1 & 2 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\mathbf{a}=[1,1,1,1], \quad \mathbf{b}=[2,1,1,1]
$$

Are \mathbf{a} and \mathbf{b} linearly independent?

$$
\begin{aligned}
& x_{1} \mathbf{a}+x_{2} \mathbf{b}=\mathbf{0}: \\
& {\left[\begin{array}{ll|l}
1 & 2 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

Can we row-reduce this matrix to get a row of all 0s?

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1
\end{array}\right]
$$

Checking Vectors for Linear Independence

Are $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, a_{n}$ are linearly independent? (Two ways.)

- If there is only one solution, the vectors are linearly independent.
- If there is more than one solution, the vectors are linearly dependent.
- If the reduced matrix has no rows of all zeroes, the vectors are linearly independent.
- If the reduced matrix has some row of all zeroes, the vectors are linearly dependent.

Write $\left[\begin{array}{c}16 \\ 5 \\ 11\end{array}\right]$ as a linear combination of vectors from the set

Write $\left[\begin{array}{c}16 \\ 5 \\ 11\end{array}\right]$ as a linear combination of vectors from the set

$$
\begin{aligned}
{\left[\begin{array}{lll|c}
2 & 0 & 4 & 16 \\
1 & 9 & 4 & 5 \\
5 & 8 & 3 & 11
\end{array}\right] } & \rightarrow\left[\begin{array}{lll|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right] \\
& 2\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]-\left[\begin{array}{l}
0 \\
9 \\
8
\end{array}\right]+3\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{c}
16 \\
5 \\
11
\end{array}\right]
\end{aligned}
$$

Write $\left[\begin{array}{c}16 \\ 5 \\ 11\end{array}\right]$ as a linear combination of vectors from the set

Is the set linearly independent? Is it a basis of \mathbb{R}^{3} ?

$$
\begin{aligned}
& {\left[\begin{array}{lll|c}
2 & 0 & 4 & 16 \\
1 & 9 & 4 & 5 \\
5 & 8 & 3 & 11
\end{array}\right] \rightarrow\left[\begin{array}{lll|c}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right]} \\
& \\
& 2\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]-\left[\begin{array}{l}
0 \\
9 \\
8
\end{array}\right]+3\left[\begin{array}{l}
4 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{c}
16 \\
5 \\
11
\end{array}\right]
\end{aligned}
$$

Is the set linearly independent? Is it a basis?

Is the set linearly independent? Is it a basis?

$$
\left\{\left[\begin{array}{l}
3 \\
1 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
7 \\
2 \\
7 \\
3
\end{array}\right],\left[\begin{array}{c}
1 \\
0 \\
-3 \\
-13
\end{array}\right]\right\}
$$

Is the set linearly independent? Is it a basis?

$$
\left\{\left[\begin{array}{l}
3 \\
1 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
7 \\
2 \\
7 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
3 \\
1 \\
7
\end{array}\right],\left[\begin{array}{l}
5 \\
4 \\
5 \\
1
\end{array}\right],\left[\begin{array}{l}
6 \\
6 \\
9 \\
0
\end{array}\right]\right\}
$$

Two points determine a line. How many points are needed to determine an n-th degree polynomial?

Remove one vector to make this set linearly independent.

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
7
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
9
\end{array}\right]\right\}
$$

Remove one vector to make this set linearly independent.

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
8
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
7
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
9
\end{array}\right]\right\}
$$

Suppose a vector a can be written as a linear combination of vectors in the set. Can you still write a as a linear combination of vectors in the set WITHOUT using the first vector?

