Outline

Week 2: Determinants, Cross Products, Lines, and Planes

Course Notes: 2.4-2.5

Goals: Introduce determinants and cross products, computationally and with geometric interpretations. Lines and planes.

Course Notes: Section 2.4, Determinants and the Cross Product

Determinants in Two and Three Dimensions

$$
\operatorname{det}\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]=a_{1} b_{2}-a_{2} b_{1}
$$

$\operatorname{det}\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]=a_{1} \operatorname{det}\left[\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right]-a_{2} \operatorname{det}\left[\begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right]+a_{3} \operatorname{det}\left[\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right]$
Tricky way: ONLY in three dimensions:

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section 2.5, Lines and Planes 000000000000000

 000000000000000$\operatorname{det}\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$
$\operatorname{det}\left[\begin{array}{cc}-2 & 8 \\ 3 & 5\end{array}\right]$
$\operatorname{det}\left[\begin{array}{lll}3 & 2 & 5 \\ 5 & 7 & 3 \\ 2 & 1 & 3\end{array}\right]$
$\operatorname{det}\left[\begin{array}{ccc}2 & 4 & 8 \\ 3 & 5 & 7 \\ 1 & 10 & 5\end{array}\right]$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Geometric Interpretation: Determinant in Two Dimensions

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right] & =a_{1} b_{2}-a_{2} b_{1} \\
& =\left[\begin{array}{c}
-a_{2} \\
a_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
\end{aligned}
$$

If $\operatorname{det}\left[\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right]=0$,
then

Course Notes: Section 2.4, Determinants and the Cross Product
Zero Determinants

Are the following determinants zero, or nonzero?

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
1 & 2 \\
-4 & -8
\end{array}\right] \\
\operatorname{det}\left[\begin{array}{ll}
1 & 2 \\
4 & 6
\end{array}\right]
\end{gathered}
$$

$$
\operatorname{det}\left[\begin{array}{cc}
a_{1} & a_{2} \\
5 a_{1} & 5 a_{2}
\end{array}\right]
$$

$$
\operatorname{det}\left[\begin{array}{cc}
a_{1} & a_{2} \\
0 & 0
\end{array}\right]
$$

Quick Detour: Parallelograms

Area: (base) \times (height)

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

More Geometric Interpretation in Two Dimensions

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]=a_{1} b_{2}-a_{2} b_{1} & =\left[\begin{array}{c}
-a_{2} \\
a_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\hat{\mathbf{a}} \cdot \mathbf{b} \\
& =\|\hat{\mathbf{a}}\|\|\mathbf{b}\| \cos (\hat{\theta}) \\
& =\|\hat{\mathbf{a}}\|\|\mathbf{b}\| \cos (\pi / 2-\theta) \\
& =\|\mathbf{a}\|\|\mathbf{b}\| \sin (\theta)=\text { area of parallelogram }
\end{aligned}
$$

Course Notes: Section 2.4, Determinants and the Cross Product

In general:
$\left|\operatorname{det}\left[\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right]\right|=$ area of parallelogram spanned by $\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$ and $\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$

Example: Find the area of the parallelogram with one side given by $\left[\begin{array}{l}2 \\ 6\end{array}\right]$ and the other side $\left[\begin{array}{c}-3 \\ 4\end{array}\right]$.

Silly Example: Find the area of the rectangle with corners $(0,0)$, $(x, 0),(0, y)$, and (x, y).

Course Notes: Section 2.4, Determinants and the Cross Product 000000000000000000000

Cross Product
ONLY defined in three dimensions

$$
\begin{gathered}
\mathbf{a}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \\
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
\end{gathered}
$$

$$
\begin{aligned}
& \text { Mnemonic: } \\
& \begin{aligned}
\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right] & =\mathbf{i} \operatorname{det}\left[\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right]-\mathbf{j} \operatorname{det}\left[\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right]+\mathbf{k} \operatorname{det}\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right] \\
& =\mathbf{i}\left(a_{2} b_{3}-a_{3} b_{2}\right)-\mathbf{j}\left(a_{1} b_{3}-a_{3} b_{1}\right)+\mathbf{k}\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
& =\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]
\end{aligned}
\end{aligned}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Practice
$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \times\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right] \quad\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right] \times\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\|\mathbf{a} \times \mathbf{b}\|=$ area of parallelogram

$$
\begin{aligned}
A^{2} & =\|\mathbf{a}\|^{2}\left\|\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}\right\|^{2} \\
& =\|\mathbf{a}\|^{2}\left\|\mathbf{b}-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right) \mathbf{a}\right\|^{2} \\
& =\|\mathbf{a}\|^{2}\left(\mathbf{b} \cdot \mathbf{b}-2(\mathbf{b} \cdot \mathbf{a})\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right)+\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right)^{2}\|\mathbf{a}\|^{2}\right) \\
& =\|\mathbf{a}\|^{2}\left(\|\mathbf{b}\|^{2}-\frac{(\mathbf{a} \cdot \mathbf{b})^{2}}{\|\mathbf{a}\|^{2}}\right) \\
& =\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2} \\
& =\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)^{2}\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)^{2}-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \\
& =\cdots=\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
& =\|\mathbf{a} \times \mathbf{b}\|^{2}
\end{aligned}
$$

Course Notes: Section 2.4, Determinants and the Cross Product

Find the Area of the Parallelograms
Find the area of the parallelogram spanned by $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}3 \\ 1 \\ -2\end{array}\right]$

Find the area of the parallelogram spanned by $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 3\end{array}\right]$

Suppose a plane contains the points $P_{1}(3,2,2), P_{2}(2,2,1)$, and $P_{3}(1,1,1)$. Find a normal vector to the plane. That is, find a vector that is perpendicular to every line on the plane.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{a}) \mathbf{c}$ https://proofwiki.org/wiki/Lagrange's_Formula
3. $s(\mathbf{a} \times \mathbf{b})=(s \mathbf{a}) \times \mathbf{b}=\mathbf{a} \times(s \mathbf{b})$

4. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
5. $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \quad$ "triple product" Is it also true that $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}=\mathbf{a} \times(\mathbf{b} \cdot \mathbf{c})$?

Course Notes: Section 2.4, Determinants and the Cross Product
Parallelograms

Section 2.5. Lines and Planes Section 2.5, Lines and P
000000000000000

Area: (base) \times (height)
Course Notes: Section 2.4. Determinants and the Cross Product
oocoococococociocion
Parallelepipeds

Volume: (area of base) \times (height)

Course Notes: Section 2.4, Determinants and the Cross Product
Triple Product: $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$

Course Notets: Section 2.4, Determinants and the Cross Product
Ouosococo Section 2.5. Lines and Planes

Calculating the Triple Product
$\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{a} \cdot \operatorname{det}\left[\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]=\mathbf{a} \cdot\left[\begin{array}{c}\operatorname{det}\left[\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right] \\ -\operatorname{det}\left[\begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right] \\ \operatorname{det}\left[\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right]\end{array}\right]$
$=a_{1} \operatorname{det}\left[\begin{array}{ll}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right]-a_{2} \operatorname{det}\left[\begin{array}{ll}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right]+a_{3} \operatorname{det}\left[\begin{array}{ll}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right]$
$=\operatorname{det}\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$

Section 2.5, Lines and Planes 00000000000000

Find the volume of the parallelepiped spanned by:
$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$, and $\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$
For positive a, b, and c, find the determinant and interpret it as a volume:

$$
\operatorname{det}\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]
$$

Calculate and explain geometrically:

$$
\operatorname{det}\left[\begin{array}{ccc}
2 & 0 & 3 \\
8 & 1 & 7 \\
20 & 3 & 15
\end{array}\right]
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Right-Hand Rule
Notes

Predict the following cross products without using the cross-product calculation. Draw your results. Check using the cross-product calculation.
$\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right] \times\left[\begin{array}{l}0 \\ 0 \\ 7\end{array}\right]$
$\left[\begin{array}{l}0 \\ 0 \\ 7\end{array}\right] \times\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$
$\left[\begin{array}{c}-2 \\ 0 \\ 0\end{array}\right] \times\left[\begin{array}{l}0 \\ 7 \\ 0\end{array}\right]$

Given any 3-dimensional vector \mathbf{a}, is there a simple expression for $\mathbf{a} \times \mathbf{a}$?

What about $(s \mathbf{s}) \times \mathbf{a}$ for a scalar s ?

What about $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})$?

Consider $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$. Will this vector be in the same plane as \mathbf{b} and \mathbf{c}, or in an orthogonal plane?

Notice $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{a}) \mathbf{c}$
Course Notes: Section 2.4, Determinants and the Cross Product
0000000000000000000000
Parametric Equations of Lines

Section 2.5, Lines and Planes

Line passing through the origin:

$$
\mathbf{x}=\mathbf{s a}
$$

Question: is this the only such equation for the line? Can we use this equation with a line not through the origin?

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General equation of a line:

$$
\mathbf{x}=\mathbf{q}+s \mathbf{a}
$$

Where we mean: the line consists of all points \mathbf{x} that can be written this way for some scalar s.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad

Find a parametric equation describing the line in the direction of $\mathbf{a}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$, passing through the point $(1,1)$.

 Component Equations of Lines

Line passing through the origin:

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Suppose the parametric equation of a line is given by
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}3 \\ -1\end{array}\right]+s\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Convert this to an equation of the form
$a x+b y=c$.

Suppose the parametric equation of a line is given by
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}3 \\ -1\end{array}\right]+s\left[\begin{array}{l}2 \\ 7\end{array}\right]$. Convert this to an equation of the form $a x+b y=c$.

Give a parametric equation for the line $y=3 x+5$.

Notes

Course Notes: Section 24, Determinanats and the Cross Product
Equation of a Line in \mathbb{R}^{3}

$$
(\mathbf{x}-\mathbf{q}) \cdot \mathbf{b}=0 \text { and }(\mathbf{x}-\mathbf{q}) \cdot \mathbf{c}=0
$$

To define a line in \mathbb{R}^{3}, we need a system of equations:

$$
\left\{\begin{array}{l}
x b_{1}+y b_{2}+z b_{3}=s_{1} \\
x c_{1}+y c_{2}+z c_{3}=s_{2}
\end{array}\right.
$$

Section 2.5, Lines and Planes

 ©00000000•000000
$$
\mathbf{x} \cdot \mathbf{b}=\mathbf{q} \cdot \mathbf{b} \text { and } \mathbf{x} \cdot \mathbf{c}=\mathbf{q} \cdot \mathbf{c}
$$
 $\mathbf{x} \cdot \mathbf{b}=\mathbf{q} \cdot \mathbf{b}$ and $\mathbf{x} \cdot \mathbf{c}=\mathbf{q} \cdot \mathbf{c}$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

$\xrightarrow{\text { Cond }}$

$(\mathbf{x}-\mathbf{q}) \cdot \mathbf{b}=0$
$\mathbf{x} \cdot \mathbf{b}=s$
$b_{1} x+b_{2} y+b_{3} z=s$

Course Notes: Section 2.4, De 00000000000000000000	inants and the Cross	$\text { Section } 2$ 000000
Equations		
	Parametric	Component
Line in \mathbb{R}^{2}	$\mathrm{x}=\mathrm{q}+\mathrm{sa}$	$b_{1} x+b_{2} y=$
Line in \mathbb{R}^{3}	$\mathbf{x}=\mathbf{q}+$ sa	$\left\{\begin{aligned} b_{1} x+b_{2} y+b_{3} z=s \\ c_{1} x+c_{2} y+c_{3} z=t\end{aligned}\right.$
Plane in \mathbb{R}^{3}	$\mathbf{x}=\mathbf{q}+$ sa	$b_{1} x+b_{2} y+b_{3} z=$

Suppose \mathbf{q} and a are vectors in \mathbb{R}^{18}. What would you call the geometric object resulting from the equation $\mathbf{x}=\mathbf{q}+\mathbf{s a}$? Suppose P and Q are planes. What is the intersection of P and Q?
Are there any vectors \mathbf{q} and \mathbf{a} in \mathbb{R}^{3} for which the equation $x=\mathbf{q}+$ sa is not a line?
Recall: \mathbf{b} was the normal vector to the plane $b_{1} x+b_{2} y+b_{3} z=s$.
True or False: for a point P on the plane $5 x+7 y+11 z=22$, the vector with head at P and tail at the origin is orthogonal to the vector $[5,7,11]$.

Course Notes: Section 2.4, Determinants and the Cross Product Section 2.5, Lines and Planes 0000000000000000000000 00000000000000

How can you find the distance from the point P to the line $\mathbf{x}=\mathbf{q}+s \mathbf{s}$?

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Find the distance from the point P to the plane Q.
P。

Find the distance from the point $(3,5,1)$ to the plane
$\mathbf{x}=\left[\begin{array}{l}2 \\ 6 \\ 3\end{array}\right]+t\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]+s\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$

Course Notes: Section 2.4, Determinants and the Cross Product

Let P be the plane with equation $2 x+2 y+2 z=1$, and let Q be the plane with equation $x+y+z=1$.

What will their intersection be: a plane, a line, a point, or nothing?

Let P be the plane with equation $2 x+y-z=1$, and let Q be the plane with equation $x+2 y+3 z=0$.

What will their intersection be: a plane, a line, a point, or nothing?

Find the intersection in parametric form

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

