Outline

Week 12: Vector differential equations

Course Notes: 6.3

Goals: be able to solve a linear system of differential equations; find characteristics of electrical networks involving inductors and capacitors using methods learned this term.

Course Notes 6.3: Systems of Linear Differential Equations

Differential Equations

Notes

Notes

We're going to doing this in a linear-systems context soon.

 $y'(t) = \lambda y(t), \quad \lambda \text{ constant}$

Solutions: $y(t) = Ce^{\lambda t}$, constant C

Differential Equations

 $\mathsf{Example:}\,$ a radioactive substance decays at a rate of 2% of its mass every year.

Systems of Linear Differential Equations

$$\begin{array}{rcl} y_1'(t) &=& a y_1(t) &+& b y_2(t) \\ y_2'(t) &=& c y_1(t) &+& d y_2(t) \end{array}$$

$$\mathbf{y}' := \begin{bmatrix} y'_1(t) \\ y'_2(t) \end{bmatrix} \qquad \qquad \mathbf{A} = \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix} \qquad \qquad \mathbf{y} := \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$$

 $\mathbf{y}' = A\mathbf{y}$

Course Notes 6.3: Systems of Linear Differential Equations

Guessing Solutions: Eigenvectors

Differential Equation:

Let's take a guess from our previous examples: what if

 $\mathbf{y}=e^{\lambda t}\mathbf{x}$

 $\mathbf{y}' = A\mathbf{y}$

for some constant λ and some constant vector $\mathbf{x}?$

Course Notes 6.3: Systems of Linear Differential Equations

Systems of Linear Differential Equations: Adding Solutions

Adding Solutions

Suppose y_1 and y_2 are both solutions to the system of differential equations Ay = y'.

Notes

Notes

Solutions to Systems of Linear Differential Equations

Theorem

Suppose A is an *n*-by-*n* matrix with eigenvalues and vectors $\lambda_1, \lambda_2, \ldots, \lambda_k$ and $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$. Then for any choice of constants c_1, c_2, \ldots, c_k ,

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

is a solution to the equation
$$\mathbf{y}' = A\mathbf{y}$$
.

General Question: Is there a solution to ${\bf y}'=A{\bf y}$ that also has ${\bf y}(0)={\bf y}_0,$ for some constant vector ${\bf y}_0?$

Notes

Course Notes 6.3: Systems of Linear Differential Equations

Example

Find the solution to the system of linear differential equations

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) &+& 4y_2(t) &+& 5y_3(t) \\ y_2'(t) &=&& 2y_2(t) &+& 6y_3(t) \\ y_3'(t) &=&& 3y_3(t) \end{array} \\ \\ \text{with initial condition} \\ \mathbf{y}(0) &= \begin{bmatrix} 0 \\ 11 \\ 2 \end{bmatrix} \end{array}$$

Course Notes 6.3: Systems of Linear Differential Equations

The form of the solution will be:

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

That is:

$$\mathbf{y}(t) = c_1 e^t \begin{bmatrix} 1\\0\\0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 4\\1\\0 \end{bmatrix} + c_3 e^{3t} \begin{bmatrix} 29\\12\\2 \end{bmatrix}$$

To find the constants $c_1,\ c_2,\ c_3$ we solve:

$$\begin{bmatrix} 0\\11\\2 \end{bmatrix} = c_1 \begin{bmatrix} 1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} 4\\1\\0 \end{bmatrix} + c_3 \begin{bmatrix} 29\\12\\2 \end{bmatrix}$$

So $c_1 = -25$, $c_2 = -1$, and $c_3 = 1$. Our solution is:

$$\mathbf{y}(t) = -25e^{t} \begin{bmatrix} 1\\0\\0 \end{bmatrix} - 1e^{2t} \begin{bmatrix} 4\\1\\0 \end{bmatrix} + e^{3t} \begin{bmatrix} 29\\12\\2 \end{bmatrix} = \begin{bmatrix} -25e^{t} - 4e^{2t} + 29e^{3t}\\-e^{2t} + 12e^{3t}\\2e^{3t} \end{bmatrix}$$

Notes

Example

Find the solution to the system of linear differential equations

$$y'_1(t) = y_1(t)$$

 $y'_2(t) = 3y_1(t) - y_2(t)$

with initial condition

$$\mathbf{y}(0) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Notes

Course Notes 6.3: Systems of Linear Differential Equations

The form of the solution will be:

$$\mathbf{y}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + \dots + c_k e^{\lambda_k t} \mathbf{x}_k$$

That is:

$$\mathbf{y}(t) = c_1 e^t \begin{bmatrix} 2\\ 3 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

To find the constants c_1 , c_2 we solve:

$$\begin{bmatrix} 4\\1 \end{bmatrix} = c_1 \begin{bmatrix} 2\\3 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1 \end{bmatrix}$$

So $c_1 = 2$, $c_2 = -5$. Our solution is:

$$\mathbf{y}(t) = 2e^t \begin{bmatrix} 2\\ 3 \end{bmatrix} - 5e^{-t} \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} 4e^t\\ 6e^t - 5e^{-t} \end{bmatrix}$$

Course Notes 6.3: Systems of Linear Differential Equations

Quick Recap

$$\begin{array}{rcl} y_1'(t) &=& y_1(t) + 2y_2(t) \\ y_2'(t) &=& y_1(t) + 2y_2(t) \end{array} ; \qquad \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

- 1. Create the matrix of coefficients
- 2. Find eigenvalues and corresponding eigenvectors
- 3. The general solution is $\mathbf{y} = c_1 e^{\lambda_1 t} \mathbf{x_1} + c_2 e^{\lambda_2 t} \mathbf{x_2} + \cdots + c_n e^{\lambda_n t} \mathbf{x_n}$
- 4. Find the values of c_i that fit the initial conditions. That gives you the particular solution.

Notes

000000	otes 6.3: 000000	OOOOOOOOO	Linear	Differential	Equations	
End	Beh	naviou	ır			

$\lambda = 1$	$ce^t \mathbf{x}$	$\xrightarrow{t\to\infty}\pm\infty$
$\lambda = -1$	$ce^{-t}\mathbf{x}$	
$\lambda = 0$	CX	$\xrightarrow{t\to\infty}$ cx

Course Notes 6.3: Systems of Linear Differential Equations Complex Eigenvalues

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Eigenvalues: $\lambda_1 = 4i$, $\lambda_2 = -4i$ Eigenvectors: $\mathbf{x_1} = \begin{bmatrix} i \\ 2 \end{bmatrix}$, $\mathbf{x_2} = \begin{bmatrix} -i \\ 2 \end{bmatrix}$

General solution: $\mathbf{y}(t) = c_1 e^{4it} \mathbf{x}_1 + c_2 e^{-4it} \mathbf{x}_2$ for some constants c_1 and c_2 .

Particular solution: $\mathbf{y}(t) = (3+2i)e^{4it}\mathbf{x}_1 + (3-2i)e^{-4it}\mathbf{x}_2$

Course Notes 6.3: Systems of Linear Differential Equations

Complex Eigenvalues: Particular Solution

 $\mathbf{y}(t) = (3+2i)e^{4it}\mathbf{x}_1 + (3-2i)e^{-4it}\mathbf{x}_2$ $= (3+2i)[\cos(4t) + i\sin(4t)]\mathbf{x}_1 + (3-2i)[\cos(-4t) + i\sin(-4t)]\mathbf{x}_2$ $= (3+2i)[\cos(4t) + i\sin(4t)]\mathbf{x}_1 + (3-2i)[\cos(4t) - i\sin(4t)]\mathbf{x}_2$ $= (3+2i)[\cos(4t)+i\sin(4t)]\begin{bmatrix}i\\2\end{bmatrix} + (3-2i)[\cos(4t)-i\sin(4t)]\begin{bmatrix}i\\2\end{bmatrix}$ $= \cdots$ $= \begin{bmatrix} -4\cos(4t) - 6\sin(4t) \\ 12\cos(4t) - 8\sin(4t) \end{bmatrix}$

Notes

Notes

Complex Eigenvalues: Closer Look

Suppose $\lambda_1 = \overline{\lambda_2}$ and $\mathbf{x}_1 = \overline{\mathbf{x}_2}$.

Then $e^{\lambda_1 t} \mathbf{x_1} = \overline{e^{\lambda_2 t} \mathbf{x_2}}$

 $c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 = c_1 (f + gi) + c_2 (f - gi)$ = $(c_1 + c_2) f + i (c_1 - c_2) g$ = af + bg= $a \cdot \operatorname{Re}(e^{\lambda_1 t} \mathbf{x}_1) + b \cdot \operatorname{Im}(e^{\lambda_1 t} \mathbf{x}_1)$

where a and b are arbitrary constants

Course Notes 6.3: Systems of Linear Differential Equations

Complex Eigenvalues: Closer Look

$$\mathbf{y}'(t) = \begin{bmatrix} 0 & -2 \\ 8 & 0 \end{bmatrix} \mathbf{y}(t) \qquad \mathbf{y}(0) = \begin{bmatrix} -4 \\ 12 \end{bmatrix}$$

Course Notes 6.3: Systems of Linear Differential Equations	

Shorcut

Suppose we're solving $\mathbf{y}' = A\mathbf{y}$, and A has a complex pair of eigenvalues and eigenvectors $\lambda_1 = \overline{\lambda_2}$, $\mathbf{x}_1 = \overline{\mathbf{x}_2}$.

To find the solutions corresponding to these eigenvalues and eigenvectors, $c_1e^{\lambda_1 t}\mathbf{x}_1 + c_2e^{\lambda_2 t}\mathbf{x}_2$ is equivalent to $a \cdot \operatorname{Re}(e^{\lambda_1 t}\mathbf{x}_1) + b \cdot \operatorname{Im}(e^{\lambda_1 t}\mathbf{x}_1)$. That is:

1. Choose a single solution, like $e^{\lambda_1 t} x_1$

2. Separate it into its real and imaginary part

3. The general solution is any linear combination of the real and imaginary part

Notes

Notes

Complex Eigenvalues

$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}; \quad \text{solve } \mathbf{y}' = A\mathbf{y}$$

Eigenvalues: $\lambda_1 = 1 + i, \ \lambda_2 = 1 - i$
Eigenvectors: $\mathbf{x}_1 = \begin{bmatrix} -i \\ 1 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} i \\ 1 \end{bmatrix}$

Complex Eigenvalues

 $A = \begin{bmatrix} 0 & \frac{1}{4} \\ -5 & -2 \end{bmatrix}$

Course Notes 6.3: Systems of Linear Differential Equations

End Behaviour

$\lambda = 1$	$ce^t \mathbf{x}$	$\xrightarrow{t \to \infty} \pm$	∞	if $c \neq 0$	
$\lambda = -1$	$ce^{-t}\mathbf{x}$	$\xrightarrow{t \to \infty} 0$			
$\lambda = 0$	сх	$\xrightarrow{t \to \infty} c$	c	if $c \neq 0$	
$\lambda = i$	$c(\cos t + i \sin t)$	$\cos t + i \sin t$) x		oscillating	
$\lambda = 1 + i$ $\lambda = -1 + i$	$ce^{t}(\cos t + i\sin t)\mathbf{x}$ $ce^{-t}(\cos t + i\sin t)\mathbf{x}$		oscillating, growing oscillating, decaying		

Notes

Notes

Bigger Matrices

$$\mathbf{y}' = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{y}$$

Notes

Bigger Matrices

$$\begin{aligned} \lambda_1 &= 0 & \lambda_2 = 1 + i & \lambda_3 = 1 - i \\ \mathbf{x}_1 &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} & \mathbf{x}_2 = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix} & \mathbf{x}_3 = \begin{bmatrix} 1 \\ -i \\ 0 \end{bmatrix} \end{aligned}$$

Course Notes 6.3: Systems of Linear Differential Equations

$$y_{1}'(t) = 3y_{1}(t) + 0y_{2}(t) + 0y_{3}(t)$$
$$y_{2}'(t) = 0y_{1}(t) + 2y_{2}(t) - 4y_{3}(t)$$
$$y_{3}'(t) = 0y_{1}(t) + 1y_{2}(t) + 2y_{3}(t)$$
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & -4 \\ 0 & 1 & 2 \end{bmatrix}, \qquad \lambda_{1} = 3, \ \lambda_{2} = 2 + 2i, \ \lambda_{3} = 2 - 2i$$
$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{x}_{2} = \begin{bmatrix} 0 \\ 2 \\ -i \end{bmatrix}, \ \mathbf{x}_{3} = \begin{bmatrix} 0 \\ 2 \\ i \end{bmatrix}$$

Notes