Course Notes 2.6: Introduction to Linear Systems 000000000	3.1: Linear Systems 000000000000
Outline	
Week 3: Introduction to Linear Systems	

Notes

Notes

Course Notes: 2.6, 3.1

Goals: Consider the solution to a system of linear equations as a geometric object; learn basic techniques (back substitution, row reduction) for solving systems of linear equations.

Course Notes 2.6: Introduct	tion to Linear Systems		3.1: Linear Systems 000000000000		
Intersections	$: \mathbb{R}^2$				
Which of th $a_1x + a_2y =$	the following could be the in- = a_3 and $b_1x + b_2y = b_3$?	tersection of lines			
A. nothing	B. point E. two points	C. line F. two lines	D. plane		
The intersection of the two lines is the set of points (x, y) that are solutions to this system of linear equations:					
	$a_1x + a_2y =$	a ₃			
	$b_1x + b_2y =$	<i>b</i> ₃			

If the intersection is a **point**, what can we say about det $\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$? A. zero B. nonzero C. positive D. negative

	-

Course Notes 2.6: Introductio	n to Linear Systems		3.1: Linear Systems 000000000000
Intersections:	\mathbb{R}^3		
Which of the ℝ³? A. nothing	following could be the B. point	intersection of the C. line	wo planes in D. plane

Course Notes 2.6: Introduction to Linear Systems

Intersections: \mathbb{R}^3

Which of the following could be the intersection of three planes in \mathbb{R}^{3} ?

A. nothing	B. point	C. line	D. plane
E. two points	F. two lines	G. two p	lanes
<i>a</i> 1 <i>x</i> +	a2y +	$a_3 z =$	a4
$b_1 x +$	$b_2 v +$	$b_3 z =$	b ₄

 $c_1 x$ c₃z $c_2 y$ Suppose (1, 3, 5) and (2, 6, 10) are solutions to the system of equations.

+

How many solutions total are there?

+

Give another solution.

Possible solutions: Notes 2.6: Introduction to Linear Systems

3.1: Linear Syst

C4

Definition: Linear Combination

If $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ are a collection of vectors, and s_1, s_2, \ldots, s_n are scalars, then

 $s_1\mathbf{a}_1 + s_2\mathbf{a}_2 + \cdots + s_n\mathbf{a}_n$

is a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$. Given a collection of vectors, the set of all their possible linear combinations is the **span** of the vectors.

So, the parametric equation $\mathbf{x} = s\mathbf{a} + t\mathbf{b}$ is just the set of all linear combinations of \mathbf{a} and \mathbf{b} .

Fact: if \boldsymbol{a} and \boldsymbol{b} are vectors in \mathbb{R}^2 that are *not parallel*, then every point in \mathbb{R}^2 can be written as a linear combination of \boldsymbol{a} and \boldsymbol{b} .

Related Fact: if a , b , an c are vectors in \mathbb{R}^3 that do not all lie on the same plane, then every point in \mathbb{R}^3 can be written as a linear combination of \mathbf{a} , \mathbf{b} , and \mathbf{c} .

Test for colinearity or coplanarity using determinant.

Course Notes 2.6: Introduction to Linear Systems Linear (In)dependence

Definition we want:

If $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ are a collection of vectors, we call them *linearly* independent if none is a linear combination of the others.

Definition: Linear Independence

If $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ are a collection of vectors, we call them *linearly* independent if the only solution to the equation

$$s_1\mathbf{a}_1 + s_2\mathbf{a}_2 + \cdots + s_n\mathbf{a}_n = \mathbf{0}$$

is $s_1 = s_1 = \cdots = s_n = 0$.

So, the vectors are *linearly dependent* if there exist scalars s_1, s_2, \ldots, s_n , at least one of which is nonzero, such that $s_1\mathbf{a}_1+s_2\mathbf{a}_2+\cdots+s_n\mathbf{a}_n=\mathbf{0}.$

Notes

Course Notes 2.6: Introduction to Linear Systems	3.1: Linear Systems 00000000000	
Example: $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\3\\3\\3 \end{bmatrix} \right\}$ are <i>linearly dependent</i> .		Notes
Example: $2\begin{bmatrix}1\\0\end{bmatrix} + 7\begin{bmatrix}2\\2\end{bmatrix} = \begin{bmatrix}16\\14\end{bmatrix}$, so		
$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix}, \begin{bmatrix} 10\\14 \end{bmatrix} \right\}$ are linearly dependent.		

asis No Definition: Basis	
Definition: Basis In \mathbb{R}^n , a collection of <i>n</i> linearly independent vectors is called a <i>basis</i> . Any x in \mathbb{R}^n can be written as a linear combination of basis vectors.	
In \mathbb{R}^n , a collection of <i>n</i> linearly independent vectors is called a <i>basis</i> . Any x in \mathbb{R}^n can be written as a linear combination of basis vectors.	
In \mathbb{R}^n , a collection of <i>n</i> linearly independent vectors is called a <i>basis</i> . Any x in \mathbb{R}^n can be written as a linear combination of basis vectors.	
basis. Any x in \mathbf{R}^n can be written as a linear combination of basis vectors.	
Any x in \mathbf{R}^n can be written as a linear combination of basis vectors.	
Verify that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ form a basis	
Write $\begin{bmatrix} 7\\ -2 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1\\ 1 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 1 \end{bmatrix}$.	

Course Notes 2.6: Introduction to Linear Systems 0000000€00	3.1: Linear Systems
Bases	

In $\mathbb{R}^3,$ what is the easiest basis to work with? That is: find a , b , and c so that it is extremely easy to solve the system [x]

$$s_1\mathbf{a} + s_2\mathbf{b} + s_3\mathbf{c} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

ourse Notes 2.0:	introduction to	Linear :	Systems
0000000000			

3.1: Linear Syste

Give one vector in \mathbb{R}^2 that can never be in a basis of $\mathbb{R}^2.$

Notes

(Remember: a basis in \mathbb{R}^2 is a collection of two vectors **a** and **b** so that the only solution to the equation $s\mathbf{a} + t\mathbf{b} = \mathbf{0}$ is s = t = 0.)

Recall: a basis in \mathbb{R}^2 is two vectors **a** and **b** such that $s_1\mathbf{a} + s_2\mathbf{b} = \mathbf{0}$ ONLY when $s_1 = s_2 = 0$.

Notes

Course Notes 2.6: Introduction to Linear Systems

3.1: Linear Systems

Substitution

Suppose a thrown ball at time t has height $h = At^2 + Bt + C$. At t = 1, the ball is at height 0; at t = 2, the ball is at height 1; and at t = 3, the ball is at height 6.

Find A, B, and C.

Notes

Notes

Course Notes 2.6: Introduc 0000000000	tion to Li	near Systems						3.1: Linear System	ns
General Forr	n								
21 1 81	+	<i>a</i> 1 o Xo	+		+	21X	_	0	
u 1,1/1	'	u1,272				u 1, <i>n</i> × <i>n</i>		C1	
$a_{2,1}x_1$	+	a _{2,2} x ₂	+	•••	+	$a_{2,n}x_n$	=	<i>c</i> ₂	
	÷			÷			÷		
$a_{m,1}x_1$	+	a _{m,2} x ₂	+		+	a _{m,n} x _n	=	Cm	
14/1									

Where $a_{i,j}$ and c_i are known and fixed.

Course Note 00000000	s 2.6: Intro 00	duction to	Linear Systems						3.1: Line 000000	ar Syst 00000
Goal:	easily	y-solv	/able sy	/stem	ı					
	x_1	+	3 <i>x</i> ₂	+	17 <i>x</i> ₃	+	9 <i>x</i> ₄	=	10	
	$-3x_{1}$	+	$-6x_{2}$	+	8 <i>x</i> 3	$^+$	5 <i>x</i> 4	=	17	
	πx_1	+	$-8x_{2}$	+	3 <i>x</i> ₃	+	<i>x</i> ₄	=	-2	
	8 <i>x</i> ₁	+	$-8x_{2}$	+	5 <i>x</i> 3	+	$2x_4$	=	2	
	x_1	+	3 <i>x</i> ₂	+	17 <i>x</i> 3	+	9 <i>x</i> ₄	=	10	
			$-6x_{2}$	+	8 <i>x</i> 3	+	5 <i>x</i> 4	=	17	
					3 <i>x</i> 3	$^+$	<i>x</i> 4	=	-2	
							2 <i>x</i> ₄	=	2	
				Uppe	r Triangı	ular				
	<i>x</i> ₁	+	0 <i>x</i> ₂	+	0 <i>x</i> 3	+	0 <i>x</i> ₄	=	10	
			$-6x_{2}$	+	0 <i>x</i> ₃	+	0 <i>x</i> ₄	=	17	
					3 <i>x</i> 3	+	0 <i>x</i> ₄	=	-2	
							2 <i>x</i> ₄	=	2	

Course Notes 2.6: Introduction to Linear Systems 000000000

Equivalent Equations

Notice:

 and

6x + 10y + 14z = 20

3x + 5y + 7z = 10

have the same solutions.

Caution:

0x + 0y + 0z = 0

has more solutions.

Course Notes : 0000000000	2.6: Introductio >	on to Linear S	ystems				3.1: Line 00000	ar Syste
Elemer	ntary R	low Op	peration	าร:				
Multip	licatior	n of a	row by	a non-	zero n	umber		
	<u>3x</u>	_	<mark>9</mark> y	+	<u>6</u> <i>z</i>	=	30	
	-x	+	3 <i>y</i>	+	5 <i>z</i>	=	4	
	x	+	у	+	Ζ	=	-6	
Sam	ne solutio	ns as:						
	1x	_	<u>3</u> y	+	2 <i>z</i>	=	10	
	-x	+	3 <i>y</i>	+	5 <i>z</i>	=	4	
	x	+	у	+	Z	=	-6	

3.1: Linear Systems

Notes		

Course Notes 2 0000000000	.6: Introductio	n to Linear S	ystems				3.1: Linear Systems 000000000000		
Elementary Row Operations:									
Adding a Multiple of a Row to Another Row									
	x	_	3 <i>y</i>	+	2 <i>z</i>	=	10		
	-x	+	3 <i>y</i>	+	5 <i>z</i>	=	4		
	x	+	у	+	Ζ	=	-6		
Same	e solutio	ns as:							
	<mark>0</mark> x	_	<u>0</u> <i>y</i>	+	7 <i>z</i>	=	14		
	-x	+	3 <i>y</i>	+	5 <i>z</i>	=	4		
	x	+	у	+	Ζ	=	-6		

Course Notes 2.6: Intr 0000000000	oduction to	Linear Syster	ms				3.1: Linear Systems 00000000000000
Elementar	y Row	/ Ope	rations	Inter	changir	ng Row	S
					_		
					7 <i>z</i>	=	14
->	ĸ	+	3 <i>y</i>	+	5 <i>z</i>	=	4
,	ĸ	+	у	+	Ζ	=	-6
Same sol	utions	as:					
	ĸ	+	3 <i>y</i>	+	5 <i>z</i>	=	4
,	ĸ	+	у	+	z	=	-6
					7 <i>z</i>	=	14

Notes	
-------	--

Course Notes 2 0000000000	.6: Introduction	to Linear Sys	ems				3.1: Linear Systems 00000000000000
Stream	lined N	otatio	n: Augi	mented	l Matri	ces	
	x	-	3 <i>y</i>	+	2 <i>z</i>	=	10
	-x	+	3 <i>y</i>	+	5 <i>z</i>	=	4
	x	+	у	+	z	=	-6
We'll write this as:							
			$\begin{bmatrix} 1 & -1 & 3 \\ -1 & 3 \\ 1 & 1 \end{bmatrix}$	32 35 11	$\begin{bmatrix} 10 \\ 4 \\ -6 \end{bmatrix}$		

Notes			

Course Notes 2.6: Introduction to 000000000	Linear Systems	3.1: Linear Systems 00000000000000
Augmented Mar	trices	
Solution	$\begin{bmatrix} 1 & 0 & 0 & 0 & & 1 \\ 0 & 1 & 0 & 0 & & 5 \\ 0 & 0 & 1 & 0 & & -3 \\ 0 & 0 & 0 & 1 & & 2 \end{bmatrix}$	
Solution.	$\begin{bmatrix} 1 & 2 & 3 & & 5 \\ 0 & 1 & 2 & & -3 \\ 0 & 0 & 1 & & 2 \end{bmatrix}$	

Solution:

Course Notes 2.6: Introduction to Linear Systems 0000000000	3.1: Linear Systems 000000000€0
Using Elementary Row Opera	tions
$ \begin{bmatrix} 3 & 6 & 3 & & 9 \\ 1 & 1 & 1 & & 7 \\ 2 & 2 & -1 & & 14 \end{bmatrix} R_1 \to \frac{1}{3}R_1$	$\begin{bmatrix} 1 & 2 & 1 & & 3 \\ 1 & 1 & 1 & & 7 \\ 2 & 2 & -1 & & 14 \end{bmatrix} R_3 \to R_3 - 2R_2$
$\begin{bmatrix} 1 & 2 & 1 & & 3 \\ 1 & 1 & 1 & & 7 \\ 0 & 0 & -3 & & 0 \end{bmatrix} R_3 \to -\frac{1}{3}R_3$	$\begin{bmatrix} 1 & 2 & 1 & & 3 \\ 1 & 1 & 1 & & 7 \\ 0 & 0 & 1 & & 0 \end{bmatrix} R_1 \to R_1 - R_2$
$\begin{bmatrix} 0 & 1 & 0 & & -4 \\ 1 & 1 & 1 & & 7 \\ 0 & 0 & 1 & & 0 \end{bmatrix} R_2 \to R_2 - R_1$	$\begin{bmatrix} 0 & 1 & 0 & & -4 \\ 1 & 0 & 1 & & 11 \\ 0 & 0 & 1 & & 0 \end{bmatrix} R_2 \to R_2 - R_3$
$\begin{bmatrix} 0 & 1 & 0 & & -4 \\ 1 & 0 & 0 & & 11 \\ 0 & 0 & 1 & & 0 \end{bmatrix} R_1 \leftrightarrow R_2$	$\begin{bmatrix} 1 & 0 & 0 & & 11 \\ 0 & 1 & 0 & & -4 \\ 0 & 0 & 1 & & 0 \end{bmatrix} \qquad \begin{array}{c} x = 11 \\ y = -4 \\ z = 0 \end{array}$

Notes

Notes

Course Notes 2.6: Introduction to Linear Systems	3.1: Linear Systems
000000000	0000000000
Solve using Elementary Row Operations	

 $\begin{cases} 2x + y + z &= 8\\ x - y - 3z &= -5\\ -x - 2y + z &= 2 \end{cases}$

Course Notes 2.6: Introduction to Linear Systems 0000000000

3.1: Linear Systems 000000000000

Row Operation Calculator (link)