
Course Notes 6.3: Systems of Linear Differential Equations

Outline

Week 12: Vector differential equations

Course Notes: 6.3

Goals: be able to solve a linear system of differential equations;
find characteristics of electrical networks involving inductors and
capacitors using methods learned this term.
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Differential Equations

We’re going to doing this in a linear-systems context soon.

y ′(t) = λy(t), λ constant

Solutions: y(t) = Ceλt , constant C
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Differential Equations

Example: a radioactive substance decays at a rate of 2% of its
mass every year.

Notes

Notes

Notes
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Systems of Linear Differential Equations

y ′1(t) = ay1(t) + by2(t)
y ′2(t) = cy1(t) + dy2(t)

y′ :=

[
y ′1(t)
y ′2(t)

]
A =

[
a b
c d

]
y :=

[
y1(t)
y2(t)

]

y′ = Ay
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Guessing Solutions: Eigenvectors

Differential Equation:
y′ = Ay

Let’s take a guess from our previous examples: what if

y = eλtx

for some constant λ and some constant vector x?
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Systems of Linear Differential Equations: Adding Solutions

Adding Solutions

Suppose y1 and y2 are both solutions to the system of differential
equations Ay = y′.

Notes

Notes

Notes
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Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an n-by-n matrix with eigenvalues and vectors
λ1, λ2, . . . , λk and x1, x2, . . . , xk . Then for any choice of constants
c1, c2, . . . , ck ,

y(t) = c1e
λ1tx1 + c2e

λ2tx2 + · · ·+ cke
λk txk

is a solution to the equation y′ = Ay.

General Question: Is there a solution to y′ = Ay that also has
y(0) = y0, for some constant vector y0?
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Example

Find the solution to the system of linear differential equations

y ′1(t) = y1(t) + 4y2(t) + 5y3(t)
y ′2(t) = 2y2(t) + 6y3(t)
y ′3(t) = 3y3(t)

with initial condition

y(0) =

 0
11
2


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The form of the solution will be:

y(t) = c1e
λ1tx1 + c2e

λ2tx2 + · · ·+ cke
λk txk

That is:

y(t) = c1e
t

1
0
0

+ c2e
2t

4
1
0

+ c3e
3t

29
12
2


To find the constants c1, c2, c3 we solve: 0

11
2

 = c1

1
0
0

+ c2

4
1
0

+ c3

29
12
2


So c1 = −25, c2 = −1, and c3 = 1. Our solution is:

y(t) = −25et

1
0
0

− 1e2t

4
1
0

+ e3t

29
12
2

 =

−25et − 4e2t + 29e3t

−e2t + 12e3t

2e3t


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Example

Find the solution to the system of linear differential equations

y ′1(t) = y1(t)
y ′2(t) = 3y1(t) − y2(t)

with initial condition

y(0) =

[
4
1

]
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The form of the solution will be:

y(t) = c1e
λ1tx1 + c2e

λ2tx2 + · · ·+ cke
λk txk

That is:

y(t) = c1e
t

[
2
3

]
+ c2e

−t
[

0
1

]
To find the constants c1, c2 we solve:[

4
1

]
= c1

[
2
3

]
+ c2

[
0
1

]
So c1 = 2, c2 = −5. Our solution is:

y(t) = 2et
[

2
3

]
− 5e−t

[
0
1

]
=

[
4et

6et − 5e−t

]
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Quick Recap

y ′1(t) = y1(t) + 2y2(t)
y ′2(t) = y1(t) + 2y2(t)

;

[
y1(0)
y2(0)

]
=

[
0
3

]

1. Create the matrix of coefficients

2. Find eigenvalues and corresponding eigenvectors

3. The general solution is y = c1e
λ1tx1 + c2e

λ2tx2 + · · · cneλntxn

4. Find the values of ci that fit the initial conditions. That gives
you the particular solution.

Notes
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Notes
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End Behaviour

λ = 1 cetx
t→∞−−−→ ±∞

λ = −1 ce−tx

λ = 0 cx
t→∞−−−→ cx
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Complex Eigenvalues

y′(t) =

[
0 −2
8 0

]
y(t) y(0) =

[
−4
12

]

Eigenvalues: λ1 = 4i , λ2 = −4i

Eigenvectors: x1 =

[
i
2

]
, x2 =

[
−i
2

]

General solution: y(t) = c1e
4itx1 + c2e

−4itx2

for some constants c1 and c2.

Particular solution: y(t) = (3 + 2i)e4itx1 + (3− 2i)e−4itx2
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Complex Eigenvalues: Particular Solution

y(t) = (3 + 2i)e4itx1 + (3− 2i)e−4itx2

= (3 + 2i)[cos(4t) + i sin(4t)]x1 + (3− 2i)[cos(−4t) + i sin(−4t)]x2

= (3 + 2i)[cos(4t) + i sin(4t)]x1 + (3− 2i)[cos(4t)− i sin(4t)]x2

= (3 + 2i)[cos(4t) + i sin(4t)]

[
i
2

]
+ (3− 2i)[cos(4t)− i sin(4t)]

[
i
2

]
= · · ·

=

[
−4 cos(4t)− 6 sin(4t)
12 cos(4t)− 8 sin(4t)

]

Notes

Notes

Notes
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Complex Eigenvalues: Closer Look

Suppose λ1 = λ2 and x1 = x2.

Then eλ1tx1 = eλ2tx2

c1e
λ1tx1 + c2e

λ2tx2 = c1(f + gi) + c2(f − gi)

= (c1 + c2)f + i(c1 − c2)g

= af + bg

= a · Re(eλ1tx1) + b · Im(eλ1tx1)

where a and b are arbitrary constants
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Complex Eigenvalues: Closer Look

y′(t) =

[
0 −2
8 0

]
y(t) y(0) =

[
−4
12

]
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Shorcut

Suppose we’re solving y′ = Ay, and A has a complex pair of
eigenvalues and eigenvectors λ1 = λ2, x1 = x2.

To find the solutions corresponding to these eigenvalues and
eigenvectors, c1e

λ1tx1 + c2e
λ2tx2 is equivalent to

a · Re(eλ1tx1) + b · Im(eλ1tx1).
That is:

1. Choose a single solution, like eλ1tx1

2. Separate it into its real and imaginary part

3. The general solution is any linear combination of the real and
imaginary part

Notes
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Notes
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Complex Eigenvalues

A =

[
1 1
−1 1

]
; solve y′ = Ay

Eigenvalues: λ1 = 1 + i , λ2 = 1− i

Eigenvectors: x1 =

[
−i
1

]
, x2 =

[
i
1

]
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Complex Eigenvalues

A =

[
0 1

4
−5 −2

]
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End Behaviour

λ = 1 cetx
t→∞−−−→ ±∞ if c 6= 0

λ = −1 ce−tx
t→∞−−−→ 0

λ = 0 cx
t→∞−−−→ cx if c 6= 0

λ = i c(cos t + i sin t)x oscillating

λ = 1 + i cet(cos t + i sin t)x oscillating, growing

λ = −1 + i ce−t(cos t + i sin t)x oscillating, decaying

Notes
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Notes
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Bigger Matrices

y′ =

 1 1 0
−1 1 0
0 0 0

 y
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Bigger Matrices

λ1 = 0 λ2 = 1 + i λ3 = 1− i

x1 =

0
0
1

 x2 =

1
i
0

 x3 =

 1
−i
0


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y ′1(t) = 3y1(t) + 0y2(t) + 0y3(t)
y ′2(t) = 0y1(t) + 2y2(t)− 4y3(t)
y ′3(t) = 0y1(t) + 1y2(t) + 2y3(t)

A =

3 0 0
0 2 −4
0 1 2

, λ1 = 3, λ2 = 2 + 2i , λ3 = 2− 2i

x1 =

1
0
0

, x2 =

 0
2
−i

, x3 =

0
2
i


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