

Course Notes: 2.4-2.5

Goals: Introduce determinants and cross products, computationally and with geometric interpretations. Lines and planes.

$$\det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$

Tricky way: ONLY in three dimensions:

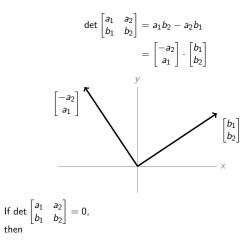
Course Notes: Section 2.4, Determinants and the Cross Product 000000000000000000000000000000000000	Section 2.5, Lines and Planes
$det \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$	
$det \begin{bmatrix} -2 & 8 \\ 3 & 5 \end{bmatrix}$	
$det \begin{bmatrix} 3 & 2 & 5 \\ 5 & 7 & 3 \\ 2 & 1 & 3 \end{bmatrix}$	
$det \begin{bmatrix} 2 & 4 & 8 \\ 3 & 5 & 7 \\ 1 & 10 & 5 \end{bmatrix}$	

Notes

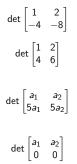
Notes

Geometric Interpretation: Determinant in Two Dimensions

Course Notes: Section 2.4, Determinants and the Cross Product



Are the following determinants zero, or nonzero?



Notes



Notes

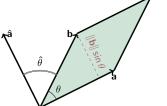
Notes

Section 2.5, Lines and Planes

Section 2.5, Lines and Planes

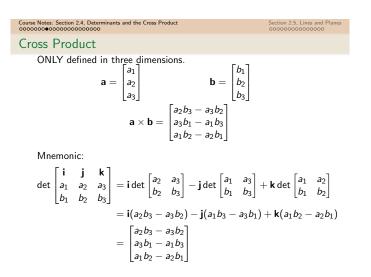
More Geometric Interpretation in Two Dimensions

$$\det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} = a_1 b_2 - a_2 b_1 = \begin{bmatrix} -a_2 \\ a_1 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \hat{\mathbf{a}} \cdot \mathbf{b}$$
$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\hat{\theta})$$
$$= \|\hat{\mathbf{a}}\| \|\mathbf{b}\| \cos(\pi/2 - \theta)$$
$$= \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) = \text{area of parallelogram}$$



Course Notes: Section 2.4, Determinants and the Cross Product 000000€000000000000000000000000000000	Section 2.5, Lines and Planes
In general:	
$\left \det egin{bmatrix} a_1 & a_2 \ b_1 & b_2 \end{bmatrix} ight = ext{ area of parallelogram spanned by}$	$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} \text{ and } \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$
Example: Find the area of the parallelogram with o $\begin{bmatrix} 2\\ 6 \end{bmatrix}$ and the other side $\begin{bmatrix} -3\\ 4 \end{bmatrix}$.	ne side given by

Silly Example: Find the area of the rectangle with corners (0, 0), (x, 0), (0, y), and (x, y).



Notes

Section 2.5, Lines and Planes



Course Notes: Section 2.4, Determinants and the Cross Product

Notes

ection 2.5, Lines and Plan

Section 2.5, Lines and Planes

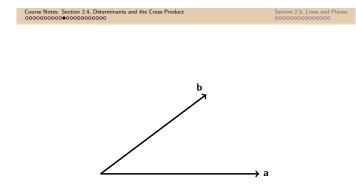
 $\begin{bmatrix} 0\\1\\-1\end{bmatrix}\times \begin{bmatrix} 1\\2\\3\end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$

Course Notes: Section 2.4, Determinants and the Cross Product coccococooococococococo Geometric Interpretation

1. $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and to \mathbf{b} . *Verify:*

$$\begin{bmatrix} a_2b_3 - a_3b_2\\ a_3b_1 - a_1b_3\\ a_1b_2 - a_2b_1 \end{bmatrix} \cdot \begin{bmatrix} a_1\\ a_2\\ a_3 \end{bmatrix} = 0$$

- 2. $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} , $0 \le \theta \le \pi$. Thus, $\sin \theta$ is positive, and $\|\mathbf{a} \times \mathbf{b}\|$ is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b} .
- 3. The vectors **a** , **b** , and **a** × **b** obey the *right hand rule*. That is, if you curl your fingers towards your palm from **a** to **b** , your thumb points in the direction of **a** × **b**.



Notes

Notes

Notes

Section 2.5, Lines and Planes

$$\begin{aligned} A^{2} &= \|\mathbf{a}\|^{2} \|\mathbf{b} - proj_{\mathbf{a}}\mathbf{b}\|^{2} \\ &= \|\mathbf{a}\|^{2} \|\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right) \mathbf{a} \|^{2} \\ &= \|\mathbf{a}\|^{2} \left(\mathbf{b} \cdot \mathbf{b} - 2(\mathbf{b} \cdot \mathbf{a}) \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right) + \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}}\right)^{2} \|\mathbf{a}\|^{2} \right) \\ &= \|\mathbf{a}\|^{2} \left(\|\mathbf{b}\|^{2} - \frac{(\mathbf{a} \cdot \mathbf{b})^{2}}{\|\mathbf{a}\|^{2}}\right) \\ &= \|\mathbf{a}\|^{2} \|\mathbf{b}\|^{2} - (\mathbf{a} \cdot \mathbf{b})^{2} \\ &= (a_{1}^{2} + a_{2}^{2} + a_{3}^{2})^{2} (b_{1}^{2} + b_{2}^{2} + b_{3}^{2})^{2} - (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2} \\ &= \cdots = (a_{2}b_{3} - a_{3}b_{2})^{2} + (a_{3}b_{1} - a_{1}b_{3})^{2} + (a_{1}b_{2} - a_{2}b_{1})^{2} \\ &= \|\mathbf{a} \times \mathbf{b}\|^{2} \end{aligned}$$

Course Notes: Section 2.4, Determinants and the Cross Product 000000000000000000000000000000000000	Section 2.5, Lines and Planes
Find the Area of the Parallelograms	
Find the area of the parallelogram spanned by	$\begin{bmatrix} 1\\1\\1\end{bmatrix} \text{ and } \begin{bmatrix} 3\\1\\-2\end{bmatrix}.$
Find the area of the parallelogram spanned by	$\begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} 4\\3 \end{bmatrix}$.

Course Notes: Section 2.4, Determinants and the Cross Product

Section 2.5, Lines and Planes

Suppose a plane contains the points $P_1(3,2,2)$, $P_2(2,2,1)$, and $P_3(1,1,1)$. Find a normal vector to the plane. That is, find a vector that is perpendicular to every line on the plane.

Notes

Notes

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

 a × (b × c) = (c · a)b - (b · a)c https://proofwiki.org/wiki/Lagrange's_Formula
 s(a × b) = (sa) × b = a × (sb)

 $\begin{array}{l} \textbf{4. } \textbf{a} \times (\textbf{b} + \textbf{c}) = \textbf{a} \times \textbf{b} + \textbf{a} \times \textbf{c} \\ \textbf{5. } \textbf{a} \cdot (\textbf{b} \times \textbf{c}) = (\textbf{a} \times \textbf{b}) \cdot \textbf{c} \quad \text{``triple product''} \\ \text{Is it also true that } (\textbf{a} \cdot \textbf{b}) \times \textbf{c} = \textbf{a} \times (\textbf{b} \cdot \textbf{c})? \end{array}$

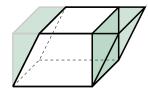
Course Notes: Section 2.4, Determinants and the Cross Product 000000000000000000000000000000000000	Section 2.5, Lines and Planes
Parallelograms	
	7

Area: (base)×(height)

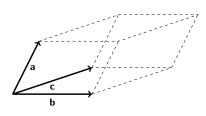
Course Notes: Section 2.4, Determinants and the Cross Product 000000000000000000000000000000000000
Parallelepipeds

Notes

Section 2.5, Lines and Planes



Volume: (area of base)×(height)



Notes

ection 2.5, Lines and Planes

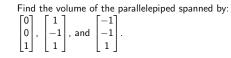
Course Notes: Section 2.4, Determinants and the Cross Product Section 2.5, Lines and Planes Coococococococococo Calculating the Triple Product

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot \det \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \mathbf{a} \cdot \begin{bmatrix} \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} \\ -\det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} \\ \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix} \end{bmatrix}$$
$$= a_1 \det \begin{bmatrix} b_2 & b_3 \\ c_2 & c_3 \end{bmatrix} - a_2 \det \begin{bmatrix} b_1 & b_3 \\ c_1 & c_3 \end{bmatrix} + a_3 \det \begin{bmatrix} b_1 & b_2 \\ c_1 & c_2 \end{bmatrix}$$
$$= \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

Notes

Notes

Section 2.5, Lines and Planes



For positive a, b, and c, find the determinant and interpret it as a volume:

$$det \begin{bmatrix}
 a & 0 & 0 \\
 0 & b & 0 \\
 0 & 0 & c
 \end{bmatrix}$$

Calculate and explain geometrically:

$$det \begin{bmatrix} 2 & 0 & 3 \\ 8 & 1 & 7 \\ 20 & 3 & 15 \end{bmatrix}$$

Right-Hand Rule

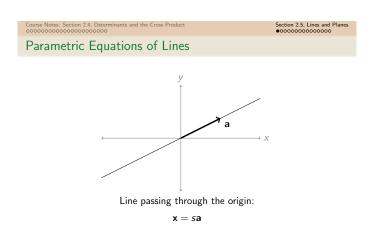
Predict the following cross products without using the cross-product calculation. Draw your results. Check using the cross-product calculation.

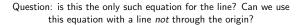
$$\begin{bmatrix} 2\\0\\0 \end{bmatrix} \times \begin{bmatrix} 0\\0\\7 \end{bmatrix}$$
$$\begin{bmatrix} 0\\2\\0 \end{bmatrix}$$
$$\begin{bmatrix} -2\\0\\0 \end{bmatrix} \times \begin{bmatrix} 0\\7\\0 \end{bmatrix}$$

- -- -

Notes Given any 3-dimensional vector ${\boldsymbol{a}},$ is there a simple expression for $\mathbf{a} \times \mathbf{a}$? What about $(sa) \times a$ for a scalar s? What about $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b})$? Consider $\boldsymbol{a}\times(\boldsymbol{b}\times\boldsymbol{c}).$ Will this vector be in the same plane as \boldsymbol{b} and \boldsymbol{c} , or in an orthogonal plane?

Notice $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$:



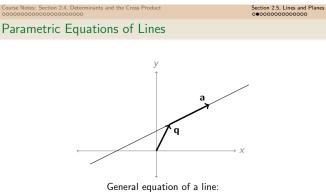


Notes

Notes

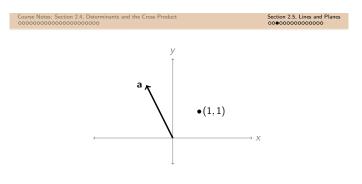
2.5, Lines and

Section 2.5, Lines and Planes

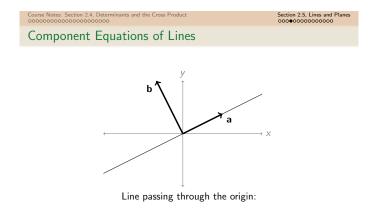


 $\mathbf{x} = \mathbf{q} + s\mathbf{a}$

Where we mean: the line consists of all points \mathbf{x} that can be written this way for some scalar s.

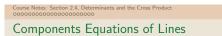


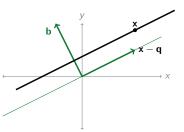
Find a parametric equation describing the line in the direction of $\mathbf{a} = \begin{bmatrix} -1\\ 2 \end{bmatrix}$, passing through the point (1, 1).



Notes

Notes





Section 2.5, Lines and Planes

Section 2.5, Lines and Planes

Suppose the parametric equation of a line is given by $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$ Convert this to an equation of the form ax + by = c.

Course Notes: Section 2.4, Determinants and the Cross Product

Suppose the parametric equation of a line is given by $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} + s \begin{bmatrix} 2 \\ 7 \end{bmatrix}.$ Convert this to an equation of the form ax + by = c.

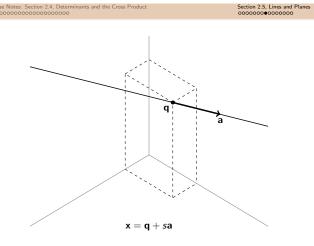
Section 2.5, Lines and Planes

Give a parametric equation for the line y = 3x + 5.

Course Notes: Section 2.4, Determinants and the Cross Product

Notes

Notes



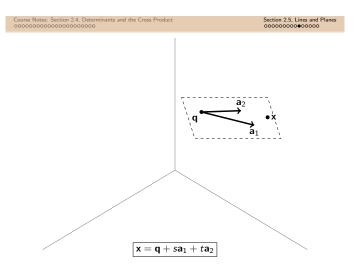
Course Notes: Section 2.4, Determinants and the Cross Product	Section 2.5, Lines and Planes
Equation of a Line in \mathbb{R}^3	

 $(\mathbf{x}-\mathbf{q})\cdot\mathbf{b}=0$ and $(\mathbf{x}-\mathbf{q})\cdot\mathbf{c}=0$

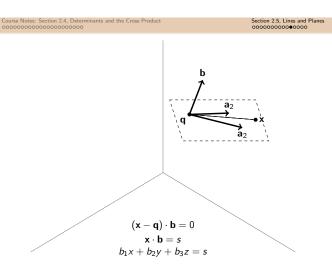
$$\mathbf{x} \cdot \mathbf{b} = \mathbf{q} \cdot \mathbf{b}$$
 and $\mathbf{x} \cdot \mathbf{c} = \mathbf{q} \cdot \mathbf{c}$

To define a line in $\mathbb{R}^3,$ we need a system of equations:

 $\left\{ \begin{array}{rrrr} xb_1 + yb_2 + zb_3 & = & s_1 \\ xc_1 + yc_2 + zc_3 & = & s_2 \end{array} \right.$



Notes



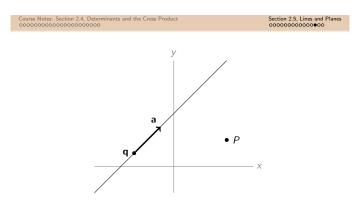
Notes	

Course Notes: Section 2.4, Deterr	ninants and the Cross Prod	uct Section 2.5, Lines and Planes
Equations		
Line in \mathbb{R}^2	Parametric $\mathbf{x} = \mathbf{q} + s\mathbf{a}$	Component $b_1 x + b_2 y = s$
Line in \mathbb{R}^3	$\mathbf{x} = \mathbf{q} + s\mathbf{a}$	$\begin{cases} b_1x + b_2y + b_3z = s\\ c_1x + c_2y + c_3z = t \end{cases}$

Plane in \mathbb{R}^3 $\mathbf{x} = \mathbf{q} + s\mathbf{a} + t\mathbf{b}$ $b_1x + b_2y + b_3z = s$ Suppose \mathbf{q} and \mathbf{a} are vectors in \mathbb{R}^{18} . What would you call the geometric object resulting from the equation $\mathbf{x} = \mathbf{q} + s\mathbf{a}$? Suppose *P* and *Q* are planes. What is the intersection of *P* and *Q*?

Are there any vectors ${\bm q}$ and ${\bm a}$ in \mathbb{R}^3 for which the equation ${\bm x}={\bm q}+s{\bm a}$ is not a line?

Recall: **b** was the normal vector to the plane $b_1x + b_2y + b_3z = s$. True or False: for a point *P* on the plane 5x + 7y + 11z = 22, the vector with head at *P* and tail at the origin is orthogonal to the vector [5, 7, 11].



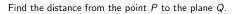
How can you find the distance from the point *P* to the line $\mathbf{x} = \mathbf{q} + s\mathbf{a}$?

Notes

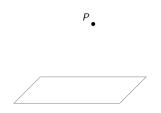
Section 2.5, Lines and Planes

Notes

Notes



se Notes: Section 2.4, Determinants and the Cross Product



Find the distance from the point (3, 5, 1) to the plane $\mathbf{x} = \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}.$

Course Notes: Section 2.4, Determinants and the Cross Product	Section 2.5, Lines and Planes
00000000000000000000000	00000000000000●
Let <i>P</i> be the plane with equation $2x + 2y + 2z$ the plane with equation $x + y + z = 1$.	= 1, and let Q be

What will their intersection be: a plane, a line, a point, or nothing?

Let P be the plane with equation 2x + y - z = 1, and let Q be the plane with equation x + 2y + 3z = 0.

What will their intersection be: a plane, a line, a point, or nothing?

Find the intersection in parametric form.