Outline
Week 12: Vector differential equations

Course Notes: 6.3

Goals: be able to solve a linear system of differential equations; find characteristics of electrical networks involving inductors and capacitors using methods learned this term.

Currs Notese 6.3: Systems of Linear Differential Equations

Differential Equations

We're going to doing this in a linear-systems context soon.

$$
y^{\prime}(t)=\lambda y(t), \quad \lambda \text { constant }
$$

Solutions: $y(t)=C e^{\lambda t}$, constant C

Course Notes 6.3: Systems of Linear Differential Equations

Differential Equations
Example: a radioactive substance decays at a rate of 2% of its
mass every year.

Notes

Notes

\qquad

Course Notes 6.3: Systems of Linear Differential Equations
0000000000000000000000
Systems of Linear Differential Equations

$$
\begin{aligned}
& y_{1}^{\prime}(t)=\boldsymbol{a} y_{1}(t)+\boldsymbol{b} y_{2}(t) \\
& y_{2}^{\prime}(t)=\boldsymbol{c} y_{1}(t)+\boldsymbol{d} y_{2}(t)
\end{aligned}
$$

$$
\mathbf{y}^{\prime}:=\left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right] \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \mathbf{y}:=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]
$$

$$
y^{\prime}=A y
$$

Course Notes 6.3: Systems of Linear Differential Equations

Guessing Solutions: Eigenvectors

Differential Equation:

$$
\mathrm{y}^{\prime}=A \mathrm{y}
$$

Let's take a guess from our previous examples: what if

$$
\mathbf{y}=e^{\lambda t} \mathbf{x}
$$

for some constant λ and some constant vector \mathbf{x} ?

Adding Solutions

Suppose \mathbf{y}_{1} and \mathbf{y}_{2} are both solutions to the system of differential equations $A \mathbf{y}=\mathbf{y}^{\prime}$.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 6.3: Systems of Linear Differential Equations
oooono
Solutions to Systems of Linear Differential Equations

Notes

Theorem
Suppose A is an n-by- n matrix with eigenvalues and vectors $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$. Then for any choice of constants $c_{1}, c_{2}, \ldots, c_{k}$,

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

is a solution to the equation $\mathbf{y}^{\prime}=A \mathbf{y}$
General Question: Is there a solution to $\mathbf{y}^{\prime}=A \mathbf{y}$ that also has $\mathbf{y}(0)=\mathbf{y}_{0}$, for some constant vector \mathbf{y}_{0} ?

Course Notes 6.3: Systems of Linear Differential Equations
 Example

Find the solution to the system of linear differential equations

$$
\begin{aligned}
y_{1}^{\prime}(t) & =y_{1}(t)+4 y_{2}(t)+5 y_{3}(t) \\
y_{2}^{\prime}(t) & = \\
y_{3}(t) & =
\end{aligned}
$$

with initial condition

$$
\mathbf{y}(0)=\left[\begin{array}{c}
0 \\
11 \\
2
\end{array}\right]
$$

Course Notes 6.3: Systems of Linear Differential Equations 00000000000000000000000

The form of the solution will be

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

That is:

$$
\mathbf{y}(t)=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right]
$$

To find the constants c_{1}, c_{2}, c_{3} we solve:
$\left[\begin{array}{c}0 \\ 11 \\ 2\end{array}\right]=c_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}4 \\ 1 \\ 0\end{array}\right]+c_{3}\left[\begin{array}{c}29 \\ 12 \\ 2\end{array}\right]$
So $c_{1}=-25, c_{2}=-1$, and $c_{3}=1$. Our solution is:

$$
\mathbf{y}(t)=-25 e^{t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-1 e^{2 t}\left[\begin{array}{l}
4 \\
1 \\
0
\end{array}\right]+e^{3 t}\left[\begin{array}{c}
29 \\
12 \\
2
\end{array}\right]=\left[\begin{array}{c}
-25 e^{t}-4 e^{2 t}+29 e^{3 t} \\
-e^{2 t}+12 e^{3 t} \\
2 e^{3 t}
\end{array}\right]
$$

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Find the solution to the system of linear differential equations

$$
\begin{aligned}
& y_{1}^{\prime}(t)=y_{1}(t) \\
& y_{2}^{\prime}(t)=3 y_{1}(t)-y_{2}(t)
\end{aligned}
$$

with initial condition

$$
\mathbf{y}(0)=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

Course Notes 6.3: Systems of Linear Differential Equations

The form of the solution will be:

$$
\mathbf{y}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}+\cdots+c_{k} e^{\lambda_{k} t} \mathbf{x}_{k}
$$

That is:

$$
\mathbf{y}(t)=c_{1} e^{t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

To find the constants c_{1}, c_{2} we solve:

$$
\left[\begin{array}{l}
4 \\
1
\end{array}\right]=c_{1}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

So $c_{1}=2, c_{2}=-5$. Our solution is:

$$
\mathbf{y}(t)=2 e^{t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]-5 e^{-t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 e^{t} \\
6 e^{t}-5 e^{-t}
\end{array}\right]
$$

Course Notes 6.3: Systems of Linear Differential Equations
oonoonoo000000000000000
Quick Recap

\[\)	$y_{1}^{\prime}(t)$	$=y_{1}(t)+2 y_{2}(t)$
$y_{2}^{\prime}(t)$	$=y_{1}(t)+2 y_{2}(t)$	

\]

1. Create the matrix of coefficients
2. Find eigenvalues and corresponding eigenvectors
3. The general solution is $\mathbf{y}=c_{1} e^{\lambda_{1} t} \mathbf{x}_{\mathbf{1}}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{\mathbf{2}}+\cdots c_{n} e^{\lambda_{n} t} \mathbf{x}_{\mathbf{n}}$
4. Find the values of c_{i} that fit the initial conditions. That gives you the particular solution.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Course Notes 6.3: Systems of Linear Differential Equation
000000000000000000000
End Behaviour

Notes

λ	$=1$		$c e^{t} \mathbf{x}$
λ	$=-1$		
	$c e^{-t} \mathbf{x}$		
λ	$=0$		$c \mathbf{x}$

Course Notes 6.3: Systems of Linear Differential Equations

Complex Eigenvalues

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Eigenvalues: $\lambda_{1}=4 i, \lambda_{2}=-4 i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{l}i \\ 2\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}-i \\ 2\end{array}\right]$

General solution: $\mathbf{y}(t)=c_{1} e^{4 i t} \mathbf{x}_{1}+c_{2} e^{-4 i t} \mathbf{x}_{2}$
for some constants c_{1} and c_{2}.

Particular solution: $\mathbf{y}(t)=(3+2 i) e^{4 i t} \mathbf{x}_{1}+(3-2 i) e^{-4 i t} \mathbf{x}_{2}$

```
y(t)=(3+2i)\mp@subsup{e}{}{4it}\mp@subsup{\mathbf{x}}{1}{}+(3-2i)\mp@subsup{e}{}{-4it}\mp@subsup{\mathbf{x}}{2}{}
    =(3+2i)[cos(4t)+i\operatorname{sin}(4t)]\mp@subsup{\mathbf{x}}{1}{}+(3-2i)[\operatorname{cos}(-4t)+i\operatorname{sin}(-4t)]\mp@subsup{\mathbf{x}}{2}{}
    =(3+2i)[cos(4t)+i\operatorname{sin}(4t)]\mp@subsup{\mathbf{x}}{1}{}+(3-2i)[\operatorname{cos}(4t)-i\operatorname{sin}(4t)]\mp@subsup{\mathbf{x}}{2}{}
    =(3+2i)[cos(4t)+i\operatorname{sin}(4t)][\begin{array}{l}{i}\\{2}\end{array}]+(3-2i)[\operatorname{cos}(4t)-i\operatorname{sin}(4t)][\begin{array}{l}{i}\\{2}\end{array}]
    = .
    =[ [-4\operatorname{cos}(4t)-6\operatorname{sin}(4t)
```

Notes

Notes
\qquad

Course Notes 6.3: Systems of Linear Differential Equations
000000000000000
Complex Eigenvalues: Closer Look
Notes

Suppose $\lambda_{1}=\overline{\lambda_{2}}$ and $\mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

Then $e^{\lambda_{1} t} \mathbf{x}_{\mathbf{1}}=\overline{e^{\lambda_{2} t} \mathbf{x}_{2}}$

$$
\begin{aligned}
c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2} & =c_{1}(f+g i)+c_{2}(f-g i) \\
& =\left(c_{1}+c_{2}\right) f+i\left(c_{1}-c_{2}\right) g \\
& =a f+b g \\
& =a \cdot \operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)+b \cdot \operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)
\end{aligned}
$$

where a and b are arbitrary constants

Course Notes 6.3: Systems of Linear Differential Equations

Complex Eigenvalues: Closer Look

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cc}
0 & -2 \\
8 & 0
\end{array}\right] \mathbf{y}(t) \quad \mathbf{y}(0)=\left[\begin{array}{c}
-4 \\
12
\end{array}\right]
$$

Course Notes 6.3: Systems of Linear Differential Equations

Shorcut

Suppose we're solving $\mathbf{y}^{\prime}=A \mathbf{y}$, and A has a complex pair of eigenvalues and eigenvectors $\lambda_{1}=\lambda_{2}, \mathbf{x}_{1}=\overline{\mathbf{x}_{2}}$.

To find the solutions corresponding to these eigenvalues and eigenvectors, $c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}$ is equivalent to
$a \cdot \operatorname{Re}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)+\boldsymbol{b} \cdot \operatorname{Im}\left(e^{\lambda_{1} t} \mathbf{x}_{1}\right)$.
That is:

1. Choose a single solution, like $e^{\lambda_{1} t} x_{1}$
2. Separate it into its real and imaginary part
3. The general solution is any linear combination of the real and maginary part

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ; \quad \text { solve } \mathbf{y}^{\prime}=A \mathbf{y}
$$

Eigenvalues: $\lambda_{1}=1+i, \lambda_{2}=1-i$
Eigenvectors: $\mathbf{x}_{1}=\left[\begin{array}{c}-i \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$

Course Notes 6.3: Systems of Linear Differential Equations

Complex Eigenvalues

$$
A=\left[\begin{array}{cc}
0 & \frac{1}{4} \\
-5 & -2
\end{array}\right]
$$

$\lambda=1$	$c e^{t} \mathbf{x}$		$\xrightarrow{t \rightarrow \infty} \pm \infty$
$\lambda=-1$	$c e^{-t} \mathbf{x}$		if $c \neq 0$
$\lambda=0$	$c \mathbf{x}$	$\xrightarrow{t \rightarrow \infty} 0$	
	$\times \mathbf{x}$		if $c \neq 0$

$\lambda=i$	$c(\cos t+i \sin t) \mathbf{x}$		oscillating
$\lambda=1+i$	$c e^{t}(\cos t+i \sin t) \mathbf{x}$		oscillating, growing
$\lambda=-1+i$	$c e^{-t}(\cos t+i \sin t) \mathbf{x}$		oscillating, decaying

$$
\mathbf{y}^{\prime}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mathbf{y}
$$

Course Notes 6.3: Systems of Linear Differential Equations

Bigger Matrices
$\begin{array}{ll}\lambda_{1}=0 & \lambda_{2}=1+i\end{array} \quad \lambda_{3}=1-i-\left[\begin{array}{l}0 \\ \mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \quad \mathbf{x}_{2}=\left[\begin{array}{c}1 \\ i \\ 0\end{array}\right] \quad \mathbf{x}_{\mathbf{3}}=\left[\begin{array}{c}-i \\ 0\end{array}\right]\end{array}\right.$

Course Notes 6.3: Systems of Linear Differential Equations
0000000000000000000000

Notes

$y_{1}^{\prime}(t)=3 y_{1}(t)+0 y_{2}(t)+0 y_{3}(t)$
$y_{2}^{\prime}(t)=0 y_{1}(t)+2 y_{2}(t)-4 y_{3}(t)$
$y_{3}^{\prime}(t)=0 y_{1}(t)+1 y_{2}(t)+2 y_{3}(t)$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & -4 \\
0 & 1 & 2
\end{array}\right], \quad \lambda_{1}=3, \lambda_{2}=2+2 i, \lambda_{3}=2-2 i \\
& \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{c}
0 \\
2 \\
-i
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
2 \\
i
\end{array}\right]
\end{aligned}
$$

Notes
\qquad

